Printer Friendly

In the pipeline: farewell to ACAT, and to lots of time and money, too.

BACK WHEN I JOINEDTHE FIRST drug company I ever worked for, the group in the lab next door was working on an enzyme called ACAT, acyl CoA: cholesterol acyltranferase. It's the main producer of cholesterol esters in cells, and is especially known to be active in the production of foam cells in atherosclerosis. It had already been a drug target for some years before I first heard about it, and has remained one.

It hasn't been an easy ride. Since 1990, several compounds have failed in the clinic or in preclinical tox testing. The most recent disappointment was in 2006, when pactimibe (Daiichi Sankyo) not only failed to perform against placebo, but actually made things slightly worse.

Lipid handling is a tough field, because every animal does is slightly differently. There are all sorts of rabbit strains and hamster models and transgenic mice, but you're never really sure until you get to humans. Complicating the story has been the discovery that there are two ACATs. ACAT-1 is found in macrophages (and the foam cells that they turn into) and many other tissues, and ACAT-2 is found in the intestine and in the liver. Which one to inhibit is a good question--the first might have a direct effect on altherosclerotic plaque formation, while the second could affect general circulating lipid levels. Pactimibe hits both about equally, as it turns out.

Now a second study of that drug has been published this spring. This one was going on at the same time as the earlier reported one, and was stopped when those results hit, but the data were in good enough shape to be worked up, and the company paid for the continued analysis. The new results look at patients with familial hypercholesterolemia, who got pactimibe along with the standard therapies. Unfortunately, the numbers are of a piece with the earlier ones: the drug did not help, and actually seemed to increase arterial wall thickness. I think it's safe to say, barring some big pharmacological revelation, that ACAT inhibitors are a dead end for atherosclerosis.

I bring this up for two reasons. One is that the group that was working next door to me on ACAT was the same group that discovered (quite by accident) the cholesterol absorption inhibitor ezetimibe, known as Zetia (and as half of Vytorin). Although its future is very much in doubt, It's for sure that that compound has been a lot more successful than any ACAT inhibitor. The arguing goes on about how helpful it's been (and will go on until we see the next trial results for another couple of years), but it's already made it further than ACAT.

And that's actually my second point. I suspect that almost no one in the general public has ever heard of ACAT at all. But it's been the subject of a huge amount of research, of time and work and money. And while we've learned more about lipid handling in humans, which is always valuable, the whole effort has been an utter loss as far as any financial return. I have no good way of estimating the direct costs (and even worse, the opportunity costs) involved with this target, but they surely add up to One Hell Of A Lot Of Money. Which is gone, and gone with hardly a sound outside the world of drug development. And this happens all the time.

from http://pipeline.corante.com/on5/5/09 Copyright Derek Lowe, 2009

COPYRIGHT 2009 Rodman Publishing
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:THE LOWE-DOWN
Publication:Contract Pharma
Date:Jun 1, 2009
Words:577
Previous Article:Lowe agonistes (or is that antagonistes?): knowing more and understanding less.
Next Article:Consistency is key to a good cold chain.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |