Printer Friendly

Inter-insular variation of the diet of osprey Pandion haliaetus in the Canarian archipelago.

The osprey Pandion haliaetus is a top predator specialised on fish. Its diet composition is greatly influenced by seasonal and geographical fish prey distributions (Poole 1994). Several methods have been employed to assess its diet worldwide: direct or video recording observations of foraging birds or fish deliveries to the nests (Hakkinen 1977, Edwards 1988, Eriksson 1988, Chubbs & Trimper 1998, Glass & Watts 2009), identification of prey remains collected under nests or feeding perches (Hakkinen 1978, Swenson 1978, Carss & Brockie 1994, GilSanchez 1995, Fisher et al. 2001, Cartron & Molles 2002, Clancy 2005) or the combination of both (McKlein & Byrd 1991, Carss & Godfrey 1996). As only flesh and easily broken bones are ingested, pellets are not useful for assessing osprey diet (Francour & Thibault 1996).

Breeding sites of osprey in the Macaronesian archipelagos (i.e. in the northeastern Atlantic) are currently limited to the Canary and the Cape Verde Islands, where 14 and ca 80 pairs occur, respectively (Palma et al. 2004, Siverio 2008). Despite its delicate conservation status (catalogued as Critically Endangered by the Red List of Spanish birds; Triay & Siverio 2004), specific ecological aspects of the Canarian population remain poorly known, with only a few surveys conducted regarding status, distribution and breeding parameters (Siverio & Rodriguez 2007 and references therein). The available quantitative information on the food habits of osprey in Macaronesia is limited to the Cape Verde population (de Naurois 1987, Den Hartog 1990, Ontiveros 2003, Martins 2006), with a few isolated observations on the subject from the Canarian population (Martin & Lorenzo 2001). In our study we quantify, for the first time, composition and inter-insular variation of the osprey diet in the Canary Islands, mainly during the nesting period. We do this by prey remains analysis (PRA) compared with direct observations (DO) on foraging birds and birds delivering fish to the nests.


Material and methods

The Canarian archipelago (27[degrees]-29[degrees]N and 13[degrees]-18[degrees]W) is located 96-100 km from the northwestern Atlantic coast of Africa. It is composed of seven major islands and some small islets and rocks. The current osprey breeding distribution comprises the islands of Lanzarote (including its related islets Montana Clara and Alegranza belonging to the Chinijo archipelago), Tenerife, La Gomera and El Hierro (Fig. 1). Some individuals are regularly observed in the remaining islands, but no successful breeding attempts have been recorded there (Siverio & Rodriguez 2007).

We assessed diet composition during breeding (i.e. January-July; Siverio 2006) in 2003-2007, by visiting 22 perch or nest sites (five in Chinijo islets in North Lanzarote, 12 on Tenerife and five on La Gomera; see Fig. 1) of 12 of the 14 current breeding territories of the archipelago (Siverio 2008), and by collecting prey remains. To avoid disturbances, we mainly collected prey remains during July-August, just after fledglings leave the nests. We also collected material at non-breeding sites (one on Gran Canaria and two on Tenerife), where local breeding adults were regularly sighted, but also European visitors (colour-ringed) have been recorded (M. Siverio & B. Rodriguez, pers. obs.). This nonbreeding season material was presented and analysed independently. We placed emphasis on key fish parts that provided taxonomic identification, and we considered only fresh prey remains (i.e. estimated to be < 2 months old). We assessed the minimum number of fish individuals in prey remains based on the most commonly found ins, whole tails, jaws, different bones or body parts representing an individual (Marti et al. 2007). Whenever possible, we identified prey items at the species level using a reference collection and fish guides (Whitehead et al. 1986, Fischer et al. 1987, Gonzalez et al. 2000, Brito et al. 2002, Miranda & Escala 2002). We estimated sizes and weights of common carp Cyprinus carpio according to formulas relating opercula size and the measurements published by Gil-Sanchez (1995) referred to a population of the Iberian Peninsula. For the other prey species identified in our study, similar formulas were not available in the literature. We also tried to identify all fishes delivered to nests and being carried by flying birds, using binoculars and telescopes (1060 magnifications), during the 1997-2008 breeding seasons. For this phase of our study, we employed a total of 433 observation hours at different breeding territories and its nearest feeding areas (mainly located on Tenerife and La Gomera). As it has been reported that estimating length size from direct observations entails important biases (Carss & Godfrey 1996), we did not consider this direct method to estimate the size of prey. Niche breath and diet diversity were calculated using the standardised Levin's ([B.sub.sta]) and Shannon (H') indexes (Krebs 1999) applied to the items consumed. The Levin's index formula is:

B = 1/[summation] [p.sup.2.sub.i]

where [p.sub.i] is the frequency of each food category consumed. The standardised Levin's index formula is:

[B.sub.sta] = B-1/[B.sub.max] - 1,

where B is the Levin's index and [B.sub.max] is the total number of food categories recognised (lowest niche breadth = 0 and greatest niche breadth = 1).

The Shannon index (in which higher values refer to higher diversity) formula is:

H' = - [summation][p.sub.i]log[p.sub.i].

We measured the diet overlap between islands using percentage of food items through the Pianka's index (O):

[O.sub.jk] = [n.summation over (i=1)][p.sub.ij][p.sub.ik]/[square root of [n.summation over (1=1)] [p.sup.2.sub.ij] [n.summation over (i=1)] [p.sup.2.sub.ik],

where [p.sub.i] is the percentage of prey item 'i' in the diet of islands 'j' and 'k'. Pianka's index varies between 0 (total separation) and 1 (total overlap).

To study insular variation of the most important prey (belonging to the families Exocoetidae and Belonidae), we applied likelihood ratio tests (G-tests), comparing a certain prey item with the total number of the remaining prey items. We conducted analyses using SPSS (version 17.0).


During the breeding season, we counted a minimum of 262 and 78 fish individuals in prey remains and direct observation, respectively, including at least 15 taxa (belonging to 12 families; Table 1). The most frequently consumed prey was flying fishes (belonging to the family Exocoetidae; 42.7 and 19.2% according to PRA and DO, respectively) and needlefish (belonging to the family Belonidae; 38.5 and 6.4% according to PRA and DO, respectively). At least six species were represented by only one individual in the PRA and DO (see Table 1). We found some remains of red rock crabs Grapsus grapsus at two feeding perches on Tenerife, but they were not considered in the analysis as we were not confident that they were consumed by ospreys. Diet composition varied slightly between the islands (La Gomera: [B.sub.sta] = 0.35 and H' = 0.53, Tenerife: [B.sub.sta] = 0.21 and H' = 0.59 and Chinijo: [B.sub.sta] = 0.42 and H' = 0.63; see Fig. 1). Only on Tenerife, fresh-water fishes were caught, and the percentage of captures of flying fishes (belonging to the family Excoetidae) in Chinijo was lower than on La Gomera and Tenerife (see Fig. 1). Diet overlap (O), expressed as Pianka's index, between La Gomera and Tenerife was 0.99, between Tenerife and Chinijo 0.66 and between Chinijo and La Gomera 0.68. The two most important groups of prey showed different patterns. Thus, the species belonging to the family Exocoetidae were significantly more consumed on Tenerife and La Gomera than in Chinijo ([G.sub.2] = 20.85, P < 0.001), but for species belonging to the family Belonidae it did not vary between the islands ([G.sub.2] = 2.33, P = 0.31).

In the non-breeding areas (all associated with large artificial ponds), all identified prey was freshwater fishes. Of a total of 45 fish individuals, the common carp (belonging to the family Cyprinidae; 71.1%, N 32) was the most common species followed by goldfish Carassius auratus (belonging to the family Cyprinidae; 8.9%, N = 4), tilapia Oreochromis mossambicus (belonging to the family Cichlidae; 6.7%, N 3) and large mouth bass Micropterus salmoides (belonging to the family Centrarchidae; 2.2%, N 1), whereas the rest remainded unidentified (11.1%, N = 5). Estimated mean size and weight of common carp (N = 35) captured by osprey were 25.9 cm [+ or -] 2.6 (range: 21.5-32.3) and 223.3 g [+ or -] 43.4 (range: 147.4-329.3), respectively (Fig. 2).


We found only small differences between prey remain analysis and direct observations (see Table 1), so both methods could be considered complementary, though some limitations and biases are present (see Marti et al. 2007). Direct observation is time consuming, and the percentage of correct identifications is highly biased and related to several factors such as size, colour and morphology of the fish, and by the distance of the observation (Carss & Godfrey 1996). Fish identification is also impeded, because often fish are partially eaten when observations commence. In the case of prey remains analysis, some biases are associated with identifiable, conspicuous and lasting body pieces, so usually the smallest fish are more prone to be undetected compared to bigger fish (Carss & Brockie 1994). The presence of scavengers that may affect the durability of larger prey remains, could represent a small bias in our study as we collected remains at the end of the nesting season. In this sense, we noticed that some prey remains were probably moved into cracks by the black rat Rattus rattus. Furthermore, yellow legged gull Larus michahellis and common raven Corvus corax usually occur in the vicinity of the osprey feeding perches or nests, apparently searching for food (M. Siverio & B. Rodriguez, pers. obs.).


Taking into account the quantitative data from our study and the addition of saddled seabream Oblada melanura (belonging to the family Sparidae), quoted as an occasional item (Martin& Lorenzo 2001), the diet of osprey in the Canary Islands is composed of a minimum of 16 fish taxa (belonging to 12 families). This diet diversity is comparable to reports from other Palearctic populations, but lower than reported in tropical waters such as the southern Red Sea or Cape Verde (Table 2). Reviewing osprey dietary studies during breeding in the western Palearctic, northern populations feed mainly on freshwater fishes, while southern populations feed mainly on marine fishes, and it seems that diet diversity increases in a latitudinal gradient southward (see Table 2). It has been suggested that sea surface temperature is the main proximate factor affecting surface fish availability (both factors related positively), and consequently, osprey feeding behaviour selection into marine or freshwater environments (Marquiss et al. 2007). However, the proportion of marine items in the osprey diet must also be influenced by local factors such as availability of foraging areas (e.g. freshwater body masses are scarce and small on the Canary Islands) and human disturbances. In this sense, it is well-known that ospreys are generalist and opportunistic foragers on fish, depending greatly on locally available resources (Poole 1994, Martins 2006). This behaviour also explains the observed spatial differences within the Canarian archipelago. According to the Pianka's index, the diets of ospreys from La Gomera and Tenerife overlap more (0.99) than the osprey diet from Chinijo compared with La Gomera (0.68) or Tenerife (0.66). These differences are probably related to fish availability as Canarian coastal fish assemblages vary greatly within and between the islands according to the particular habitat features and human pressure (Falcon et al. 1996, Tuya et al. 2004, Clemente et al. 2010).

During the breeding season, freshwater fishes (belonging to the families Cichlidae and Cyprinidae) were only consumed in low numbers on Tenerife (see Fig. 1), and thus the relative high level of diet diversity there (H' 0.59) could be related to their consumption. Both on Tenerife and La Gomera, although more abundant on Tenerife (Siverio et al. 2008, M. Siverio & B. Rodriguez, pers. obs.), the breeding territories are situated close to water ponds used for agriculture. Many of these reservoirs contain domesticated fishes which make up potential prey for ospreys. However, according to our observations on Tenerife, the domesticated fishes seem to be consumed mainly during the non-breeding season or by non-breeding or migratory birds. Given the lack of native freshwater fish in the Canary Islands, the artificial fish source may be crucial when weather conditions (strong winds or rough sea) impede fishing at sea (Grubbs 1977). It is known that birds also forage on fish farms of gilthead seabream Sparus auratus and European seabass Dicentrarchus labrax (M. Siverio & B. Rodriguez, pers. obs.), of which some are close to nesting sites of Tenerife.

Although several non-fish prey have been reported worldwide (see Wiley & Lohrer 1973), in the Canaries only lizards (two Caesar's lizard Gallotia caesaris individuals captured on El Hierro; Diaz et al. 1986) and crabs (without any more information; Martin & Lorenzo 2001) have been recorded. Curiously, recent observations have indicated that some ospreys ingested algae (Rhizoclonium sp. belonging to the family Cladophoraceae) and slime near the banks of an agricultural water reservoir, but the reason for this behaviour remains unknown (Siverio et al. 2008).

The estimated mean length (25.9 cm) and weight (223.3 g) of the common carp consumed by ospreys in the Canaries are within the range recorded elsewhere (Hakkinen 1978, Poole 1989, Francour & Thibault 1996). It has been observed that the size and weight of fish captured by ospreys vary according to its availability, and it has been suggested that neither species nor size are selected for by this raptor (Swenson 1978, Poole 1989, Carss & Godfrey 1996, Francour & Thibault 1996).

Our study indicates that during the breeding season, the osprey diet in the Canaries is mainly composed of flying fishes (belonging to the family Exocoetidae) and needlefish (belonging to the family Belonidae), species whose abundance is probably related to their very low commercial fisheries value (G. Gonzalez-Lorenzo, pers. com.). The slightly higher diet diversity observed in the Chinijo islets compared to Tenerife and La Gomera could be influenced by the fact that the former present a better conservation state of coastal fish assemblages as they were declared as a Marine Reserve by the Spanish Government in 1986. At this site, protection measures against overfishing have contributed to the increase and/or the maintenance of the populations of certain heavily exploited species, such as for example the parrot fish Sparisoma cretense (Garcia-Charton et al. 2008). The differences in the management regimes could be affecting the diet composition of osprey in Chinijo (a marine reserve) vs Tenerife and La Gomera (unprotected and overfishing areas). More precise studies to assess the effect of availability of fish (under natural conditions such as marine protected areas, or at artificial sources such as water ponds or fish farms) on the breeding success and demographic parameters of populations are necessary for the management and conservation of threatened Canarian ospreys.

The use of fish farms as artificial sources of food by osprey could also represent an additional source of mortality as ospreys may entangle in the nets that cover the cages (Siverio & Rodriguez 2007). As it is suspected that the maintenance staff of these farms, to avoid legal problems, may easily hide dead birds if found, competent authorities should inspect these installations to detect and correct potential risks to the raptor species.

DOI: 10.2981/10-004

Acknowledgements--we are very grateful to Francisco M. Gonzalez for his interest in our study and for allowing us access to some otherwise inaccessible locations using his boat. We also thank Aurelio Acevedo, Leandro De Leon and Jaime Ginoves who helped us collect prey remains. Special thanks go to Alejandro Sancho, Jose; Carlos Hernandez and Alberto Brito of the Department of Zoology (La Laguna University), and Rafael Miranda of the Department of Zoology (Navarra University) for their help in the identification of prey remains. Furthermore, Juan Curbelo, Jose G. Martin, Jose J. Hernandez, Manuel Perez and Rosmeen Ramos provided fish for our reference collection. The 2004-2005 surveys in Tenerife were partially funded by Oficina de Gestion del Parque Rural de Teno (Cabildo de Tenerife). In addition, the Canarian delegation of SEO/BirdLife supported us by covering some of the field expenses. Mikael Hake and Daniel Schmidt provided valuable information of osprey diet in Sweden and Germany, respectively. Finally, Greg. P. Clancy (University of New England, Armidale, NSW Australia), Charles J. Henny (USGS, Forest and Rangeland Ecosystem Science Center, Oregon) and an anonymous referee provided valuable comments and improved the English version of earlier drafts of the manuscript.


Brito, A., Pascual, P.J., Falcon, J.M., Sancho, A. & Gonzalez, G. 2002: Peces de las Islas Canarias. Catalogo comentado e ilustrado.--Francisco Lemus Editor, La Laguna, 419 pp. (In Spanish).

Cancela, L. & Palma, L. 1984: Primeiros dados sobre a alimentacao da aiguia pesqueira (Pandion haliaetus)na airea de nidificacao do SW de Portugal.--II Reunion Iberoamericana Conservation Zoologia de Vertebrados: 223-234. (In Portuguese).

Carss, D.N. & Brockie, K. 1994: Prey remains at Osprey nests in Tayside and Grampian, 1987-1993.--Scottish Birds 17: 132-145.

Carss, D.N. & Godfrey, J.D. 1996: Accuracy of estimating the species and sizes of Osprey prey: a test of methods. Journal of Raptor Research 30: 57-61.

Cartron, J-L. & Molles, M.C. 2002: Osprey diet along the eastern side of the gulf ofCalifornia, Mexico.--Western North American Naturalist 62: 249-252.

Chubbs, T.E. & Trimper, P.G. 1998: The diet of nesting Osprey, Pandion haliaetus, in Labrador.--Canadian Field-Naturalist 112: 502-505.

Clancy, G.P. 2005: The diet of the Osprey (Pandion haliaetus) on the north coast of New South Wales. Emu 105: 87-91.

Clemente, S., Hernandez, J.C., Rodriguez, A. & Brito, A. 2010: Identifying keystone predators and the importance of preservinkg functional diversity in sublittoral rocky-botton areas.--Marine Ecology Progress Series 413: 55-67.

de Naurois, R. 1987: Le Balbuzard (Pandion haliaetus L.) aux iles du Cap Vert.--Estratto dagli Annali del Museo Civico di Storia Naturale di Genova 86: 657-682. (In French).

Den Hartog, J.C. 1990: Birds of the Cape Verde Islands. Notes on species observed (9 August-10 September 1986), distribution, migration, status, origin and conservation.--Courier Forschungsinstitut Senckenberg 129: 159-190.

Diaz, G., Trujillo, O. & Hernandez, E. 1986: Situacion del Aguila Pescadora (Pandion haliaetus) en Canarias. Boletin de la Estacion Central de Ecologia 29: 67-72. (In Spanish).

Edwards, T.C. 1988: Temporal variation of prey preference patterns of adult Ospreys.--Auk 105: 244-251.

Eriksson, M.O.G. 1988: Fish delivery, production of young, and nest density of Osprey (Pandion haliaetus) in southwest Sweden.--Canadian Journal of Zoology 64: 1961-1965.

Falcon, J.M., Bortone, S.A., Brito, A. & Bundrick, C.M. 1996: Structure of and relationships within and between the littoral, rock-substrate fish communities off four islands in the Canarian Archipelago.--Marine Biology 125: 215-231.

Fischer, W., Bauchot, M-L. & Schneider, M. (Eds.) 1987: Fiches FAO d'identification des espesces pour les besoins de la peche. (Revision 1). Mediterranee et mer Noire. Zone de peche 37. Volume II. Vertebres.--FAO/ Commission des Communautes Europeennes, Rome, Italy, pp. 761-1530. (In French).

Fisher, P.R., Newton, S.F., Tatwany, H.M.A. & Gold spink, C.R. 2001: Variation in the diet of Ospreys Pandion haliaetus, Farasan Islands, southern Red Sea preliminary observations.--Vogelwelt 122: 205-218. Francour, P. & Thibault, J-C. 1996: The diet of breeding Osprey Pandion haliaetus on Corsica: explotation of a coastal marine environment.--Bird Study 43: 129-133.

Garcia-Charton, J.A., Perez-Ruzafa, A., Marcos, C., Claudet, J., Badalamenti, F., Benedetti-Cecchi, L., Falcan, J.M., Milazzo, M., Schembri, P.J., Stobart, B., Vandeperre, F., Brito, A., Chemello, R., Dimech, M., Domenici, P., Guala, I., Le Direach, L., Maggi, E. & Planes, S. 2008: Effectiveness of European Atlanto-Mediterranean MPAs: Do they accomplish the expected effects on population, communities and ecosystems? Journal of Nature Conservation 16: 193-221.

Gil-Sanchez, J.M. 1995: Alimentacion y selection de presa por el aguila pescadora (Pandion haliaetus) en el embalse del Cubillas (S.E. de Espana). (In Spanish with an English summary: Diet and prey selection by Osprey (Pandion haliaetus) in Cubillas reservoir (South-east Spain)).--Ardeola 42: 133-138.

Glass, K.A. & Watts, B. 2009: Osprey diet composition and quality in high- and low-salinity areas of lower Chesapeake Bay.--Journal of Raptor Research 43: 27-36.

Gonzalez, J., Hernandez, C., Marrero, P. & Rapp, E. 2000: Peces de Canarias. Guia submarina. 5[degrees] edicion.--Lemus Editor, Arafo, Tenerife, Spain, 235 pp. (In Spanish).

Grubbs, T.C. 1977: Weather-dependent foraging in Ospreys.--Auk 94: 146-149.

Hakkinen, I. 1977: Food catch of the Osprey Pandion haliaetus during the breeding season.--Ornis Fennica 54: 166-169.

Hakkinen, I. 1978: Diet of the Osprey Pandion haliaetus in Finland.--Ornis Scandinavica 9: 111-116.

Krebs, C.J. 1999: Ecological methodology.--Addison Wesley Longman, Menlo Park, California, USA, 620 pp.

Marquiss, M., Robinson, L. & Tindal, E. 2007: Marine foraging by Ospreys in southwest Scotland: implications for the species' distribution in western Europe.--British Birds 100: 456-465.

Marti, C.D., Bechard, M. & Jacksic, F.M. 2007: Food habits.--In: Bird, D.M., Bildstein, K.L., Barber, D.R. & Zimmerman, A. (Eds.); Raptor Research and Management Techniques. Raptor Research Foundation, Washington D.C., USA, 129-151 pp.

Martin, A. & Lorenzo, J.A. 2001: Aves del archipielago canario.--Lemus Editor, La Laguna, Tenerife, Spain, 787 pp. (In Spanish).

Martins, S. 2006: Ecologia trofica/alimentar do Guincho (Pandion haliaetus L.) no Archipelago de Cabo Verde, Africa Ocidental.--Ministerio Da Educacaao e Encino Superior, Republica de Cabo Verde, 22 pp. (In Portuguese).

McKlein, P.K. & Byrd, P.A. 1991: Feeding ecology of Chesapeake Bay Ospreys and growth and behaviour of their young.--Wilson Bulletin 103: 105-111.

Miranda, R. & Escala, M.C. 2002: Guia de identificacionde restos oseos de los Ciprinidos presentes en Espana. Escamas, operculos, cleitros y arcos faringeos.--Servicio de Publicaciones de la Universidad de Navarra, Pamplona, Spain, 240 pp. (In Spanish).

Muller, T., Langgemach, T., Sulzberg, K. & Kohler, D. 2005: Artenschutzprogramm Adler.--Ministerium fur Lundliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg (MLUV), Potsdam, Germany, 92 pp. (In German).

Ontiveros, D. 2003: Nesting distribution, food habits, and conservation of Osprey on Boavista Island (Archipelago of Cape Verde).--Journal of Raptor Research 37: 67-70.

Palma, L., Ferreira, J., Cangarato, R. & Pinto, P.V. 2004: Current status of the Osprey in the Cape Verde Islands. Journal of Raptor Research 38: 141-147.

Poole, A.F. 1989: Ospreys: a Natural and Unnatural History.--Cambridge University Press, Cambridge, UK, 270 pp.

Poole, A.F. 1994: Family Pandionidae (Osprey).--In: Del Hoyo, J., Elliot, A. & Sargatal, J. (Eds.); Handbook of the Birds of the World. Vol. 2. Lynx Edicions, Barcelona, Spain, pp. 42-51.

Siverio, F., Siverio, M. & Hernandez, J.J. 2008: Slime and algae ingestion by Ospreys.--British Birds 102: 36.

Siverio, M. 2006: Population status and breeding biology of Osprey Pandion haliaetus in Tenerife, Canary Islands (1997-2004).--Alauda 74: 413-419.

Siverio, M. 2008: El aguila pescadora en Canarias.--In: Triay, R. & Siverio, M. (Eds.); El aguila pescadora en Espana. Poblacion en 2008 y metodo de censo. SEO/ BirdLife, Madrid, Spain, pp. 20-39. (In Spanish).

Siverio, M. & Rodriguez, B. 2007: Aguila Pescadora Pandion haliaetus.--In: Lorenzo, J.A. (Ed.); Atlas de las aves nidificantes en el archipielago canario (1997-2003). Direccion General de Conservation de la NaturalezaSEO/BirdLife, Madrid, Spain, pp. 168-172. (In Spanish).

Swenson, J.E. 1978: Prey and foraging behaviour of ospreys on Yellowstone Lake, Wyoming.--Journal of Wildlife Management 42: 87-90.

Thiollay, J.M. & Wahl, R. 1998: Le Balbuzard Pecheur Pandion haliaetus nicheur en France continentale. Ecologie, dynamique et conservation.--Alauda 66: 112. (In French).

Triay, R. & Siverio, M. 2004: Aguila Pescadora, Pandion haliaetus.--In: Madrono, A., Gonzalez, C. & Atienza, J.C. (Eds.); Libro Rojo de las Aves de Espana. Direccion General para la Biodiversidad- SEO/BirdLife, Madrid, Spain, pp. 57-160. (In Spanish).

Tuya, F., Boyra, A., Sanchez-Jerez, P., Barbera, C. & Haroun, R.J. 2004: Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series 278: 157-169.

Whitehead, P.J.P., Bauchot, M-L., Hureau, J-L., Nielsen, J. & Torlonese, E. 1986: Fishes of the North-eastern Atlantic and Mediterranean. Vol. II.--Unesco, Bungay-Paris, France, pp. 517-1007.

Wiley, J.W. & Lohrer, F.E. 1973: Additional records of nonfish prey taken by Ospreys.--Wilson Bulletin 85: 468-470.

Manuel Siverio, Constitucion 17-3, E-38410 Los Realejos, Tenerife, Canary Islands, Spain--e-mail: mansiverio@

Beneharo Rodriguez, La Malecita s/n, E-38480 Buenavista del Norte, Tenerife, Canary Islands, Spain--e-mail:

Airam Rodriguez, Department of Evolutionary Ecology, Estacion Biologica de Donana (CSIC), Avda. Americo Vespucio s/n, E-41092 Seville, Spain--e-mail:

Felipe Siverio, Los Barros 21, E-38410 Los Realejos, Tenerife, Canary Islands, Spain--e-mail:

Corresponding author: Beneharo Rodriguez

Received 12 January 2010, accepted 2 May 2011

Associate Editor: Anne Loison
Table 1. Breeding diet composition of osprey in the Canary
Islands according to prey remains analysis (PRA) and direct
observations (DO) during the periods 2003-2007 and 19972008,
respectively (see details in text). MNI = Minimum
number of individuals.

                  Prey taxa                  PRA                  DO
Family            Species                    MNI     %    MNI      %
Marine fish
Cupleidae         Unidentified                 1     4     --     -
Unidentified                                   1     4      1    1.3
Belonidae         Tylosurus acus *            96    366     5    6.4
Belonidae         Unidenfied                   5    19     --     -
Cheilopogon heterurus *                       112    427    15    19.2
Aulostomidae      Aulostomus strigosus        --    --      1    1.3
Moronidae         Dicentrarchus labrax        --    --      1    1.3
Carangidae        Trachinotus ovatus           5    19      2    2.6
Sparidae          Sparus auratus               4    15      2    2.6
Sparidae          Diplodus sp.                 2     8     --     -
Sparisoma cretense                             4    15     --     -
Sphyraena viridensis                           1     4     --     -
Freshwater fish

Cichlidae         Oreochromis mossambicus      1     4     --     -
Carassius auratus                             --    --      7    9.0
Cyprinidae        Cyprinus carpio             10    38     --     -
Unidentified                                  20    76     44    56.4
Total                                        262           78
[B.sub.sta]                                  0.15         0.38
[H.sup.']                                    0.55         0.70

 * includes primarily this species but possibly others too.

Table 2. Comparison of diet of selected osprey breeding
populations across the western Palearctic based on prey
remains. The Behaviour-main foraging ground abbreviations
are M - Fe = migratory and freshwater environment and S - Me
sedentary and marine environment.

Location               Latitude         Longitude        Behaviour/

Finland (inland)       60.5[degrees]N   23.8[degrees]E   M-Fe
Finland (coastal)      60.3[degrees]N   21.3[degrees]E   M-Fe
Scotland (north)       56.6[degrees]N   3.6[degrees]W    M-Fe
Scotland (south)       54.9[degrees]N   4.4[degrees]W    M-Fe
Germany (north-east)   51.5[degrees]N   13.5[degrees]E   M-Fe
France (south) (b)     47.1[degrees]N   2.5[degrees]E    M-Fe
Corsica (inland) (c)   41.8[degrees]N   8.7[degrees]E    S-Me
Portugal (south) (d)   37.1[degrees]N   8.6[degrees]W    S-Me
Canary Islands         28.2[degrees]N   15.3[degrees]W   S-Me
Red Sea (south)        16.8[degrees]N   42.0[degrees]E   S-Me
Cape Verde Islands     16.1[degrees]N   22.8[degrees]W   S-Me

Location               No               Species          [B.sub
                       prey             /taxa            .sta]

Finland (inland)       716              12               0.13 (a)
Finland (coastal)      198              10               0.33 (a)
Scotland (north)       104              6                0.63
Scotland (south)       239              9                0.36
Germany (north-east)   562              6                0.47
France (south) (b)     90               14               0.60
Corsica (inland) (c)   258              12               0.46
Portugal (south) (d)   49               9                0.21
Canary Islands         262              13 (e)           0.15
Red Sea (south)        688              56               0.30 (f)
Cape Verde Islands     1264             32               0.20

Location               H'               Source

Finland (inland)       0.58 (a)         Hakkinen (1978)
Finland (coastal)      0.71 (a)         Hakkinen (1978)
Scotland (north)       0.67             Carss & Brockie (1994)
Scotland (south)       0.69             Marquiss et al. (2007)
Germany (north-east)   0.22             Muller et al. (2005)
France (south) (b)     1.02             Thiollay & Wahl (1998)
Corsica (inland) (c)   0.87             Francour & Thibault (1996)
Portugal (south) (d)   0.62             Cancela & Palma (1984)
Canary Islands         0.55             Our study
Red Sea (south)        -                Fisher et al. (2001)
Cape Verde Islands     1.01             Martins (2006)

(a) calculated using number of key bones per species;

(b) study based on direct observation;

(c) considering also some direct observations;

(d) currently extinct population;

(e) 16 considering prey remains analysis, direct observations and
bibliographic sources (Martin & Lorenzo 2001);

(f) mean value of four studied islands.
COPYRIGHT 2011 Nordic Board for Wildlife Research
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Original article
Author:Siverio, Manuel; Rodriguez, Beneharo; Rodriguez, Airam; Siverio, Felipe
Publication:Wildlife Biology
Article Type:Report
Geographic Code:4EUSP
Date:Sep 1, 2011
Previous Article:Breeding success and breeding population trends of waterfowl: implications for monitoring.
Next Article:Bird feeders may sustain feral Rose-ringed parakeets Psittacula krameri in temperate Europe.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |