Printer Friendly

Keeping fusion flexible.

Robert L. Hirsch's article "Fusion Research: Time to Set a New Path" (Issues, Summer 2015) is informative and thought-provoking. The issues he addresses, including economic viability, operational safety, and regulatory concerns, are important and require closer examination. His analysis makes a convincing, fact-based case for the need to examine the merits of current fusion efforts supported by public funds. As of June 2015, the United States has invested $751 million in the International Thermonuclear Experimental Reactor (ITER) tokamak project. As such, the public should be able to access the ITER team's findings regarding the issues Hirsch pointed out. Greater disclosure will allow a more meaningful dialogue regarding the merits of the current publicly funded fusion research and development (R&D) path.

Based on my experience in managing a private fusion company, the current fusion funding landscape will be an important factor in the education of next-generation fusion scientists and engineers. Over the past decade, several privately funded startup companies have sprung up in the United States and elsewhere in pursuit of practical fusion power based on radically different approaches from the tokamak. The emergence of these startups is largely due to the past technical progress in fusion research stemming from a diverse portfolio of approaches supported by the government. These companies have generated a significant number of jobs despite the fact that their combined budget is only about 10% of government-funded fusion programs. However, they face a common challenge of filling critical technical roles as the talent pool of young scientists and engineers with a diverse background in fusion research is dwindling.

In the federal fusion energy science budget for fiscal year 2015, the lion's share of funding is directed toward a single fusion concept--the tokamak. Combined with the $150 million allocated to the ITER tokamak program, the total funding for tokamak-specific R&D amounts to $361 million. In comparison, only $10.4 million goes toward R&D on high-pressure compact fusion devices. This type of approach is pursued by all but one private fusion company due to its compact size, low-cost development path, and potential for economic viability. In mid-2015, the Advanced Research Projects Agency-Energy announced that it would provide one-time funding of $10 million per year over three years for this work. This will provide some relief to support innovation in fusion, but it is far from sufficient. This lopsided federal fusion spending creates a huge mismatch between the needs of the nascent, but growing, private fusion industry and the focus of government-supported fusion R&D. Although the tokamak has provided the best-performing results to date, ITER has projected that the widespread deployment of practical fusion power based on tokamak will nevertheless begin only in 2075. This timetable suggests that the nation must continue to support diverse approaches to improve the odds for success.

Over the past couple of years, I have had the opportunity to share our own results and progress with the public. It has been encouraging to me that the public, on balance, views fusion research as a worthy endeavor that can one day address the world's need for sustainable and economical sources of power. People also understand the challenges of developing practical fusion power--yet by and large, the public is willing to remain as a key stakeholder in support of fusion research. It is thus imperative for the fusion research community to keep its focus on innovations, while being judicious in its spending of public dollars. In that regard, I think Hirschs article is very timely, and deserves the attention of the fusion research community and the public at large.

Jaeyoung Park


Energy Matter Conversion Corporation

Since leaving the federal governments magnetic confinement fusion program and the field in the mid-1970s, Robert Hirsch has contributed a series of diatribes against the most successful concept being developed worldwide in that program. What is surprising is not the familiar content of this latest installment, but that it was published in Issues, a journal seeking to present knowledgeable opinion in this area.

As for the article, Hirsch complains that the tokamak uses technologies that have been known to fail sometimes in other applications, notes that the ITER tokamak presently under construction is more expensive than a conventional light-water nuclear reactor that can be bought today, and concludes with a clarion call for setting a new path in fusion research (without any specifics except that it lead to an economical reactor).

Components do fail, particularly in the early stages of development of a technology. Hirsch mentions, for example, superconducting magnets failing in accelerators, causing long downtimes for repair, and plasma-disruptive shutdown in tokamaks. This argument ignores the learning curve of technology improvement. Bridges have collapsed and airplanes have crashed, with much more disastrous consequences than a tokamak shutting down unexpectedly would have, but improvements in technology have now made these events acceptably unlikely. Why can the same technology learning curve not be expected for magnetic fusion technologies?

Hirsch's economic arguments based on comparison of the estimated cost of ITER and of a Westinghouse AP-600 light-water nuclear reactor are disingenuous (at best) and completely ignore both the learning curve and the difference in purpose of ITER and an AP-600. ITER is an international collaboration entered into by the seven parties (the United States, the European Union, Japan, Russia, China, South Korea, and India) for sharing the expense of gaining the industrial and scientific experience of building and operating an experimental fusion reactor, most of the components of which are first-of-a-kind and therefore require the development of new manufacturing procedures and a large and continuing amount of R&D. Each of the parties wants to share in this experience for as many of the technologies as possible. To initially achieve the ITER collaboration, an extremely awkward management arrangement was devised, including in-kind contribution of the components and the requirement of unanimity among all parties on all major decisions. By contrast, the AP-600 benefits from a half-century learning curve in which hundreds of light-water reactors have been built and operated, many of them by the single industrial firm (Westinghouse) that offers the AP-600. A more meaningful comparison would be to cost an AP-600 to be built in the 1950s (escalated to todays dollars) by the same type of consortium as ITER, involving the same parties with the same purpose, and requiring the development in 1950 of what would be first-of-a-kind components of the present AP-600.

Weston M. Stacey

Regents' Professor of Nuclear Engineering Georgia Institute of Technology
COPYRIGHT 2015 National Academy of Sciences
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:FORUM
Author:Park, Jaeyoung; Stacey, Weston M.
Publication:Issues in Science and Technology
Article Type:Letter to the editor
Date:Sep 22, 2015
Previous Article:Revisiting genetic Engineering.
Next Article:Objects of Wonder.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters