Printer Friendly

In-car networking technology: using Ethernet in advanced automotive systems.

Abroad variety of data busses are available for use in automotive communication infrastructure, including cost efficient dedicated control message systems, such as LIN, CAN and FlexRay, and optimized media streaming networks like MOST. In addition, specific solutions for high speed peer-to-peer connections in display and camera applications are available. So, why would we need Ethernet in a car?

Advanced driver assistant systems (ADAS) with cameras, real time image processing, and many other high speed sensors are major trends for the near future. Furthermore, there is a rising demand for integration of smartphones and other consumer mobile devices within the infotainment systems. Future vehicles will be connected to all types of wireless data services including new applications like car to car communication. Cost effective system solutions will be required to compensate for the massive increase in complexity and number of nodes of the internal network. Package oriented switched data transmission protocols can provide the necessary flexibility and scalability for such applications. The development of specific physical layers for automotive Ethernet based on single unshielded twisted pair (UTP) cabling for 100 Mbit/s, and possibly even for 1 Gbit/s in the future, addresses this demand. From the cable harness point of view, specific automotive grade interconnection solutions are available. These solutions provide excellent shielding and signal integrity performance up to a couple of gigahertz, but are expensive. With regards to a cost effective system solution, it is necessary to determine whether automotive standard terminals with tab sizes in the range of 0.5 to 0.64 mm are similarly suitable. This can be done by analyzing the signal integrity of the transmission channel (i.e., insertion loss and return loss). Additionally, parameters for mode conversion and cross-talk to adjacent pairs are of interest with regards to the electromagnetic compatibility (EMC) in an unshielded differential system. Measurements and simulations with cable assemblies constructed using standard components show promising results (Figure 1). The results are well within the limits for one pair automotive 100 Mbit/s Ethernet as defined by the OPEN Alliance Special Interest group, as well as the proposed limits for the IEEE802.3bp 1G bit/s solution.

Signal integrity within the link

The link insertion loss is dominated by the frequency dependent cable attenuation. Low loss cable types are recommended for this reason, especially for 1 Gbit/s applications. The short connector structure has only a minor contribution to the system loss. This is different for the return loss since signal reflections are caused by impedance discontinuities. The magnitude of the reflected signal depends on the length of the discontinuity and on the mismatch between cable and connector impedance. Consider the impedance profile of a contact pair with 0.64 mm pin size. A [+ or-]10 tolerance ohms can be met even for signal rise times of 350 ps corresponding to 1 GHz frequency bandwidth. For 100 Mbit/s Ethernet signals with frequency bandwidths below 100 MHz, the discontinuity is not noticeable.

The untwisted area of the cable (directly behind the contact crimp zone) is another potential cause of impedance discontinuities. The length of this area depends on the actual cable type and termination process. The general recommendation is to keep the length of twist disruption as short as possible. Tolerance analyses can be done by modeling this zone as transmission lines using length and impedance parameters. Worst case topologies for return loss are short links with low loss cable and a maximum number of discontinuities (i.e. number of inline connectors). Furthermore, all cable segments should have the same length and a characteristic impedance at the tolerance maximum or minimum, respectively. Consider the link return loss for such scenarios with different termination zone parameters. The limit for 100 Mbit/s data rate can be met with a termination zone length of 20 mm at all contacts measured from the connector housing end with an assumed impedance of 150 ohms. Making cable terminations with such values is feasible with a certain degree of process control. The worst case analysis also demonstrates that, in general, gigabit performance can be reached with those contact systems, but improvements regarding tolerance would be required.

Inference with environment and within harness

The electromagnetic compatibility in an unshielded system is determined by the balance of the differential pair. Imbalances caused by different wire lengths or asymmetric coupling to an adjacent ground, may cause partial conversion of the differential mode data transmission energy to common mode signals relative to ground. Neighboring lines in the harness or RF antenna applications in the car can be disturbed by this effect. The Ethernet system itself is immune to common mode noise coupled from external sources into the twisted pair due to filter circuits and differential signal inputs at the transceivers. However, the data transmission might be affected if part of the common mode noise is converted to differential signals by such harness imbalances. The mode conversion limits for link segment and components proposed by the IEEE802.3bp and OPEN Alliance working groups are based on automotive component level test scenarios and appropriate EMC models. There is a remarkable increase of mode conversion, especially for higher frequencies, due to the asymmetric coupling to ground by a metal block close to the contact pair. These effects may also occur in the wire termination zone, which is another reason to minimize and shorten untwist length. The proposed limits for 100M bit/s Ethernet can still be met with existing designs, but connector design and cable optimization will be required for use at 1 Gbit/s in the future.

Cross-talk between adjacent pairs caused by coupling of electrical and magnetic fields from one pair to the other is another important EMC parameter. Mode conversion can occur if the coupling effects are asymmetric, i.e. a common mode disturbance on one pair might be converted to a differential mode noise on the second pair. These cross-talk effects can be controlled by appropriate pair to pair arrangement in multi pin connectors.

All these analyses demonstrate the suitability of miniaturized automotive connector systems with pin sizes in the range of 0.5 to 0.64 mm for 100 Mbit/s Ethernet applications. Established harness manufacturing processes can further be used if the cable termination zone is controlled regarding length, impedance, and symmetry. System modeling methods can be used to perform tolerance analyses and to determine geometric limits. While 100 Mbit/s Ethernet technology based on single UTP is being introduced in mass production cars, the challenges for 1 Gbit/s are much higher. A high degree of balance is essential to meet automotive EMC requirements with an unshielded system at this data rate. The discussed contact systems are suitable for these requirements, but optimized connector designs, cables, and termination processes will be necessary.

It should be noted the independence of a specific physical layer is a major advantage of Ethernet. Alternative solutions, such as coaxial cabling or Plastic Optic Fiber (POF), could be an interesting approach for application where UTP is not sufficient.

By Bert Bergner, Principal Engineer, Advanced Development Infotainment Automotive; TE Connectivity, Bensheim

Jens Wuelfing, Development Engineer, Product Development Infotainment Automotive, TE Connectivity, Bensheim

Andreas Engel, Senior Manager, Business Development Infotainment Automotive, TE Connectivity, Bensheim

Dr. Thomas Ginsberg, Engineering Director, Product Development Infotainment Automotive, TE Connectivity, Bensheim
COPYRIGHT 2014 Advantage Business Media
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Automotive
Author:Bergner, Bert; Wuelfing, Jens; Engel, Andreas; Ginsberg, Thomas
Publication:ECN-Electronic Component News
Date:Jun 1, 2014
Previous Article:Take charge: future-proofing for EV charging with larger on-board charging.
Next Article:The role of smart TVs in gaming: how new technology is influencing the industry.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters