Printer Friendly

Interacciones troficas en el ecosistema de surgencia del norte de Chile, ano 1997.

Trophic interactions in northern Chile upwelling ecosystem, year 1997

INTRODUCTION

In the last three decades scientists and managers have been recognizing the need for incorporating wider ecosystem considerations into fisheries management (FAO, 2003; Parsons 2005; Constable 2011). The necessity of an ecosystem approach to fisheries (EAF) results from i) the increasing knowledge on stock dynamics and their relationships with their physical and biological environment (Pauly et al., 1998; Neira & Arancibia, 2002; Shannon & Cury, 2003), and ii) the pervasive negative impacts of fishing on target species and their ecosystems (Pauly et al., 2000; Shannon & Cury, 2003; Heymans et al, 2004).

Multispecies, community and ecosystem models are expected to complement the traditional fisheries management based only on single-species models, and then increasing societal capacity to attain sustainable fisheries (Bostford et al, 1997). Several modelling platforms have been developed and applied to marine ecosystems with the aim of better understanding their structure and function, and to support EAF (Plaganyi, 2007). Among them, the Ecopath with Ecosim approach (EwE) is a useful family of models that allow the analysis of trophic interactions in aquatic systems (Polovina, 1984; Christensen & Pauly, 1992; Walters et al, 1997; Christensen & Walters, 2000). EwE is useful and practical for summarizing information about the main components in a system and their trophic relationships, allowing descriptions and comparisons among ecosystems (Christensen & Pauly, 1993; Jarre-Teichmann & Christensen, 1998; Jarre-Teichmann et al, 1998; Shannon & Jarre-Teichmann 1999; Neira, 2003; Neira & Arancibia, 2004; Arancibia et al, 2010).

The upwelling ecosystem off northern Chile (UENCh) sustains an important purse-seine fishery targeting anchovy (Engraulis ringens), sardine (Sardinops sagax), mackerel (Scomber japonicus) and jack mackerel (Trachurus murphyi). However, in the 90's decade, landings of these pelagic species exhibited a sustained declining trend (Fig. 1). This situation has strongly impacted the local economy in northern Chile, with a series of fusions (first) and closing (more recently) of several fishing companies, which resulted in a noticeable contraction of the fleet (Aliaga et al., 2001; Canon, 2004).

Fluctuations of fish populations can be explained by several factors such as fishing pressure, trophic interactions and environmental variability such as intensity of the upwelling front and temperature change produced by El Nino Southern Oscillation (ENSO) events, among others (Serra, 1986; Bernal, 1990; Yanez et al., 2001; Blanco et al, 2002). The inter-annual variability in the oceanographic and atmospheric conditions in the UENCh are determined by large-scale events such ENSO (Montecinos et al., 2003), which presents a warm phase (known as El Nino) and a cold phase (known as La Nina). In the Chilean coast, the warm phase of ENSO is determined mostly by ocean-atmosphere processes, allowing the transport of equatorial waters towards the south (Thomas et al, 2001; Ulloa et al, 2001). However, fisheries studies carried out in northern Chile do not normally assess ecological interactions among populations or the effects of the physical environment on the dynamics of target species. On the other hand, it is necessary to advance our

understanding on the trophic relationships of target species, the community structure in which they inhabit, and the potential effects of the fishery on target species in this system.

Medina et al. (2007) modelled the pelagic food web in the upwelling ecosystem of northern Chile (18[degrees]20'-24[degrees]00'S), to describe trophic interactions and energy flows among 13 functional groups during 1989, a period of rather normal oceanographic conditions (i.e., non ENSO). In this paper we built a model representing the same food web in year 1997, which is a period characterized by the presence of ENSO (McPhaden, 1999; Escribano et al, 2004). The aim of this paper is to describe prey-predator relationships, community structure and trophic flows in the UENCh in 1997 and compare these system features with those in year 1989 informed by Medina et al. (2007).

MATERIALS AND METHODS

Study area and study period

The study area corresponds to the upwelling ecosystem in northern Chile (UENCh) that extends from 18[degrees]20'S to 24[degrees]00'S, and from the coastline to 60 nm westward, encompassing a total surface area of 65,000 [km.sup.2] (Fig. 2). This area has been delimited considering the distribution of the fishing fleets (Serra, 1986), and the influence of the coastal upwelling (Thiel et al, 2007). The oceanography of the study area is influenced by the Humboldt Current System, which is characterized by high biological and fish production (Carr, 2002). This is also the main fishing area for the industrial and artisanal purse-seine fleets targeting pelagic fish such anchovy, mackerel, jack mackerel and sardine (Castillo et al, 1997, 1999; Braun et al, 1999). In year 2011, the UENCh provided about 31% of total fish landings in Chile (www.sernapesca.cl).

The main oceanographic features in the study area are low turbulence, a quasi permanent positive anomaly of the sea surface temperature with a narrow coastal band of cold water (Bernal, 1990; Cubillos et al, 1998), low frequency events (ENSO) with inter-annual periodicity (Fuenzalida, 1992), while high frequency events (e.g., upwelling) are permanent throughout the year (Fuenzalida, 1990, Shaffer et al., 1999; Blanco et al., 2001).

In this paper we selected the year 1997 to build the food web model because of the presence of a strong ENSO conditions in the whole area. However, considering that the snapshot model corresponds to one year, we assume steady-state conditions and mass-balance for all functional groups (sensu Christensen & Pauly, 1993).

Describing the food web model for northern Chile

EwE is an ecotrophic model that incorporates interactions among functional groups in an ecosystem. It is based in two main equations focusing on (1) the usage of the production, and (2) the mass-balance of each group included in the model.

The production of each group i can be split in the following components:

Production = catches + predation mortality + biomass accumulation + net migration + other mortalities

The mathematical equation is:

[P.sub.i] = [Y.sub.i] + [B.sub.i]M [2.sub.i] + E + B[A.sub.i] + [B.sub.i](1 - E[E.sub.i]) (1)

where: [P.sub.i] is total production rate for group i; [Y.sub.i] is total catch for i; Bi is total biomass of i; [M2.sub.i] is predation mortality of for i; Ei is the net migration rate for i (emigration minus immigration); B[A.sub.i] is the biomass accumulation for i; Pi (1 - E[E.sub.i]) = BM0i is other mortalities for i, those independent from predation and catches. Equation (1) can be re-expressed as: ~ [B.sub.i](P/B) - [n.summation over (j=1)] [B.sub.j] [(Q/B).sub.i] D[C.sub.ij] - (P/B) [B.sub.i](1 - E[E.sub.i]) - [Y.sub.i] - [E.sub.i] - B[A.sub.i] = 0 (1a)

where (P/B)i is the production to biomass ratio equal to total mortality (Z) under steady-state conditions (sensu Allen, 1971); (Q/B) is consumption to biomass ratio; D[C.sub.ji] is the fraction (in weight) of the prey i in the diet of the predator j; E[E.sub.i] is the ecotrophic efficiency of i that corresponds to the fraction of the production of group i that is utilized within the system as predation and/or catches; [E.sub.i] corresponds to the exports of i (either as emigration or catches).

The mass-balance for each group is given by:

Q = P + R + U (2)

where Q is prey consumption, P is production, R is respiration, U is unassimilated food. This equation defines the consumption as the sum of gonadal and somatic growth, metabolic costs and excretion products.

Building the food web model

The model considers 21 functional groups from primary producers to top predators. The model is focused on target species and their main prey and predators. The groups are: phytoplankton, microzoo-plankton, mesozooplankton (copepods), macrozoo-plankton (euphausiids), gelatinous zooplankton (siphonphores and salps), mackerel (Scomber japonicus), sardine (Sardinops sagax), anchovy (Engraulis ringens), mesopelagic fish (Myctophidae), jack mackerel (Trachurus murphyi), demersal fish (black cusk-eel Genypterus maculatus and Genypterus chilensis red cusk-eel (check www.fishbase.org); southern grut Cilus gilberti and rock seabass Paralabrax humeralis), jumbo squid (Dosidicus gigas), palm ruff (Seriolella violacea), Eastern Pacific bonito (Sarda chilensis), common dolphinfish (Coryphaena hippurus), swordfish (Xiphias gladius), pelagic sharks (short fin mako Isurus oxirynchus and blue shark Prionace glauca), sea lions (Otaria flavescens), cetaceans (small cetaceans and dolphins), marine birds (guanay cormorants Leucocarbo bougainvilli, Peruvian booby Sula variegata and pelicans Pelecanus thagus), and detritus.

The model was built using available information on landings, life history parameters and biomass assessments for each functional group in the ecosystem model. The information was obtained from published literature, reports and thesis. We estimate some parameters using empirical equations that integrate information reported for the study area. Table 1 presents the corresponding source and estimation method for input parameters in each functional group.

When parameters were unknown, they were calculated by solving equations 1 and 2 under the assumption that E[E.sub.i] = 0.999. The above implies that EwE calculates the unknown parameter (e.g., Bi, P/Bi, Q/Bi) for each i assuming that M0 for that group is 0.001.

The mass-balance assumption for each group was verified considering: i) that 0 < E[E.sub.i] < 1; and that ii) the gross food conversion (G[E.sub.i] = [P.sub.i]/[Q.sub.i]) was 0.1 < GE < 0.35 (Christensen & Pauly, 1992). When either EE or GE was beyond the accepted range, we performed changes in inputs parameters (B, P/B, Q/B and DC) following criteria proposed by Christensen et al. (2005).

Network analysis routines proposed by Ulanowicz (1986, 1995) and Ulanowicz & Kay (1991) included in EwE were run to calculate ecological indicators and flow indices based on theoretical concepts developed by Odum (1969) and Ulanowicz (1986). With these routines we calculated and compared the distribution of biomass and flows by aggregated trophic level and the trophic transfer efficiency between trophic levels. We quantified and compared the total system flow ([F.sub.T]), the Finn's cycling index (FCI), which corresponds to the fraction of Ft used for cycling (Finn, 1976 fide Christensen & Pauly, 1992), and the connectance index (CI), which is the ratio between the actual trophic unions in the model and the maximum theoretical number that could be realized. The mixed trophic impact routine (MTI) included in EwE was used to quantify direct and indirect interactions among functional groups (ITC), including the fishery (Ulanowicz & Puccia, 1990).

Results of this model were compared with results obtained by Medina et al. (2007) that represent a different state of the same system, i.e., a sardine dominated non-ENSO period (Medina et al., 2007) versus an anchovy dominated ENSO period (this study).

RESULTS

Table 2 shows input parameters and those estimated using EwE for each functional group in the balanced model for the UENCh in year 1997 and the Table 3 shows the diet composition (in weight) for predators in the same model.

In general terms, total biomass ([B.sub.T]) (i.e., system biomass excluding detritus) sustained by the UENCh was estimated at 624.7 ton [km.sup.-2]. Overall, pelagic species such as mackerel (11.01 ton [km.sup.-2]), jack mackerel (15.4 ton [km.sup.-2]), sardine (26.9 ton [km.sup.-2]), anchovy (39.1 ton [km.sup.-2]), and mesopelagic fish (67.3 ton [km.sup.-2]) dominated the system (Table 2), representing 26% of [B.sub.T], while the combined biomass of demersal fish represented 0.1% of Bt.

Table 2 presents the production/biomass ratio (P/B = Z) for all groups and fishing mortality (F) for target species. Fig. 3 shows the contribution (percentage) in which each mortality coefficient (F; M2 and M0) contributes to Z. Fishing mortality is important in species such common dolphinfish (42%), jack mackerel (30%), anchovy (27%), mackerel and pelagic sharks, both with 21%. In groups such Eastern Pacific bonito, mesopelagic fish and demersal fish, the main source of mortality is predation (M2) exceeding 90%; the coefficient of other mortalities (M0) is important in sardine and swordfish, also about 90%. Overall, in 1997 predators consumed more production of functional groups than the fishery (Fig. 3).

Fig. 4 shows the main flows in the UENCh in year 1997 and the distribution of the functional groups according to their trophic level (TL), from TL = 1 (phytoplankton and detritus) up to apical predators with TL > 4.0 such jumbo squid (TL = 4.68), sea lions (TL = 4.85), marine birds (TL = 4.91), common dolphinfish (TL = 4.95), cetaceans (TL = 5.0), pelagic sharks (TL = 5.2) and swordfish (TL = 5.2). The most important flows of consumption occur between primary producers (phytoplankton) and plankton invertebrates (micro-, macro--and mesozooplankton), and from the latter groups towards small pelagic fish (anchovy and sardine). Other important flows occur from mesozooplankton towards mesopelagic fish, and from anchovy and sardine towards predators such demersal fish, jumbo squid, sea lions and marine birds.

The 21 functional groups in the model representing the UENCh were grouped into seven discrete trophic levels, with discrete TL I and discrete TL II concentrating the bulk of total flows. Just like in other upwelling systems (e.g., Jarre-Teichmann & Christensen, 1998; Neira & Arancibia, 2004), the UENCh exhibited a decline in flows (Ft) and biomass (Bt) towards higher trophic levels (Table 4). This is related to the rather low trophic transfer efficiency (TTE) calculated for aggregated trophic levels higher than TL IV. However, TTE was higher in TL II (TTE = 11.8%), TL III (TTE = 28%) and TL IV (TTE = 17.8%). These results differ from what occurred in 1989 (Medina et al., 2007), when TTE was high in TL II (TTE = 65.2%) and TL III (TTE = 9.5%), and the fishery was sustained by both anchovy and sardine. During 1997, instead, the fishery was sustained by functional groups located at TLs III and IV, including anchovy (84% of total landings), jack mackerel (11% of total landings), mackerel (6% of total landings) and sardine (0.5% of total landings).

Fig. 5 shows the mixed trophic impacts (MTI) between functional groups including the industrial and artisanal fleets operating in the study area in 1997. Overall, predators have direct negative impacts on prey, while preys have positive direct impacts on predators. Some MTIs can be highlighted from this figure. For example, the negative impact of cannibalism in jumbo squid and the negative MTIs of predators such jack mackerel, palm ruff, common dolphinfish, pelagic sharks and sea lions on anchovy.

The industrial fleet showed a negative impact on jack mackerel and positive impact on gelatinous zooplankton because fishing removes biomass of predators of this group. On the other hand, the artisanal fleet impacted negatively dolphinfish, sea lions and pelagic sharks with positive impact on demersal fish because this fleet removes biomass of their predators. The two fleets also impacted indirectly and positively some fishery resources (especially anchovy). This is the case of the positive impact of the artisanal fleet on demersal fish and palm ruff, which resulted from the fishing removal of sea lions and pelagic sharks. Mesopelagic fish showed an indirect negative impact on gelatinous zooplankton since both groups share mesozooplankton as preferred prey. The impacts of species such palm ruff, Eastern Pacific bonito and common dolphfish on other groups are almost unnoticeable.

Fig. 6 shows the trophic level (TL) calculated for the main predators in the UENCh model in 1989 (Medina et al., 2007) and 1997 (this study). A noticeable difference in the magnitude of individual TL between the two periods is observed. In 1989, for instance, the most of the groups exhibited a TL < 4.0, with the exception of pelagic sharks. On the other hand, in 1997 most of the groups exhibited TLs > 4.0.

Table 5 presents network indices for the food web in the UENCh. The mean trophic level of the fishery (TLm) as a whole was estimated at 3.7. When examined by fleets, TLm of the artisanal fleet (TLm = 3.6) was slightly lower than the industrial fleet (TLm = 3.7). This is because both fleets caught mainly anchovy and sardine. The primary production required to sustain landings (PPR) was estimated at 2979.5 ton [km.sup.-2] [yr.sup.-1], corresponding to 7.5% of the calculated net primary production of the system. The flows related to total transfers and total biomasses are indicators for the size of the ecosystem. The total transfers correspond to the sum of all flows in the system (consumption, exports, respiration and flow to detritus) and were estimated at 83,204 ton [km.sup.-2] [yr.sup.-1]. The main component resulted to be the consumption flow with 43% of total transfers. Total biomass without detritus was estimated at 624.7 ton [km.sup.-2].

One of the indicators to characterize system maturity is the primary production to respiration ratio (PP/R), which should approach to 1 in mature systems (Christensen & Pauly, 1992; Christensen et al, 2005). In 1997, PP/R was estimated at 1.61 [yr.sup.-1] meaning that this system was far from maturity or in an early stage of development. Other indicator of system maturity is the primary production to total biomass ratio (PP/[B.sub.T]), which in mature ecosystems is low and in the UENCh was estimated at 61.40 in 1997.

DISCUSSION

The model representing the UENCh in 1997 includes eight additional groups compared to the model built by Medina et al. (2007) for the same area in year 1989. These groups are microzooplankton, mesozooplankton, macrozooplankton, gelatinous zooplankton, demersal fish, jumbo squid, common dolphinfish, and swordfish. In addition, both models represent two different conditions: i) during non-ENSO conditions (year 1989) and ii) during ENSO conditions (year 1997). Regardless the difference in model structure and system conditions, comparing indicators derived from both models is still valid and interesting. Moreover, if more predators are included in a new, updated model, then the predation mortality in a prey group will be higher than the previous model.

Even in heavily exploited upwelling systems, predation mortality (M2) is the main source of mortality for fish species (Jarre-Teichman et al, 1998; Jarre-Teichman & Christensen, 1998; Neira & Arancibia, 2004; Neira et al, 2004). Results of our work are in agreement with this observation and M2 explained the most of Z, meaning that the most of the production of functional groups in the UENCh was removed by predators and secondarily by fishing. However, Medina et al. (2007) informed that in 1989 the main source of mortality in the system was fishing and not predation. This may be explained by the increase in fishing effort from 1985 onwards after anchovy recovery, likely driven by strong recruitments (Aliaga et al., 2001).

The highest Z values in the 1997 model were found in anchovy and jumbo squid. This is explained because both species have low longevity and high productivity, and are also important prey items in the diet of several predators. For example, anchovy is the main prey for jack mackerel, horse mackerel, palm ruff, Eastern Pacific bonito, pelagic sharks, sea lions and cetaceans. Anchovy sustained also the fishing landings in 1997. In turn, jumbo squid is important prey for cetaceans, dolphinfish, swordfish, and exhibits strong cannibalism (Table 3).

In the 1997 model, predators exhibited TL > 4.0. When comparing this result with the 1989 model (Medina et al., 2007) (Fig. 6), we observed an increase in TLs from one period to another (Fig. 6). A switch in sardine and anchovy diet may explain this change. During 1989, anchovy diet was based on zooplankton (85%) and phytoplankton (15%) (Alamo et al., 1997) and the diet of sardine on zooplankton (26%) and phytoplankton (74%) (Oliva et al, 1987fide Medina et al, 2007). In 1997, a dramatic change in the diet of both species occurred, with zooplankton being the most important prey in both species (> 97%). This value was obtained considering the diet (numbers) informed by Alamo et al. (1997); Alamo & Espinoza (1998) and the carbon contents of each prey item expressed in percentage of fish total wet weight obtained from Espinoza & Bertrand (2006). During ENSO, a marked decline in the abundance of phytoplankton and a concomitant increase in the abundance of zooplankton have been observed (Gonzalez et al., 1998; Daneri et al., 2000), and this could explain the change in the diet of small pelagic fish.

However, Espinoza & Bertrand (2006) monitored the gut content of 21,203 anchovies from acoustic surveys conducted in Peru from 1996 to 2003, reporting that zooplankton (mainly euphausiids and copepods) is the main component in anchovy diet, in opposition to previous studies by Pauly et al. (1998), Jarre et al. (1991) and Jarre-Teichman et al. (1998) who indicate a similar importance of phytoplankton and zooplankton in the diet of anchovy. Nevertheless, Espinoza & Bertrand (2006) highlight that their study was based on qualitative descriptions, i.e., frequency of occurrence and percentage in number of the items, rather than stomach content expressed in weight.

Therefore, the increase in TL in anchovy and sardine, which in turn are the main prey for predators and the bulk of the catch in the UENCh in 1997, resulted in an increase in trophic level of the fishery as a whole with TLm > 3. In this year the landings of anchovy reached 27 ton [km.sup.-2] [yr.sup.-1], and was higher than the landings of the same species in 1989 (Medina et al., 2007), when the fishery had a TLm = 2.7 and landings were sustained mostly by sardine (26 ton [km.sup.-2] [yr.sup.-1]).

In the decade of 1990s, landings of sardine progressively declined and in 1997/1998 with an El Nino, landings have the lowest values. In 1982/1983 a strong ENSO event affected the study area (Aceituno, 1988), negatively impacting anchovy and horse mackerel (Braun et al, 2000). However, landings of sardine were not affected by this condition (SERNAPESCA, 1980-1990). In this context, the impact of the ENSO 1997/1998 on fish stocks in the Humboldt Current System is not yet clear, since for example, the fisheries of anchovy and sardines in Peru were not noticeably affected by the 1982/1983 ENSO (Arntz & Fahrbach, 1996). Therefore, it is suggested that the strong decline in the landings/biomass of sardine during the 1990s could result from recruitment overfishing (Serra, 1986; Aliaga et al, 2001; Cubillos & Arcos, 2002) and predation and in a minor degree to ENSO. Unfortunately, the model representing the system in 1989 (Medina et al., 2007) did not include some important predators of anchovy and sardine, such demersal fish, jumbo squid, swordfish, dolphinfish and cetaceans. This shortcoming impedes observing which groups predated on these small pelagic fish in 1989 and quantifying the strength of this trophic interaction. This is the importance of including these groups in the 1997 model.

The mixed trophic impacts (MTI) allowed assessing the influence of direct and indirect trophic interactions (including food competition) in the UENCh. MTI was also useful in identifying strong and weak interacting groups in the food web. For example, anchovy, mesopelagic fish and jack mackerel are strong interactors impacting positively and negatively many groups in the systems. On the other hand, palm ruff, Eastern Pacific bonito and common dophinfish are weak interactors with little impacts on other groups in the system.

The primary production required to sustain fishery landings (PPR) is an ecological indicator to track the ecological cost of fishing in an ecosystem during a time period, along years and/or compare the ecosystem effect of fishing in different ecosystems (Pauly & Christensen, 1995; Jarre-Teichman et al, 1998). During 1997, the fishery removed only a small fraction (i.e., 7.5%) of total primary production in the UENCh. This value is slightly higher compared to the value (PPR = 6.7%) informed by Medina et al. (2007) for 1989, but much lower than the PPR = 68.7% informed by Cubillos et al. (1998) for 1997, both for the same area. PPR in the UENCh in 1997 was also lower than the PPR = 15% informed by Neira & Arancibia (2004) for central Chile, and the global estimate for upwelling areas PPR = 25.1% (Pauly & Cristhensen, 1995). However, the value 7.4% is in the minimum range reported by Jarre-Teichmann et al. (1998), who compared the upwelling systems from Peru, South Africa, Namibia and California, with PPR ranging from 4 to 15% of net production.

In this work we obtained seven discrete trophic levels, while (Medina et al., 2007) reported five. This is due to the most of the species that are present in the 1997 model but not in the 1989 model are in high trophic levels (cetaceans, swordfish, dolphinfish and jumbo squid). In fact, the mean trophic transfer efficiency among trophic levels was relatively high (18%) in the 1997 model. Nevertheless, TTE in the UENCh is in the range informed for aquatic systems 10-20% (Christensen & Pauly, 1993; Lalli & Parsons, 1993), but it is higher than the 10-15% reported for upwelling systems (Pauly & Christensen, 1995).

After analysing the food web and the fisheries in the UENCh, we consider that there is still necessary to advance our knowledge on biological parameters for species that are not target species (it might became in the future), but play an important role as prey or predators in the ecosystem. Some of the groups could reach high biomass levels in the system, e.g., mesopelagic fish. In this study the biomass of this group was estimated under the assumption that EE = 0.999, and reached 67.3 ton [km.sup.-2], which is almost two times the biomass estimated by Braun et al. (2000) for this group in 1998 (i.e., 33.7 ton [km.sup.-2]). The difference between the mesopelagic fish biomass estimated by Braun et al. (2000) and this work could be method-dependent, i.e., acoustic underestimates the biomass in relation to Ecopath.

Results of our study confirm conclusions by Medina et al. (2007) related to the low maturity (in terms of structure and flows) of the UENCh. However, in theoretical terms the system in 1997 seems to have been in a situation closer to maturity (sensu Odum, 1969) compared to 1989. This can be inferred from the PP/R values estimated at 1.60 [yr.sup.-1] in 1997 (this study) and 3.2 [yr.sup.-1] in 1989 (Medina et al., 2007). Another indicator that support the previous conclusion is the Finn's cycling index (IF), which indicate the fraction of total transfers that are cycled in the system (Christensen & Pauly, 1992) with more cycling related to higher system maturity (Odum, 1969). The IF in the USNCh was higher in 1997 model (8.75%) compared to 1989 (2.80%), and the IF obtained in central Chile (8.97%) (Neira & Arancibia, 2002).

In 1997 flows related to total transfers indicated that the system presented more flows (106,447 ton [km.sup.-2] [yr.sup.-1]) compared to 1989 (38,674 ton [km.sup.-2] [yr.sup.-1]) (Medina et al, 2007), which seems reasonable considering that the 1997 model includes more groups than the 1989 one. However, in 1989 total biomass (707.7 ton [km.sup.-2]) and total landings (91 ton [km.sup.-2]) were higher than the same parameters in 1997.

The impact of the 1997/1998 ENSO on fishing resources is not clear, and results of this study allow hypothesising that the strong decline in landings and biomass of pelagic resources, especially sardine and anchovy in the USNCh, might have resulted from a combination of overfishing (affecting recruitment) (Serra, 1986; Aliaga et al., 2001; Cubillos & Arcos, 2002), in addition to predation, and secondarily to the effects of ENSO. Therefore, we suggest a combined analysis of the effect of fishing (F), predation (M2) and the environment (changes at ENSO scale), on sardine and anchovy that allow identifying the strength of each factor and their combined effects on the dynamics of these important fish species.

DOI: 10.3856/vol42-issue5-fulltext-15

AKNOWLEDGEMENTS

Authors are thankful to two anonymous reviewers whose comments greatly improved the final version of this manuscript. SN acknowledges financial support from Project FONDECYT N[degrees]11110545, the COPAS Sur Austral Program and the INCAR Centre.

REFERENCES

Aceituno, P. 1988. On the functioning of the Southern Oscillation in the South America sector. Part I. Surface climate. Mon. Weather Rev., 116: 505-524.

Alamo, A. & P. Espinoza. 1998. Variaciones alimentarias en Engraulis ringens y otros recursos pelagicos durante invierno-primavera de 1997. Inf. Inst. Mar Peru, 130: 45-52.

Alamo, A., P. Espinoza, P. Zubiate & I. Navarro. 1997. Comportamiento alimentario de los principales recursos pelagicos peruanos en verano y comienzos de otono 1997. Inf. Inst. Mar Peru, 127: 82-89.

Aliaga, B., D. Gomez & S. Neira. 2001. Analisis de la pesqueria de sardina (Sardinops sagax) y anchoveta (Engraulis ringens) de la zona norte de Chile. Invest. Mar., Valparaiso, 29(2): 15-23.

Allen, K.R. 1971. Relation between production and biomass. J. Fish. Res. Board Can., 28: 1573-1581.

Arancibia, H., S. Neira, V. Christensen, R. Olson, R. Cubillos, R. Quinones, C. Gatica & M. Medina. 2002. Enfoque metodologico para el analisis ecosistemico en la administracion de pesquerias de la zona central de Chile. Proyecto FIP 2001-29: 274 pp.

Arancibia, H., M. Barros, S. Neira, U. Markaida, C. Yamashiro, C. Icochea, L. Cubillos, C. Ibanez, R. Leon, M. Pedraza, E. Acuna, A. Cortes & V. Kesternich. 2007. Analisis del impacto de la jibia en las pesquerias chilenas de peces demersales. Universidad de Concepcion / Universidad Catolica del Norte, Pre-Informe Final Proyecto FIP 2005-38: 296 pp.

Arancibia, H., S. Neira, M. Barros, C. Gatica, M.J. Zuniga, R. Alarcon & E. Acuna. 2010. Formulacion e implementacion de un enfoque multiespecifico de evaluacion de stock en recursos demersales de la zona sur austral-Fase I. Universidad de Concepcion/Instituto de Investigacion Pesquera VIII Region S.A., Informe Final Proyecto FIP 2008-23: 303 pp.

Arntz, W. & E. Fahrbach. 1996. El Nino experimento climatico de la naturaleza. Fondo de Cultura Economica, Mexico D.F., 312 pp.

Bernal, P. 1990. La oceanografia del sistema de corrientes de Chile-Peru en relacion a las pesquerias pelagicas: una revision. In: M.A. Barbieri (ed.). Perspectiva de la actividad pesquera en Chile. Escuela de Ciencias del Mar, Universidad Catolica Valparaiso, Valparaiso, pp. 35-48.

Blanco, J., A. Thomas, M. Carr & P. Strub. 2001. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. J. Geophys. Res., 106: 11451-11467.

Blanco, J., P. Barria, J. Castillo & L. Atkinson. 2002. Response of anchovy (Engraulis ringens) off Northern Chile to the 1997-1999. El Nino-La Nina Sequence. 2002. Section 3: Pelagic. Extended Abstracts of the El Nino Symposium & Workshop. Invest. Mar., Valparaiso, 30(1): 107-108.

Blaskovic, V., P. Espinoza, F. Tomani & I. Navarro. 2002a. Habitos alimentarios y variaciones de la dieta de los principales recursos pelagicos y demersales en el otono 1999. Area de ecologia trofica. Inf. Trim. IMARPE, 35 pp.

Blaskovic, V., P. Espinoza, F. Torriani & I. Navarro. 2002b. Habitos alimentarios y variaciones de la dieta de los Principales recursos pelagicos y demersales en el invierno, 1999. Area de ecologia trofica. Inf. Trim. IMARPE, 20 pp.

Blaskovic, V., P. Espinoza, F. Torriani & I. Navarro. 2002c. Habitos alimentarios y variaciones de la dieta de los Principales recursos pelagicos y demersales en la primavera de 1999. Area de ecologia trofica. Inf. Trim. IMARPE, 33 pp.

Bostford, L., J. Castilla & C. Peterson. 1997. The management of fisheries and marine ecosystems. Science, 277: 509-515.

Braun, M., J.L. Blanco, J. Osses & J. Castillo. 1999. Monitoreo bio-oceanografico estacional de los recursos pelagicos en la I y II Regiones. Informe Final Proyecto FIP 97-02: 271 pp.

Braun, M., H. Reyes, J. Osses, J. Castillo & V. Valenzuela. 2000. Monitoreo de las condiciones biooceanografica en la I y II Regiones. Informe Final Proyecto FIP 99-01: 157 pp.

Carr, M.E. 2002. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep-Sea Res., 49(2): 59-80.

Castillo, R., M. Gutierrez, S. Peraltillo & N. Herrera. 1999. Biomasa de recursos pesqueros a finales del invierno 1998. Crucero Bic Humboldt y Bic San Jose Olaya Balandra 9808-09, de Paita a Tacna. Inf. Inst. Mar Peru, 141: 136-155.

Castillo, J., M. Espejo, S. Lillo, J. Cordova, J.L. Blanco, J. Osses & P. Barria. 1997. Estimacion del reclutamiento de anchoveta en las Regiones I y II. Informe Final Proyecto FIP 96-02: 224 pp.

Canon, J. 2004. El Nino 1997-1998: Sus efectos en el sector pesquero industrial de la zona norte de Chile. In: S. Avaria, C. Carrasco, J. Rutllant & R. Yanez (eds.). El Nino-La Nina 1997-2000. Sus efectos en Chile. Comite Oceanografico Nacional, Valparaiso, pp. 137-151.

Christensen, V. & D. Pauly. 1992. Ecopath II. A software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model., 61: 169-185.

Christensen, V. & D. Pauly. 1993. Flow characteristics of aquatic ecosystems. In: V. Christensen & D. Pauly (eds.). Trophic models of aquatic ecosystem. ICLARM Conf. Prod. 26, Manila, pp: 338-352.

Christensen, V. & C. Walters. 2000. Ecopath with Ecosim: methods, capabilities and limitations. Fish. Cent. Res. Rep., 8: 79-105.

Christensen, V., C. Walters & D. Pauly. 2005. Ecopath with Ecosim: a User's Guide. Fisheries Centre Research Reports, University of British Columbia, Vancouver, 12: 154 pp.

Clarke, R. & O. Paliza. 2000. The Humboldt Current squid Dosidicus gigas (Orbigny, 1835). Rev. Biol. Mar. Oceanogr., 35: 1-39.

Constable, A.J. 2011. Lessons from CCAMLR on the implementation of the ecosystem approach to managing fisheries. Fish Fish., 12: 138-151.

Cubillos, L. & D. Arcos. 2002. Recruitment of common sardine (Strangomera bentincki) and anchovy (Engraulis ringens) off central-south Chile in the 1990s and the impact of the 1997-1998 El Nino. Aquat. Living Resour., 15: 87-94.

Cubillos, L., S. Nunez & D. Arcos. 1998. Produccion primaria requerida para sustentar el desembarque de peces pelagicos en Chile. Invest. Mar., Valparaiso, 26: 83-96.

Daneri, G., V. Dellarossa, R. Quinones, B. Jacob, P. Montero & O. Ulloa. 2000. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser., 197: 41-49.

Daza, E. 2002. Dinamica trofica del pez espada Xiphias gladius Linnaeus, 1758 en el Pacifico sur oriental. Tesis Biologia Marina, Universidad de Concepcion, Concepcion, 91 pp.

Escribano, R., S.A. Rosales & J.L. Blanco. 2004. Understanding upwelling circulation off Antofagasta (northern Chile): a three-dimensional numericalmodeling approach. Cont. Shelf. Res., 24: 37-53.

Espinoza, P. & A. Bertrand. 2006. Revising previous hypothesis on the trophic position and ecological role of the Peruvian anchovy (Engraulis ringens). Book of extended abstracts, International Conference the Humboldt Current System: climate, ocean dynamics, ecosystem processes, and fisheries, Lima, Peru, Nov. 27-Dec. 1/2006. HCS148: 56-57 pp.

Espinoza, P., I. Navarro & F. Torriani. 1998. Variaciones en el espectro alimentario de los principales recursos pelagicos durante otono de 1998. Crucero BIC Humboldt 9803-05 de Tumbes a Tacna. Inf. Inst. Mar Peru, 135: 134-142.

Food and Agricultural Organization (FAO). 2003. Fishering management. 2. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries, Rome, 4(Suppl. 2): 112 pp.

Fuenzalida, R. 1990. Variabilidad temporal de un indice de surgencia para la zona de Iquique (Lat. 20[degrees]S). Invest. Cient. Tec., Ser. Cienc. Mar, 20: 1-5.

Fuenzalida, R. 1992. Anomalias oceanograficas y meteorologicas durante el desarrollo de El Nino 1991-1992 en la zona de Iquique (20[degrees]18'S). Invest. Pesq., 37: 67-72.

Ganoza, F., S. Peraltillo & R. Castillo. 2002. Abundance and behavior of giant squid (Dosidicus gigas) in the Peruvian sea. Inf. Inst. Mar Peru, 12 pp.

Gonzalez, H., G. Daneri, D. Figueroa, J.L. Iriarte, N. Lefevre, G. Pizarro, R. Quinones, M. Sobarzo & A. Troncoso. 1998. Produccion primaria y su destino en la trama trofica pelagica y oceano profundo e intercambio oceano-atmosfera de CO2 en la zona norte de la Corriente de Humboldt (23[degrees]S): posibles efectos del evento El Nino, 1997-1998. Rev. Chil. Hist. Nat., 71: 429-458.

Goya, E. & A. Garcia-Godos. 1999. La dieta de las aves guaneras en la costa peruana durante junio de 1999. Subdireccion de Investigaciones Aves Marinas, DIRP, DGIRH, Instituto del Mar del Peru, ftp://ftp.imarpe. gob.pe/pub/informes/aves9906.pdf.

Heymans, J., L. Shannon & A. Jarre. 2004. Changes in the northern Benguela ecosystem over three decades: 1970s, 1980s, and 1990s. Ecol. Model., 172: 175-195.

Jarre, A., P. Muck & D. Pauly. 1991. Two approaches for modelling fish stock interactions in the Peruvian upwelling ecosystem. ICES Mar. Sci., 193: 171-184.

Jarre-Teichman, A. & V. Christensen. 1998. Comparative modelling of trophic flows in four large upwelling ecosystems: global versus local effects. In: M. Durand, P. Cury, R. Mendelson, C. Roy, A. Bakun & D. Pauly (eds.). Global versus local changes in upwelling systems. Editions ORSTOM, Paris, pp. 423-443.

Jarre-Teichmann, A., L. Shannon, C.L. Monoley & P.A. Wickens. 1998. Comparing trophic flow in the southern Benguela to those in other upwelling ecosystem. S. Afr. J. Mar. Sci., 19: 391-414.

Lalli, C.M. & T.R. Parsons. 1993. Biological oceanography: an introduction. Pergamon Press, New York, 296 pp.

Medina, M. & H. Arancibia. 1992. Interacciones troficas entre el jurel (Trachurus murphyi) y la caballa (Scomber japonicus) en el ecosistema pelagico de la zona norte. Invest. Cient. Tec., Ser. Cienc. Mar, 2: 67-78.

Medina, M. & H. Arancibia. 1995. Relaciones troficas del jurel en la zona norte (Regiones I y II). In: Estudio biologico pesquero sobre el recurso jurel en la zona norte (Regiones I y II). Informe Final Proyecto FIP No. 93-17. Instituto de Fomento Pesquero/Universidad Arturo Prat/Instituto de Investigacion Pesquera, 221 pp.

Medina, M., M. Araya & C. Vega. 2004. Alimentacion y relaciones troficas de peces costeros de la zona norte de Chile. Invest. Mar., Valparaiso, 32(1): 33-47.

Medina, M., H. Arancibia & S. Neira. 2007. Un modelo trofico preliminar del ecosistema pelagico del norte de Chile. Invest. Mar., Valparaiso, 35(1): 25-38.

Moloney, C., A. Jarre, C. Mullon, S. Neira, J. Roux, L. Shannon, H. Arancibia, Y. Bozec, P. Cury & J. Field. 2002. Comparison of marine upwelling ecosystems: an ECOPATH calibration exercise. Report of a workshop held from 28 Oct. 1-Nov. 2002. Univ. Cape Town, South Africa, 23 pp.

Montecinos, A., S. Purca & O. Pizarro, 2003: Interannual-to-interdecadal sea surface temperature variability along the western coast of South America. Geophys. Res. Lett., 30, 1570, doi:19.1929/2003GL017345.

McPhaden, M.J. 1999. Genesis and evolution of the 1997-98 El Nino. Science, 283: 950-954.

Neira, S. 2003. Simulacion de cambios en los niveles de captura de los principales recursos pesqueros cuantificando su impacto en la estructura comunitaria del ecosistema marino de Chile Central. Tesis de Magister en Pesquerias, Universidad de Concepcion, Concepcion, 89 pp.

Neira, S. & H. Arancibia. 2002. A comparative analysis of community structure of the central Chile marine ecosystem during El Nino (1992) and la Nina (1998) conditions. Invest. Mar., Valparaiso, 30(1): 170-171.

Neira, S. & H. Arancibia. 2004. Trophic interactions and community structure in the upwelling system off Central Chile (33-39[degrees]S). J. Exp. Mar. Biol. Ecol., 312: 349-366.

Neira, S., H. Arancibia & L. Cubillos. 2004. Comparative analysis of throphic structure of commercial fishery species off Central Chile in 1992 and 1998. Ecol. Model., 172: 233-248.

Nunez, F. 1993. Crecimiento, mortalidad y rendimiento potencial del bonito (Sarda chilensis, Cuvier, 1831) en el norte de Chile. Tesis Biologia Pesquera, Universidad Arturo Prat, Iquique, 35 pp.

Odum, E.P. 1969. The strategy of ecosystem development. Science, 104: 262-270.

Oliva, E., M. Brown & H. Arancibia. 1987. Alimentacion de la sardina espanola (Sardinops sagax) (Pisces: Clupeiformes), en el norte de Chile. Anales Cientificos, 2do Congreso Latinoamericano sobre Ciencias del Mar, Lima, 2: 323-332.

Olson, R. & F. Galvan-Magana. 2002. Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. Fish. Bull., 100(2): 279-289.

Olson, R.J. & G.M. Watters. 2003. A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Bull. Inter. Trop. Tuna Comm., 22(3): 135-217.

Oyarzun, C., N. Cortes, J. Chong, H. Arancibia, M. Landaeta & A. Pinto. 1999. Estudio biologicopesquero de la corvina (Cilus gilberti) en la zona centro sur chile. Informe Final Proyecto FIP 97-19: 152 pp.

Palma, W. 1993. Conclusiones cientificas del proyecto "Aplicaciones de nuevas tecnologias para la captura de recursos hidrobiologicos marinos no tradicionales en la primera region". Proyecto CHI/87/007. PNUD. Universidad Arturo Prat, Iquique, 120 pp.

Parsons, S. 2005. Conference on the governance of high seas fisheries and the UN fish agreement "Moving from words to action". St. John's, Newfoundland & Labrador, 43 pp.

Pauly, D. & V. Christensen. 1995. Primary production required to sustain global fish. Nature, 374: 255-257.

Pauly, D., V. Christensen & C. Walters. 2000. Ecopath, Ecosim and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci., 57: 697-706.

Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres Jr. 1998. Fishing down marine foods webs. Science, 279: 860-863.

Pizarro, K. & M. Medina. 2006. Alimentacion congrio negro (Genypterus maculatus Tschundi, 1846) y congrio dorado (Genypterus chilesis Guichenot, 1848) durante el campeonato mundial de caza submarina, Iquique. Resumenes XXVI Congreso Ciencias del Mar. Mayo 22-26, Iquique, pp. 168-169.

Plaganyi, E. 2007. Models for an ecosystem approach to fisheries. FAO Fish Technol., 477: 108 pp.

Polovina, J. 1984. Model of a coral reef ecosystem. I. The Ecopath model and its applications to French frigate shoals. Coral Reefs, 3: 1-11.

Robotham, H., H. Miranda, M. Bohm, L. Caballero, D. Bore, U. Parker, V. Baros, S. Pena, J. Oliva, G. Claramunt, G. Herrera, C. Padilla, P. Pizarro, M. Medina, H. Arancibia, V. Alegria, M. Araya, L. Cubillos, R. Gili, H. Garland, M. Oliva, L. Cid, V. Bocic, V. Fernandez & C. Vera. 1995. Estudio biologico-pesquero del recurso jurel en la zona norte (I-II Regiones). Proyecto FIP-IT/93-17: 221 pp.

Slanzi, P. 2003. Edad y crecimiento de Paralabrax humeralis Valenciennes 1828 (Pisces: Serranidae) en el norte de Chile. Tesis Biologia Pesquera. Universidad Arturo Prat, Iquique, 90 pp.

Serra, R. 1986. Desarrollo de la pesqueria de anchoveta (Engraulis ringens) y los cambios de su abundancia. Invest. Pesq., Chile, 33: 13-24.

Servicio Nacional de Pesca (SERNAPESCA). 1965-2005. Anuario estadistico de pesca. Servicio Nacional de Pesca, Chile. http://www.sernapesca.cl/index.php? option=com_remository&-Itemid54&func=select &id=2.

Sielfeld, W., C. Guerra, R. Duran, E. Acuna, A. Aguayo-Lobo, M. Sepulveda, R. Palma, A. Malinarich, G. Cerda, A. Bolvaran, R. Grau, X. Veloso, Y. Guerra, M. Vargas, N. Amado, R, Peredo & J. Galaz. 1997. Monitoreo de la pesqueria y censo del lobo marino comun en el litoral de las I-IV Regiones. Informe Final Proyecto FIP 95-28: 105 pp.

Shaffer, G., S. Hormazabal, O. Pizarro & S. Salinas. 1999. Seasonal and interannual variability of currents and temperature over the slope of central Chile. J. Geophys. Res., 104: 29951-29961.

Shannon, L. & A. Jarre-Teichmann. 1999. A model of trophic flows in the Benguela Upwelling System during the 1980's. S. Afr. J. Mar. Sci., 21: 349-366.

Shannon, L. & P. Cury. 2003. Indicators quantifying small pelagic fish interactions: application using trophic model of the southern Benguela ecosystem. Ecol. Indic., 3: 305-321.

Tascheri, R., J. Sateler, J. Merino, E. Diaz, V. Ojeda & M. Montecinos. 2003. Estudio biologico-pesquero del congrio colorado, congrio negro y congrio dorado en la zona centro-sur. Informe Final Proyecto FIP No. 2001-2015: 289 pp.

Thiel, M., E.C. Macaya, E. Acuna. W. Arntz, H. Bastias, K. Brokordt, P. Camus, J.C. Castilla, L. Castro, M. Cortes, C. Dumont, R. Escribano, M. Fernandez, J. Gajardo, C. Gaymer, I. Gomez, A.E. Gonzalez, H.E. Gonzalez, P. Haye, J.E. Illanes, J.L. Iriarte, D.A. Lancellotti, G. Luna-Jorquera, C. Luxoro, P.H. Manriquez, V. Marin, P. Munoz, S.A. Navarrete, E. Perez, E. Poulin, J. Sellanes, A. Sepulveda, W. Stotz, F. Tala, A. Thomas, C. Vargas, J.A. Vasquez & J.M. Vega. 2007. The Humboldt Current System of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. An. Rev., 45: 195-344.

Thomas, A.C., J.L. Blanco, M.E. Carr, P.T. Strub & J. Osses. 2001. Satellite-measured chlorophyll and temperature variability off northern Chile during the 1996-1998 La Nina and El Nino. J. Geophys. Res., 106: 899-915.

Ulanowicz, R. 1986. Growth and development: ecosystem phenomenology. Springer Verlag, New York, 180 pp.

Ulanowicz, R. 1995. The parth-whole relation in ecosystems. In: B.C. Patten & S.E. Jorgensen (eds.). Complex ecology. Prentice Hall, New Jersey, pp. 549-560.

Ulanowicz, R. & C. Puccia. 1990. Mixed trophic impacts in ecosystems. Conenoses, 5: 7-16.

Ulanowicz, R. & J. Kay. 1991. A computer package for the analysis of ecosystem flow network.

Ulloa, O., R. Escribano, S. Hormazabal, R. Quinones, R. Gonzalez & M. Ramos. 2001. Evolution and biological effects of the 1997-1998 El Nino in the upwelling ecosystem off northern Chile. Geophys. Res. Lett., 28(8): 1591-1594.

Vargas, C. & H.E. Gonzalez. 2004. Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathway. Aquat. Microb. Ecol., 34: 165-180.

Walters, C., V. Christensen & D. Pauly. 1997. Stucturing dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish Biol. Fish., 7: 139-172.

Wolff, M. & A. Aron. 1992. Diagnostico de la cojinoba (Seriolella violacea) y de la palometa (Seriola mazatlana) en la IV Region: Informe Final. Universidad Catolica del Norte, Coquimbo, 72 pp.

Yanez, E., M.A. Barbieri, C. Silva, K. Nieto & F. Espindola. 2001. Climate variability and pelagic fisheries in northern Chile. Prog. Oceanogr., 49: 581-596.

Received: 30 September 2013; Accepted: 10 September 2014

Monica E. Barros (1), Sergio Neira (1,2,3) & Hugo Arancibia (1)

(1) Departmento de Oceanografia, Universidad de Concepcion, P.O. Box 160-C, Concepcion, Chile

(2) Programa COPAS Sur-Austral

(3) Interdisciplinary Center for Aquaculture Research

Corresponding author: Monica E. Barros: (mobarros@udec.cl)

Table 1. Functional groups included in the model representing the
upwelling system of northern Chile, year 1997, and the source of
input parameters. B: biomass, P/B: production to biomass ratio,
Q/B: consmnption to biomass ratio, Y: total catch, EE: ecotrophic
efficiency = 0.999, DC: fraction (in weight) of the prey in the
diet of the predator, assuming that the functional group is
highly predated and/or exploited by the fishery.

Parameter\         B ton             P/B
Group              [km.sup.-2]       [yr.sup.-1]

Phyto-             a                 Daneri et
plankton                             al. (2002)

Micro-             a                 Moloney et
zooplanklon                          al. (2002)

Meso-              a                 Escribano et
zooplankton                          al. (1999)

Macro-             a                 Moloney et
zooplankton                          al. (2002)

Gelatinous         Vargas &          Moloney et
zooplankton        Gonzalez (2004)   al. (2002)

Mackerel           Braun et          Ganoza et
                   al. (2000)        al (2002)

Sardine            Braun et          c: Ganoza et
                   al. (2000)        al (2002)

Anchovy            Braun et          Ganoza et
                   al. (2000)        al (2002)

Mesopelagic fish   a                 Moloney et
                                     al (2002)

Jack mackerel      Braun et          Ganoza et
                   al. (1999)        al. (2002)

Demersal fish      a                 Oyar/im el
                                     al (1999);
                                     Slanzi (2003);

                                     Tascheri et
                                     al (2003)

Jumbo squid                          Moloney el
                                     al. (2002)

Palm niff          b: Ganoza et      c: Wolff &
                   al (2002); f      Aron (1992)

Eastern            a                 c: Nunez (1993)
Pacific bonito

Common             a                 Olson &
dolphinfish                          Watters (2003)

Swordfish          Bernal (1990)     Olson &
                                     Watters (2003)

Pelagic            b: Arancibia      Arancibia et
sharks             et al. (2002);    al. (2002)
                   SERNAPESCA

Sea lions          Sielteld et       Moloney et
                   al. (1997)        al. (2002)

Cetaceans          Moloney et        Moloney et
                   al. (2002)        al. (2002)

Marine birds       Moloney et        Moloney et
                   al. (2002)        al. (2002)

Parameter\         Q/B [yr.sup.-1]    Y ton
Group                                 [km.sup.-2]

Phyto-
plankton

Micro-             Neira &
zooplanklon        Arancibia (2004)

Meso-              Vargas &
zooplankton        Gonzalez (2004)

Macro-             Vargas &
zooplankton        Gonzalez (2004)

Gelatinous         Vargas &
zooplankton        Gonzalez (2004)

Mackerel           e                  f

Sardine            e                  f

Anchovy            e                  f

Mesopelagic fish   e

Jack mackerel      Robotham et        f
                   al. (1995)

Demersal fish      e: Oyarzun et
                   al. (1999);
                   Slanzi (2003);
                   Tascheri (2003)

Jumbo squid        Arancibia et       f
                   al. (2007)

Palm niff          e                  f

Eastern            e                  f
Pacific bonito

Common             Olson & Galvan-    f
dolphinfish        Magana (2002)

Swordfish          e

Pelagic            e                  f
sharks

Sea lions          Moloney et         f
                   al (2002)

Cetaceans          Moloney et
                   al. (2002)

Marine birds       Moloney et
                   al. (2002)

Parameter\         EE            DC
Group

Phyto-             Gonzalez et
plankton           al (1998)

Micro-             0.999         Gonzalez et
zooplanklon                      al. (1998)

Meso-              0.999         Gonzalez et
zooplankton                      al. (1998),
                                 Moloney et
                                 al (2002)

Macro-             0.999         Gonzalez et
zooplankton                      al. (1998),
                                 Moloney et
                                 al. (2002)

Gelatinous                       Gonzalez et
zooplankton                      al. (1998)

Mackerel                         Medina &
                                 Arancibia
                                 (1992), Vargas
                                 & Gonzalez
                                 (2004)

Sardine                          Espinoza et
                                 al. (1998),
                                 Espinoza &
                                 Bertrand (2006)

Anchovy                          Alamo (1997),
                                 Alamo & Espinoza
                                 et al. (1998),
                                 Espinoza &
                                 Bertrand (2006)

Mesopelagic fish   0.999         Palma (1993)

Jack mackerel                    Medina &
                                 Arancibia
                                 (1992, 1995)

Demersal fish      0.999         Medina et
                                 al. (2004),
                                 Oyarzun et
                                 al. (1999),

                                 Pizarro &
                                 Medina (2006)

Jumbo squid                      Arancibia et
                                 al (2007), Clarke
                                 & Paliza (2000)

Palm niff                        Ganoza et
                                 al. (2002)

Eastern            0.999         Blaskovic et
Pacific bonito                   al (2002a,
                                 2002b, 2002c)

Common                           Olson &
dolphinfish                      Galvan-
                                 Magana (2002)

Swordfish                        Daza (2002)

Pelagic                          Olson &
sharks                           Watters (2003)

Sea lions                        Sielfeld et
                                 al. (1997)

Cetaceans                        Olson &
                                 Watters (2003)

Marine birds                     Goya &
                                 Garcia-
                                 Godos (1999)

The reference indicates the origin of information, in bold
indicate the values of the parameters.

Key: a) Estimated by Ecopath, b) Estimated using the equation B =
Y/F (Baranov, 1918), where F = obtained from literature, Y =
Fisheries Statistics National Fisheries Service (SERNAPESCA), c)
Estimated using the equation Z = F+M (Beverton & Holt, 1957), d)
Estimated using the empirical equation of Hoening (1983): Ln(Z) =
1,44-0.982*ln(Tmax); Tmax (maximum age), e) Estimated using the
empirical equation of Palomares & Pauly (1998): log Q/B = 7.964-
0.204 log [W.sub.inf]- 1.9651'+ 0.083Ar+ 0.532h+ 0.398d, f)
SERNAPESCA.

Table 2. Input parameters and outputs (bold) of the balanced
model representing the food web in the upwelling system of
northern Chile in 1997. TL: trophic level, B: biomass, P/B:
production to biomass ratio, Q/B: consumption to biomass ratio,
F: fishing mortality, Y: catches, EE: ecotrophic efficiency and
GE: gross efficiency.

Group name                    TL         B              P/B

                                        (ton       ([yr.sup.-1])
                                    [km.sup.-2])

1. Phytoplankton              1#       319.68#        120.00
2. Microzooplankton          2.21#      17.48#        482.00
3. Mesozooplankton           2.48#      47.02#         45.00
4. Macrozooplankton          2.75#      68.51#         13.00
5. Gelatinous zooplankton    3.42#       6.90           0.58
6. Mackerel                  4.19#      11.01           1.20
7. Sardine                   3.49#      26.88           1.46
8. Anchovy                   3.57#      39.09           2.01
9. Mesopelagic fish          3.53#      67.31           1.20
10. Jack mackerel            4.38#      15.39           0.36
11. Demersal fish            4.88#       0.57#          0.31
12. Jumbo squid              4.68#       3.60           3.50
13. Palm ruff                3.86#       0.30           1.46
14. Eastern pacific bonito   4.11#       0.26#          0.99
15. Common dolphinfish       4.95#       0.00           1.20
16. Swordfish                5.23#       0.42           0.44
17. Pelagic sharks           5.21#       0.06           0.49
15. Sea lions                4.85#       0.09           0.30
19. Cetaceans                5.03#       0.06           0.15
20. Marine birds             4.92#       0.06           0.10
21. Detritus                  1#         1
Total                                  624.70#

Group name                        Q/B              F

                             ([yr.sup.-1])   ([yr.sup.-1])

1. Phytoplankton                                  --
2. Microzooplankton             1928.00           --
3. Mesozooplankton               128.57           --
4. Macrozooplankton               31.71           --
5. Gelatinous zooplankton          2.45           --
6. Mackerel                        7.00          0.25
7. Sardine                        17.60          0.01
8. Anchovy                        21.90          0.55
9. Mesopelagic fish               12.00            0
10. Jack mackerel                  8.12          0.11
11. Demersal fish                  4.12          0.01
12. Jumbo squid                    8.64            0
13. Palm ruff                      4.20          0.03
14. Eastern pacific bonito         5.50          0.02
15. Common dolphinfish             5.60          0.50
16. Swordfish                      7.20            0
17. Pelagic sharks                 6.10          0.10
15. Sea lions                     20.00          0.03
19. Cetaceans                     10.00           --
20. Marine birds                  62.00           --
21. Detritus                                      --
Total

Group name                        Y         EE

                                 (ton
                             [km.sup.-2])

1. Phytoplankton                  --        0.70
2. Microzooplankton               --        1.00
3. Mesozooplankton                --        1.00
4. Macrozooplankton               --        1.00
5. Gelatinous zooplankton         --        0.31#
6. Mackerel                      2.766      0.88#
7. Sardine                       0.139      0.10#
8. Anchovy                      21.387      0.94#
9. Mesopelagic fish                  0      1.00#
10. Jack mackerel                1.618      0.41#
11. Demersal fish                0.006      1.00#
12. Jumbo squid                      0      0.50#
13. Palm ruff                    0.009      0.41#
14. Eastern pacific bonito       0.004      1.00#
15. Common dolphinfish           0.001      0.42#
16. Swordfish                    0.001      0.00#
17. Pelagic sharks               0.006      0.21#
15. Sea lions                    0.003      0.10#
19. Cetaceans                     --        0.00#
20. Marine birds                  --        0.00#
21. Detritus                      --        0.28#
Total                           25.94#

Group name                    GE

1. Phytoplankton               --
2. Microzooplankton          0.25#
3. Mesozooplankton           0.35#
4. Macrozooplankton          0.41#
5. Gelatinous zooplankton    0.239#
6. Mackerel                  0.171#
7. Sardine                   0.083#
8. Anchovy                   0.092#
9. Mesopelagic fish           0.1#
10. Jack mackerel            0.044#
11. Demersal fish            0.075#
12. Jumbo squid              0.405#
13. Palm ruff                0.348#
14. Eastern pacific bonito   0.179#
15. Common dolphinfish       0.214#
16. Swordfish                0.061#
17. Pelagic sharks           0.08#
15. Sea lions                0.015#
19. Cetaceans                0.015#
20. Marine birds             0.002#
21. Detritus                   --
Total

Note: Input parameters and outputs of the balanced model
representing the food web in the upwelling system of northern
Chile in 1997 is indicated with #.

Table 3. Diet composition of the predators included in the
balanced model representing the food web in the upwelling system
of central Chile, year 1997.

Prey                                        Predator

                               2       3       4       5       6

1 Phytoplankton             0.728   0.200   0.500   0.092
2 Microzooplankton          0.171   0.400   0.038   0.055   0.011
3 Mesozooplankton                           0.400   0.514   0.135
4 Macrozooplankton                          0.063   0.339   0.190
5 Gelatinous zooplankton
6 Mackerel
7 Sardine
8 Anchovy                                                   0.269
9 Mesopelagic fish                                          0.259
10 Jack mackerel
11 Demersal fish
12 Jumbo squid
13 Palm ruff
14 Eastern Pacific bonito
15 Common dolphinfish
16 Swordfish
17 Pelagic sharks
18 Sea lions
19 Cetaceans
20 Marine birds
21 Detritus                 0.101    0.4
22 Import                                                   0.137
23 Total                    1.00    1.00    1.00    1.00    1.00

Prey                                         Predator

                                7       8       9     10       11

1 Phytoplankton             0.0003   0.022
2 Microzooplankton          0.222            0.058
3 Mesozooplankton           0.500    0.514   0.681
4 Macrozooplankton          0.278    0.464   0.220   0.21   0.001
5 Gelatinous zooplankton                             0.01
6 Mackerel                                           0.05
7 Sardine                                                   0.054
8 Anchovy                                            0.21   0.164
9 Mesopelagic fish                                   0.31
10 Jack mackerel
11 Demersal fish                                            0.0002
12 Jumbo squid                                              0.089
13 Palm ruff
14 Eastern Pacific bonito
15 Common dolphinfish
16 Swordfish
17 Pelagic sharks
18 Sea lions
19 Cetaceans
20 Marine birds
21 Detritus
22 Import                                    0.041   0.21   0.692
23 Total                     1.00    1.00    1.00    1.00    1.00

Prey                                        Predator

                              12     13     14       15     16

1 Phytoplankton
2 Microzooplankton
3 Mesozooplankton                   0.13
4 Macrozooplankton                  0.06   0.54            0.01
5 Gelatinous zooplankton
6 Mackerel                                        0.054    0.14
7 Sardine                   0.081          0.17   0.066    0.12
8 Anchovy                   0.081   0.08   0.29   0.075    0.12
9 Mesopelagic fish          0.704                 0.465    0.05
10 Jack mackerel                                  0.030
11 Demersal fish
12 Jumbo squid              0.134                 0.310    0.50
13 Palm ruff
14 Eastern Pacific bonito                                  0.06
15 Common dolphinfish                             0.0003
16 Swordfish
17 Pelagic sharks
18 Sea lions
19 Cetaceans
20 Marine birds
21 Detritus
22 Import                           0.73
23 Total                    1.00    1.00   1.00    1.00    1.00

Prey                                  Predator

                             17     18     19      20

1 Phytoplankton
2 Microzooplankton
3 Mesozooplankton
4 Macrozooplankton          0.04
5 Gelatinous zooplankton
6 Mackerel                  0.15   0.05   0.01    0.40
7 Sardine                          0.22   0.14
8 Anchovy                   0.15   0.40   0.26    0.45
9 Mesopelagic fish                        0.10
10 Jack mackerel            0.15   0.05   0.07    0.11
11 Demersal fish                   0.10
12 Jumbo squid              0.33   0.05   0.34
13 Palm ruff                0.03          0.04    0.04
14 Eastern Pacific bonito   0.15          0.04
15 Common dolphinfish
16 Swordfish
17 Pelagic sharks
18 Sea lions
19 Cetaceans
20 Marine birds
21 Detritus
22 Import                          0.13
23 Total                    1.00   1.00   1.00    1.00

Table 4. Total biomass ([B.sub.t]), total catches ([Y.sub.t]),
total flows ([F.sub.t]) and trophic transfer efficiencies (TTE)
by discrete trophic level in the model representing the upwelling
system of northern Chile, year 1997. Trophic level (TL).

TL       [B.sub.t]      [Y.sub.t]      [F.sub.t]     TTE
            (ton           (ton           (ton       (%)
        [km.sup.-2]    [km.sup.-2]    [km.sup.-2]
        [yr.sup.-1])   [yr.sup.-1])   [yr.sup.-1])

I          320.0                        58802.0
II          83.7           0.5          32676.3      11.8
III        129.0           12.9          4353.6      28.0
IV          74.2           9.5           1184.0      17.6
V           16.8           2.9           195.3       7.1
VI          1.6            0.2            12.7       5.4
VII         0.1            0.0                       1.4
Total      625.4           25.9         97058.0      17.8

Table 5. Ecosystem indicators that describe the model
representing the upwellig system of northern Chile, in year 1997
and its comparison to Medina et al. (2007) model representing the
system in 1989.

Parameter                      Year

                        1989       1997

System size

Sum of all             13091.8   44326.8
consumption (ton
[km.sup.-2]
[yr.sup.-1])

Sum of all the         4244.0    24744.3
respiration flows
(ton [km.sup.-2]
[yr.sup.-1])

Sum of all flows to    12060.2   20954.6
detritus (ton
[km.sup.-2]
[yr.sup.-1])

Total system flows     38674.0   106447.0
(ton [km.sup.-2]
[yr.sup.-1])

Total biomass           707.7      645.4
(without
detritus)(ton
[km.sup.-2])

Total catch (ton         91.0       26.1
[km.sup.-2]
[yr.sup.-1])

System maturity

Sum of all the         19684.0   50030.7
production (ton
[km.sup.-2]
[yr.sup.-1])

Calculated net         13452.8   38362.1
primary production
(PPt) (ton
[km.sup.-2]
[yr.sup.-1])

Total primary             3.2        1.6
production/total
respiration (PP/R)

Total primary            19.0       61.4
production/total
biomass
(PP/[B.sub.T])

Trophic transfer          9.8       17.8
efficiency (%)

Finn's cycling index     8.81       8.75
(IF) (%)

Fishing impact

Mean trophic level        2.7        3.7
of the catch

Primary production     1321.4     2834.4
required to sustain
landings PPR (ton
[km.sup.-2]
[yr.sup.-1])

(PPR) (%)                 6.7        7.3
COPYRIGHT 2014 Pontificia Universidad Catolica de Valparaiso, Escuela de Ciencias del Mar
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:articulo en ingles
Author:Barros, Monica E.; Neira, Sergio; Arancibia, Hugo
Publication:Latin American Journal of Aquatic Research
Date:Nov 1, 2014
Words:9884
Previous Article:Efectos de la variabilidad parametrica en la obtencion de tasas de crecimiento foliar en Zostera marina L. mediante metodos alometricos.
Next Article:Estrategias de pesca y dinamica espacial de las pesquerias artesanales en la costa atlantica uruguaya.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters