Printer Friendly

Leiningen versus the ants redux.

[ILLUSTRATION OMITTED]

It was the ants that finally did it. It wasn't the shingles that needed to be replaced. It wasn't the three-dimensional airflow network in the roof assembly. It wasn't the lack of racking resistance. It wasn't the lack of thermal resistance. It was the ants. Carpenter ants. There were just too many ants in my renovated barn.

I had seemingly done the perfect barn renovation 15 years ago. I installed a continuous water control layer, a continuous air control layer, a continuous vapor control layer and a continuous thermal control layer. I back ventilated my cladding system. It was all perfect (Photos 1, 2 and 3). It looked great. I gave myself an award. (2)

Apparently, the perfect renovation was not so perfect. The ants didn't come right away. Only a few in the first couple of years. The scouts to an invading army? My imagination getting the better of me? "Nah, get a grip," I kept telling myself. But I couldn't stop thinking of Charlton Heston, or was it Eleanor Parker? Then more ants came. And still more. The ants were winning. Suddenly they were everywhere. (3) Where were they coming from? Why were they coming here? Why my perfect barn? Were the old wise men of building science wrong? How could that be?

I had to find out. But how to find out? Couldn't I do an ant WUFI simulation? Couldn't I do an ant IR scan? Nope. Only one way to find out. Take it apart. Are you kidding me? Take my dream barn apart? My office? But the ants kept coming. And then the shingles needed replacing. I finally took the darn thing apart. After 15 years. Completely. Right down to the original barn boards. Stripped the shingles and the siding. Stripped the furring strips and rigid insulation. Stripped the polyethylene air/vapor barrier. Exposed everything. I did it carefully, layer by layer. An autopsy for a building. I looked at everything. I had to do it. The ants. And I learned. I became embarrassed at what I found, but I learned.

[ILLUSTRATION OMITTED]

It was so obvious it was embarrassing. I had already had enough embarrassment with the barn renovation. I learned about three-dimensional airflow networks the first year after the renovation--the first winter in fact (Photo 4). I should have never installed the roof foam in one layer. It should have been done in several layers with the joints off-set horizontally and vertically. (4) This was nothing that some old roof guy couldn't have figured out or prevented. Ouch. But I already knew about this. Dumb, yes. But dumb that I knew about already. I needed to find new dumb. It didn't take long.

I found the ants. Tracked them layer by layer. Yes, they loved my foam. They made themselves a fabulous ant condominium--a fabulous ant "gallery" (Photo 5)--in two spots. But I was ecstatic. Huh? The crew thought I was nuts. I was jumping around all happy about ants in my foam. Why so happy? The ants were only in two spots in the whole damn building. They were in the only two "wet spots" in the whole damn building. The ants only loved my "wet foam." Where there was dry foam there were no ants. Duh. And it gets even better.

The wet spots were due to something really obvious--something unbelievably embarrassing--reverse flashing. Reverse flashing in two critical areas lead to a whole bunch of water getting into my roof insulation and wetting it. But not enough water leaked in to get past my water control layer. So my roof leaked because of two dumb mistakes-but my roof didn't leak "inside" for me to see it. A bush league mistake--reverse flashing of all things (Photo 6). And in two spots. In the entire building two flashing mistakes, two wet spots and two ant galleries. How long have I been talking about flashing issues? The shoemaker's children are, in fact, barefoot.

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

The message here is obvious: keep things dry and you will not have ants. By the way, keep things dry and you won't have a lot of other bad things as well. The dry/wet thing with ants is pretty much proving to be the case in all the ant foam infestation cases I (and others) have looked at over the years.

[ILLUSTRATION OMITTED]

My barn foam was expanded polystyrene (EPS). Why did I pick EPS 15 years ago? It was cheap. I didn't care much about R-value per inch as I was insulating from the outside and I had lots of space and I had lots of experience with installing thick layers of foam on the exterior of wall assemblies. I was a Canadian. We know how to do these things. One of my colleagues had ants, and his foam was extruded polystyrene (XPS). Another buddy had polyisocyanurate and had ants. I have seen ants in low density and high density spray foams. But only in spots that are wet. The type of foam does not seem to matter. Wet matters. How wet? Really wet. Saturated wet. Or where there is a layer of water trapped between a layer of foam and something else that stays wet for a long time. Flash, drain and ventilate and you do not have ants in foam or anything else for that matter. (5)

What else did I learn? Some neat stuff. Obvious, but neat nevertheless. Polyethylene sheets make a lousy air barrier, even when supported on both sides. It is just too difficult to get it done right with something so "flimsy." There were lots of gaps, rips and tears. Original construction defects for sure. Stuff that I missed 15 years ago that I shouldn't have missed. But, even so, it is not a very "robust" approach. I should have known better. Dumb again.

Having said that, the tape used to seal the polyethylene was fabulous (Photo 7). In fact the same tape was used to seal sheets of XPS together on the main house and performed fabulously there as well. I opened up a bunch of spots on the main house to check adhesion and after 15 years the sheathing tape was like new (Photo 8). There was nothing wrong with the main house; I just needed to know. I really, really needed to know. I have been finding this to be the case pretty consistently in other projects that I have opened up, as have others. Sheathing tapes are proving to work over the long term in terms of sealing XPS joints, foil-faced isocyanurate board joints and joints in housewraps/buildingwraps.

However, membrane strips or membrane tapes are a different story. They tend to pull away from surfaces over time; they "fish-mouth" if they are not sealed at their top edge with a bead of sealant or if they are not "taped" at their top edge with a sheathing tape. As strange as it seems, I like to tape the top edge of a membrane strip (aka, "flashing tape") with a sheathing tape. The technical term for this is "terminated"--as in "fully adhered membranes that are reverse lapped need to be terminated at their top edges."

[ILLUSTRATION OMITTED]

Guess what? No bees. Say what? Yup, no bees in the air gap behind the siding. After 15 years absolutely no bees, wasps, or critters of any kind anywhere behind the siding. For years, decades actually, I have been hearing the argument that vented cladding systems are prone to insect infestation. And for years, decades actually, I have not been finding that to be the case. Here is the caveat: don't leave the air gap completely open at the bottom or at the top. Check out Photo 9. I used a polypropylene mesh at the bottom of the assembly to allow airflow and drainage but to block insects. I also used an aluminum "C-Section" to seal the bottom cantilevered portion of my exterior foam insulation to keep squirrels and chipmunks and other animals from getting into the foam. No insect damage (except for the ants discussed earlier), and no critter damage have occurred after 15 years.

[ILLUSTRATION OMITTED]

More neat stuff: the 1x4 wood furring strips were untreated and looked brand new. After 15 years, untreated wood furring strips looked brand new. The screws were epoxy coated steel, and they looked brand new. All of them. Remember, we took everything apart and looked at everything. The crew took all the screws for use on other projects; that tells you something. Here is the obvious conclusion: wood furring strips do not have to be treated if the air gap is drained and ventilated. Even better, you don't have to use stainless steel screws if the air gap is drained and ventilated. Epoxy-coated steel works great under these conditions.

The wood siding that was removed also looked brand new after 15 years. The wood siding originally installed was kiln-dried lodge pole pine treated with a penetrating water repellant preservative on all six surfaces, coated with an oil based primer on all six surfaces and top coated with an acrylic latex paint. This siding was installed on a ventilated air gap and all field end cuts were sealed with an oil-based primer prior to installation. The same approach was used on the trim. The trim was in good shape, but was beginning to show some age at trim bottom edges at the bottoms of the walls and at corners. The siding or trim had never been painted after it was originally installed--only power washed. (6) The crew took the wood siding--no surprise there--it got reused.

Done with the pathology, now I had to put it all together again, but this time avoiding the aggravations and building on what folks now know in the industry. A couple of things to come clean on first. The barn needed more shear than it got with the original renovation 15 years earlier. I didn't think it needed back then; I was wrong. How did I figure the shear issue out? Well, the darn thing would shake and move when a nor'easter would blow through. So I figured I had to sheath the whole building with a structural sheathing. Next, I wanted to upgrade the thermal resistance--pretty much double it from before. Things have changed energy wise in 15 years. And I wanted the building to be airtight. Really, really airtight. The airtight thing was a pride thing.

Since we were down to the original board sheathing on the outside I could do pretty much anything I wanted. I elected to wrap the entire building with traditional "black" building paper for aesthetic reasons. Huh? Well, when you are inside looking out you can see through the cracks, gaps in the original sheathing. I wanted something to fill the gaps. Then the entire building was sheathed with plywood for shear reasons (Photo 10 and Photo 11).

The plywood sheathing was then wrapped with a fully adhered peel and stick membrane (Photo 12). This layer acts as a water control layer, an air control layer and a vapor control layer. Note the control layer continuity between the roof assembly and the wall assembly. Reverse laps in the membrane were taped with sheathing tape.

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

The thermal control layer for the walls and roof went on next: 8 in. (203 mm) of isocyanurate for the walls (four layers: each layer 2 in. (51 mm) thick with joints offset and each layer taped); 10 in. (254 mm) of isocyanurate for the roof (five layers: each layer 2 in. (51 mm) thick with joints offset and each layer taped). Check out Photo 13.

[FIGURE 1 OMITTED]

[FIGURE 2 OMITTED]

Wood furring (untreated) was then installed with long epoxy-coated steel screws through the rigid insulation into the structural sheathing and original board sheathing. Roof overhangs float on the top of the rigid insulation and tie into the wood furring on the walls (Photo 14, Figure 1 and Figure 2).

[FIGURE 3 OMITTED]

Wood siding was installed over the wood furring strips. The wood siding was treated identically to the original wood siding and was installed identically to the original. However, the trim used was cellular PVC. Why? Ah, I couldn't get anyone to do wood trim the way we did it originally, and I felt the PVC stuff would be easier to install and work better and look better. The detail at the bottom of the wall did not change (Figure 3). Why mess with success?

How did it turn out when all was said and done? Check out Photo 15. New shingles. Lots of new insulation. Lots of shear. (7) No three-dimensional airflow networks. Not quite the plantation house of Charlton Heston and Eleanor Parker--but it will do--the Marabunta be damned.

(1) "Leiningen Versus the Ants" by Carl Stephenson (www.classicshorts.com/stories/lvta.html) is a short story published in the December 1938 edition of Esquire subsequently made into a movie "The Naked Jungle" in 1954 staring Charlton Heston and Eleanor Parker. In the story and in the movie, Leiningen battles a "seemingly unstoppable mass of army ants" at his plantation in the Brazilian rainforest. This is arguably the greatest short story ever written. I first read it in Grade 5 at Tumpane Public School when my teacher, Mr. Pemberton, got tired of my classroom antics and sent me to the library with the task of reading every book in the library before he would allow me back. He said I should start with this "Leiningen" fellow and talk to him the next morning about what I had read. I read it and I was hooked. If reading was this good I had to do more. Thank you, Mr. Pemberton, for inspiring me and imparting the lifelong gift of reading and imagination.

(2) Isn't that the way we do things? We give ourselves awards, or have our friends give us awards; our friends who all think the same way we do and do the same things we do in the same way? We don't actually have to see if something works. We just have to believe that it will or have our friends believe that it will.

(3) OK, not everywhere, but there were too many of them to ignore. When I was working in the barn--it served as my office--I would see two or three every hour wandering around. They would come in bursts. Then nothing for weeks. Then they were back again. This went on for years. Too few to get too worked up about right away, but too many to completely forget about. I treated surfaces with boric acid and chased them into hiding, but I knew they were still there, and it was driving me crazy.

(4) I covered this in the August 2009 ASHRAE Journal, "Complex 3-D Airflow Networks." I used my barn as one of the examples of how not to do things. Dumb.

(5) OK, a few other minor points, don't run your foam into the ground. If you do, you will have ants even if it is dry because they love the pathway. Even with borate treated EPS foam. The borate keeps the ants out of the EPS foam but not out of the gap between the foam and the foundation wall. You can break the pathway and make this issue go away by capping the joint at the top to the foundation wall, or not run the foam into the ground and now you don't have the pathway. This is also effective with termites: the "don't run the foam into the ground" part.

(7) Hurricane Irene went almost directly over the top of the barn after we were done. I had a grin a mile wide. I mean who rides out a hurricane in a 100-year-old barn jumping up and down like a kid calling everyone he knows saying nothing is moving? It wasn't Bill Haley's "Shake Rattle and Roll," but Bob Seger's "Like a Rock." Oh yeah, no leaks either.

By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

Joseph W. Lstiburek, Ph.D., P.Eng., is a principal of Building Science Corporation in Somerville, Mass. Visit www. buildingscience.com.
COPYRIGHT 2011 American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:BUILDING SCIENCES
Author:Lstiburek, Joseph W.
Publication:ASHRAE Journal
Geographic Code:1USA
Date:Oct 1, 2011
Words:2711
Previous Article:Dual-fan system.
Next Article:Cooling on a small scale.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |