Printer Friendly

Karyosystematic and karyotype evolution of Panstrongylus lutzi (Neiva & Pinto, 1923) (Hemiptera, Triatominae).

1. Scientific Note

Currently, there are 153 species of triatomines, distributed in 18 genera, being all species considered as potential vector of Chagas disease (Alevi et al., 2016; Rosa et al., 2017). The genus Panstrongylus Berg, 1879 is composed of 15 species, being 14 species alive and one fossil. Cytogenetic analyses in Panstrongylus were initiated in 1950 with the karyotype description of P. megistus (Schreiber and Pellegrino, 1950). Until now the number of chromosomes in seven species of Panstrongylus was described, of which with the exception of P. megistus which has 21 chromosomes (2n = 18A + [X.sub.1][X.sub.2]Y), all other species analyzed (P. chinai, P. geniculatus, P. howardi, P. lignarius, P. rufotuberculatus and P. tupynambai) have 23 chromosomes (2n = 20A + [X.sub.1][X.sub.2]Y) (Schreiber and Pellegrino, 1950; Perez et al., 2002; Panzera et al., 2010).

Based on homogeneity of the number of chromosomes (2n = 23) and sex determination system ([X.sub.1][X.sub.2]Y) of the genus Panstrongylus, Perez et al. (2002) suggested that these triatomines were possibly originated from ancestors of North America, because all species of South America [except Triatoma melanocephala (2n = 24), T. vitticeps (2n = 24) and T. tibiamaculata (2n = 23) (Alevi et al., 2012)] have 2n = 22 chromosomes and XY sex determination system (Panzera et al., 2010). These results were recently confirmed based on molecular analysis (Justi et al., 2014).

Thus, in order to assist in the chromosomal and evolutionary knowledge of the genus Panstrongylus and Triatominae subfamily, this study aimed to analyze the karyotype of P lutzi and compare with karyotypes already described for other species of the triatomines.

One adult male of P. lutzi was collected in wild environment in the State of Bahia, Brazil (S 12.41'407 ", W 039.26'210" and elevation 167 meters). We justify that only one specimen was analyzed by the absence of P. lutzi in Brazilian insectaries and mainly by the difficulty of collecting and maintaining of these species in the laboratory, since for cytogenetic analyzes the insects might not be killed or fixed in alcohol (as occurs for molecular analysis). The seminiferous tubules of adult males were torn and fixed to a cover slip. They then underwent the cytogenetic technique of Lacto-acetic orcein (De Vaio et al., 1985 with modifications according to Alevi et al., 2012) and analyzed using a Jenaval light microscope (Zeiss). For the characterization of the karyotype were analyzed 50 mitotic metaphases (I and II).

As well as was observed recently by Santos et al. (2016), P. lutzi presented a different karyotype of all species of the genus Panstrongylus, namely, 2n = 24 (20A + [X.sub.1][X.sub.2][X.sub.3]Y), being the Y sex chromosome heteropycnotic (Figure 1). This number of chromosomes is very peculiar because it was described to only three other species in subfamily Triatominae: T. melanocephala (Alevi et al., 2012), T. vitticeps (Schreiber and Pellegrino, 1950) and T. eratyrusiformis (Ueshima, 1966).

Starting from the principle that the ancestral karyotype of Panstrongylus is 2n = 23 (Perez et al., 2002), during karyotype evolution of P. megistus and P. lutzi occurred simploidy (fusion) of a pair of autosomes (Perez et al., 2002) and agmatoploidy (fission) of X sex chromosome, respectively (Figure 2). The number of chromosomes of the P. megistus (2n = 21) and P. lutzi (2n = 24) can be used as a taxonomic tool to differentiate this species from all species of genus Panstrongylus (2n = 23), as well as allows distinguishing them from other 85 species of Triatominae subfamily that presents 22 (55 species) or 23 (30 species) chromosomes (Alevi et al., 2016; Bardella et al., 2016; Mendonja et al., 2016; Rosa et al., 2017).

Jurberg et al. (2001) based on chromatic and morphological analysis of only one specimen collected in Bahia described P. sherlocki as sister species of P. lutzi. However, Garcia et al. (2005) when analyze P. lutzi coming from the municipalities of Sobral (Bahia) and Crateus (Ceara) observed high variability in morphological and morphometric characteristics and they classified the morphotypes that had the characteristics of P. sherlocki as P. lutzi. On that basis, P. sherlocki became considered as synonymous with P. lutzi (Schofield and Galvao, 2009). However, due to peculiarity observed in the karyotype of P. lutzi, we suggest that new karyotypic studies should be conducted on specimens initially classified as P. sherlocki by Jurberg et al. (2001), because if a different karyotype of 2n = 24 is observed, the number of chromosomes would support the revalidation of the species.

Thus, this paper describes the number of chromosomes of P. lutzi [2n = 24 (20A + [X.sub.1][X.sub.2][X.sub.3]Y)], suggests that karyotype arose from one agmatoploidy event of the X sex chromosome and mainly apply these data as taxonomic tool to differentiate this vector of other species of the genus Panstrongylus, as well as subfamily Triatominae.

http://dx.doi.org/10.1590/1519-6984.166442

Acknowledgements

The study was supported by Fundajao de Amparo a Pesquisa do Estado de Sao Paulo (process numbers 2013/197640, Brazil) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, Brazil).

References

ALEVI, K.C.C., MENDONQA, P.P., PEREIRA, N.P., ROSA, J.A. and AZEREDO-OLIVEIRA, M.T.V., 2012. Karyotype of Triatoma melanocephala Neiva and Pinto (1923). Does this species fit in the Brasiliensis subcomplex? Infection, Genetics and Evolution, vol. 12, no. 08, pp. 1652-1653. PMid:22760157. http://dx.doi.org/10.1016/j.meegid.2012.06.011.

ALEVI, K.C.C., MOREIRA, F.F.F., JURBERG, J. and AZEREDO-OLIVEIRA, M.T.V., 2016. Description of diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae). Genetics and Molecular Research, vol. 15, no. 2, pp. 1-9.

BARDELLA, V.B., PITA, S., VANZELA, A.L.L., GALVAO, C. and PANZERA, F., 2016. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Memorias do Instituto Oswaldo Cruz, vol. 111, no. 10, pp. 614-624. PMid:27759763. http://dx.doi. org/10.1590/0074-02760160044.

DE VAIO, E.S., GRUCCI, B., CASTAGNINO, A.M., FRANCA, M.E. and MARTINEZ, M.E., 1985. Meiotic differences between three triatomine species (Hemiptera:Reduviidae). Genetica, vol. 67, no. 3, pp. 185-191. http://dx.doi.org/10.1007/BF02424489.

GARCIA, M.H.H.M., SOUZA, L., SOUZA, R.C.M., PAULA, A.S., BORGES, E.C., BARBOSA, S.E., SCHOFFIELD, C.J. and DIOTAIUTI, L., 2005. Occurrence and variability of Panstrongylus lutzi in the state of Ceara, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, vol. 38, no. 5, pp. 410-415. PMid:16172758. http://dx.doi.org/10.1590/S0037-86822005000500010.

JURBERG, J., CARCAVALLO, R.U. and LENT, H., 2001. Panstrongylus sherlocki sp.n. do estado da bahia, Brasil (hemiptera, reduviidae, triatominae). Entomologia y Vectores, vol. 8, no. 2, pp. 261-274.

JUSTI, S.A., RUSSO, C.A.M., MALLET, J.R.S., OBARA, M.T. and GALVAO, C., 2014. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasites & Vectors, vol. 7, no. 149, pp. 1-12.

MENDONQA, V.J., ALEVI, K.C.C., PINOTTI, H., GURGEL-GONGALVES, R., PITA, S., GUERRA, A.L., PANZERA, F., ARAUJO, R.F., AZEREDO-OLIVEIRA M.T.V. and ROSA, J.A., 2016. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species. Zootaxa, vol. 4107, no. 2, pp. 239-254. PMid:27394816. http://dx.doi.org/10.11646/zootaxa.4107.2.6.

PANZERA, F., PEREZ, R., PANZERA, Y., FERRANDIS, I., FERREIRO, M.J. and CALLEROS, L., 2010. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae). Cytogenetics and Genome Research, vol. 128, no. 1-3, pp. 77-87.

PEREZ, R., HERNANDEZ, M., CARACCIO, M., ROSE, V., VALENTE, A., VALENTE, V., MORENO, J., ANGULO, V, SANDOVAL, M., ROLDAN, J., VARGAS, F., WOLFF, M. and PANZERA, F., 2002. Chromosomal evolution trends of the genus Panstrongylus (Hemiptera, Reduviidae), vectors of Chagas Disease. Infection, Genetics and Evolution, vol. 2, no. 01, pp. 47-56. PMid:12798000. http://dx.doi.org/10.1016/S15671348(02)00063-1.

ROSA, J.A., JUSTINO, H.H.G., NASCIMENTO, J.D., MENDONCA, V.J., ROCHA, C.S., CARVALHO, D.B., FALCONE, R., AZEREDO-OLIVEIRA, M.T.V., ALEVI, K.C.C. and OLIVEIRA, J., 2017. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys. In press.

SANTOS, S.M., POMPOLO, S.G., GONQALVES, T.C.M., FREITAS, S.P.C., RANGEL, E.F. and SANTOS-MALLET, J.R.S., 2016. New sex-determination system in the genus Panstrongylus (Hemiptera: Reduviidae) revealed by chromosomal analysis of Panstrongylus lutzi. Parasites & Vectors, vol. 9, no. 1, pp. 295. PMid:27209318. http://dx.doi.org/10.1186/s13071-016-1574-6.

SCHOFIELD, C.J. and GALVAO, C., 2009. Classification, evolution, and species groups within the Triatominae. Acta Tropica, vol. 110, no. 2-3, pp. 88-100.

SCHREIBER, G. and PELLEGRINO, J., 1950. Eteropicnosi di autosomi come possible meccanismo di speciazione (Ricerche citologiche su alcuni Emitteri neotropici). Sciencia Genetica, vol. 3, pp. 215-226.

UESHIMA, N., 1966. Cytotaxonomy ofthe Triatominae (Reduviidae, Hemiptera). Chromosoma, vol. 18, no. 01, pp. 97-122. http:// dx.doi.org/10.1007/BF00326447.

K. C. C. Alevi (a) *, C. H. L. Imperador (a), E. O. L. Fonseca (b), C. G. S. Santos (b), M. T. V. Azeredo-Oliveira (a), J. A. Rosa (c) and J. Oliveira (c)

(a) Laboratorio de Biologia Celular, Departamento de Biologia, Instituto de Biociencias, Letras e Ciencias Exatas--IBILCE, Universidade Estadual Paulista "Julio de Mesquita Filho"--UNESP, Rua Cristovao Colombo, 2265, Jardim Nazareth, CEP 15054-000, Sao Jose do Rio Preto, SP, Brazil

(b) Laboratorio de Entomologia, Laboratorio Central de Saude Publica Professor Gonjalo Moniz Central--LACEN, Rua Waldemar Falcao, 123, Horto Florestal, CEP 40295-010, Salvador, BA, Brazil

(c) Laboratorio de Parasitologia, Departamento de Ciencias Biologicas, Faculdade de Ciencias Farmaceuticas--FCFAR, Universidade Estadual Paulista "Julio de Mesquita Filho"--UNESP, Rodovia Araraquara-Jau, Km 1, CEP 14801-902, Araraquara, SP, Brazil

* e-mail: kaiochaboli@hotmail.com

Received: July 11, 2016--Accepted: September 17, 2016--Distributed: February 28, 2018

Caption: Figure 1. Karyotype of the Panstrongylus lutzi. Note 2n = 24 (20A + [X.sub.1][X.sub.2][X.sub.3]Y) chromosomes. X: X sex chromosome; Y: Y sex chromosome. Bar: 10 [micro]m.

Caption: Figure 2. Karyotype evolution in the genus Panstrongylus. Note that from ancestral karyotype 2n = 23, occurred three evolutionary events during the speciation of these vectors: (1) agmatoploidy in X sex chromosome, resulting in karyotype 2n = 24 (P. lutzi); (2) absence of events that alter the karyotype numerically, keeping the same ancestor number 2n = 23 (P. chinai, P. geniculatus, P. howardi, P. lignarius, P. rufotuberculatus and P. tupynambai); (3) simploidy in a pair of autosomes, resulting in karyotype 2n = 21 (P. megistus). AK: ancestral karyotype; ASC: agmatoploidy in sex chromosome; SA: simploidy in autosomes.
COPYRIGHT 2018 Association of the Brazilian Journal of Biology
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Notes and Comments
Author:Alevi, K.C.C.; Imperador, C.H.L.; Fonseca, E.O.L.; Santos, C.G.S.; Azeredo- Oliveira, M.T.V.; Rosa,
Publication:Brazilian Journal of Biology
Article Type:Ensayo
Date:Feb 1, 2018
Words:1759
Previous Article:Occurrence of Allorhogas sp.
Next Article:Cytogenetic analysis in different populations of Rhodnius prolixus and R. nasutus from different countries of South America.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters