Printer Friendly

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations.

INTRODUCTION

Macro-algae are economically important and an under exploited plant resources, providing integral biomass for human foods and animal feed in recent years. Macro-algae-derived compounds have a broad range of biological activities such as antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, cytotoxic, anti-adipogenic, and antimitotic and thus confer potential health benefits [1]. In addition, macro-algae-derived compounds have been shown to increase growth rates and feed efficiency in ruminants [2]. However, they have counter-intuitively also been shown to impair fiber digestibility; thereby limiting diet digestibility [3].

Phaeophyta or brown algae are predominantly greenish brown in color due to the presence of the carotenoid fucoxanthin, and contain primary polysaccharides such as alginates, laminarins, fucans, and cellulose [4]. Ecklonia stolonifera (E. stolonifera) is a brown algae belonging to the Laminariaceae family that is commonly found in the sea forests off the coasts of Korea and Japan, growing on rocks near and below the low-tide mark on rough open coasts [5]. E. stolonifera has traditionally been utilized as an edible product and contains high levels of diverse phlorotannins, which are polymers of phloroglucinol found only in brown algae that have diverse biological activities, including anti-oxidative, antibacterial [5], and anti-inflammatory [6] properties. Moreover, E. stolonifera contains polyphenolic compounds that have been suggested to deter the grazing and growth of the seaweeds predators [7]. However, a few studies reported that algae have potential effect on rumen fermentation characteristics and methane reduction [8,9]. Identification of feed additives that can modify the rumen microbial system to manipulate ruminal fermentation characteristics and increase the efficiency of feed utilization is an effective strategy for inhibiting ruminal methanogenesis for reducing methane emissions without an adverse effect on rumen function.

To this end, we evaluated the potential effect of E. stolonifera on rumen fermentation using in vitro gas production technique. It has previously been applied to study the fermentation kinetics of feed composition. In addition, it can allow for the rapid screening of a large number of feed additives that may have effects on gas production [10].

Therefore, this study was conducted to evaluate effects of E. stolonifera extracts on in vitro ruminal fermentation, gas profile, and changes in microbial populations. These results could help to promote E. stolonifera as a natural alternative for improving ruminal fermentation.

MATERIALS AND METHODS

All experimental protocols were approved by the Animal Care and Use Committee of Gyeongsang National University (GNU-180130-A0007, Jinju, Gyeongsangnam-do, Korea).

Ecklonia stolonifera extract preparation

E. stolonifera extract was obtained from the Jeju Biodiversity Research Institute (JBRI, Jeju, Korea). In brief, the plant material was washed and cut into small pieces, freeze-dried, and crushed. The plant powder was extracted with 80% methanol at room temperature (20[degrees]C) using an ultrasonic cleaner (Branson Ultrasonics Corporation, Danbury, CT, USA). After extraction, the methanol eluate solutions were filtered through Whatman No. 1 filter (Whatman International Ltd, Maidstone, UK) paper and concentrated under a vacuum.

In vitro fermentation design

One cannulated Holstein cow (450 [+ or -] 30 kg) was used as rumen fluid donors and provided with ad libitum access to a mineral-vitamin block and water. Twice daily (09:00 and 17:00), cows were fed 2% of their body weight in timothy hay and commercial concentrate at a 60:40 (w/w) ratio. Rumen fluid was collected before morning feedings and filtered through four layers of cheesecloth. Next, it was diluted with artificial saliva and stored at 39[degrees]C.

The chemical composition (% dry matter [DM] basis) of commercial timothy hay was as follows: moisture content, 8.87%; crude protein, 13.37%; ether extracts, 2.25%; crude fiber, 21.87%; crude ash, 8.62%; neutral detergent fiber, 53.18%; and acid detergent fiber, 30.57%.

The rumen fluid was mixed with McDougall's buffer in a 1:2 ratio. Next, 15 mL of the mixture was dispensed anaerobically into 50-mL serum bottles containing 0.3 g of timothy for CON and E. stolonifera extract for treatments (TRTs) (3 mg for TRT1, 9 mg for TRT2, 15 mg for TRT3). The serum bottles were sealed anaerobically with an aluminum-capped butyl rubber stopper in pure N2 gas, and incubated in a shaking incubator (Jeio Tech, SI-900R, Daejeon, Korea; 120xrpm) at 39[degrees]C for 72 h. The in vitro fermentation experiment was a completely randomized block design and performed in triplicate, using 60 serum bottles (4 treatments x 5 incubation times x 3 replicates times).

Determination of gas profiles and ruminal fermentation characteristics

Total gas production in the samples was measured with head space gas chromatography using a detachable pressure transducer and a digital readout voltmeter (Laurel Electronics, Inc., Costa Mesa, CA, USA). The transducer was connected to the inlet of a disposable Luer-lock three-way stopcock. Gas pressure in the headspace above the culture medium was read from the light emitting diode display unit after inserting a hypodermic syringe needle. Methane and carbon dioxide content was measured using a TCD detector with a Carboxen- 1006 Plot capillary column (30 mmx0.53 mm, Supelco, Bellefonte, PA, USA), after connecting another stopcock outlet to a gas chromatograph (HP 5890, Agilent Technologies, Santa Clara, CA, USA).

Next, serum bottles were uncapped, and the culture medium was subsampled for pH (MP230, Mettler-Toledo, Columbus, OH, USA), ammonia-N and volatile fatty acid (VFA) analyses. Ammonia-N concentration was measured as optical density (OD) values at 630 nm using a UV/VIS spectrophotometer (Model 680, Bio-Rad laboratories, Hercules, CA, USA). For VFA measurements, sub-samples were centrifuged at 3,000x rpm for 3 min. The resultant supernatant was filtered using a 0.2 [micro]m disposable syringe filter (Whatman Inc., Clifton, NJ, USA) high performance liquid chromatography (Agilent-1200, Waldbronn, Germany) using a UV/VIS detector with a MetaCarb 87H column (300 mmx7.8 mm, Varian, Palo Alto, CA, USA).

In vitro DM disappearance rate was determined following a modified Orskov's method, using nylon-bag digestion. After incubation, the nylon bag containing serum bottles was washed twice in a water-bath equipped with a Heidolph Rotamax 120 (Heidolph Instruments, Nuremberg, Germany) at 100xrpm for 30 min and then oven dried at 60[degrees]C to a constant weight. The DM disappearance was the difference in serum-bottle weight before and after incubation.

Microbial growth rate

At the end of each fermentation period, samples were centrifuged at 3,000xrpm for 3 min to remove feed particles. The supernatant was then re-centrifuged at 14,000xrpm for 3 min to obtain a final supernatant for protein and glucose analysis. Some of the supernatant was dyed with Coomassie Blue G-250 for spectrophotometrically measuring protein content as OD at 595 nm (Model 680, Bio-Rad Laboratories, USA) [11]. For measuring glucose, 200 [micro]L of supernatant was mixed with 600 [micro]L of DNS solution and incubated for 5 min in a boiling water bath. Glucose concentration was the OD at 595 nm, determined with a microplate reader (Model 680, Bio-Rad Laboratories, USA) [12]. Pellets from the centrifugation were washed with sodium phosphate buffer (pH 6.5) four more times and then subjected to OD measurements at 550 nm (Model 680, Bio-Rad Laboratories, USA) to evaluate microorganism growth rates.

Quantitative polymerase chain reaction

DNA was extracted from the incubated rumen samples using a QIAamp mini kit (QIAGEN, Valencia, CA, USA) according to the modified bead-beating protocol. Total nucleic acids were extracted by a high speed reciprocal shaker (TissueLyser; QIAGEN, USA), which retains the samples in screw-capped tubes containing ceramic and silica beads. In brief, 1 mL aliquots were taken from 15 mL of the incubated culture solution and centrifuged at 3,000 rpm for 5 min; 1 [micro]L of the supernatant was used for nucleic acid concentration determination using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

The polymerase chain reaction (PCR) primer sets were selected for amplification of general bacteria [13], ciliate-associated methanogens [14], methanogenic archaea [15], Fibrobacter succinogenes (F succinogenes) [16], Ruminococcus albus (R. albus) [16], and Ruminococcus flavefaciens (R. flavefaciens) [16] as reported previously (Table 1).

Quantitative real-time PCR assays (CFX96 Real-Time system; Bio-Rad, USA) were conducted using the SYBR Green Supermix (QPK-201, Toyobo Co., Ltd., Tokyo, Japan) according to the methods described by Denman and McSweeney [13] and Denman et al [17]. The relative abundance of microbes was expressed according to the cycle threshold (Ct) difference as: [2.sub.-[DELTA]Ct (target) - [DELTA]Ct (control)]. All quantitative PCR mixtures consisted of a 20 [micro]L volume, containing forward and reverse primers, DNA template, and DNA dye SYBR Green Supermix. The PCR amplification conditions for the target DNA, including the primer annealing and extension temperatures, were the same as those reported in the corresponding reference for each primer (Table 1).

Statistical analysis

All experimental data were analyzed using the general linear model procedure of SAS [18] as a completely randomized block design. The effects of supplementation of E. stolonifera extract on pH, total gas production, DM disappearance, gas profiles, VFA profiles, and methanogen diversity were compared to those of the CON group, and the data were subjected to polynomial regression to measure the linear and quadratic effects of increasing concentrations of E. stolonifera. Variability in the data is expressed as the standard error of the mean; p<0.05 was considered to be statistically significant, whereas p<0.10 was considered to indicate a tendency.

RESULTS

In vitro fermentation characteristics

E. stolonifera extract demonstrated improved cumulative gas production by mixed ruminal microorganisms as compared to that of the CON group (Table 2). However, there was no effect of E. stolonifera at different concentrations on pH and DM disappearance as compared with those of the CON group, except for an effect on DM disappearance at 24 h detected in the quadratic model.

As shown in Table 3, supplementation of E. stolonifera extract reduced the total levels of VFAs at 3 h and 48 h, acetate at 48 h, and butyrate at 3 h. Overall, supplementation of E. stolonifera extract decreased the acetic acid-to propionic acid ratio (A/P ratio) at 48 h as compared with that of the CON group.

Lastly, supplementation of E. stolonifera extract increased the methane emissions at 3 h and 12 h (linear models only); hydrogen production at 3 h, 12 h, and 72 h; and ammonia production at 72 h. By contrast, ammonia production was reduced at 24 h, respectively, as compared to those of the CON group (Table 4).

Change in ruminal microbial diversity

E. stolonifera extract increased the microbial growth rate at 48 h and the glucose concentration at 3 h, while reducing the protein concentration at 12 h and at 24 h as compared with those of the CON group (Table 5).

The ciliate-associated methanogen and methanogenic archaea populations were reduced at 12 h (p<0.0001) and 24 h (p = 0.0164) following supplementation with various concentrations of E. stolonifera extract as compared with those of the CON group. In addition, E. stolonifera extract reduced the abundance of the major fibrolytic microorganisms such as F. succinogenes at 12 h (p = 0.0113) and 24 h (p = 0.0145). The proportion of R. flavefaciens increased at 12 h of incubation with E. stolonifera extract (p = 0.0001), whereas the R. albus population remained unchanged or slightly increased as compared with that of the CON group (Figure 1).

DISCUSSION

Denis et al [19] reported that algae contain candidate compounds with potential to assist in ruminants feeding for improved gas production and fermentation management, within the context of dietary fiber provision. In this study, dietary fiber, as determined through the dose response of E. stolonifera, induced an increase in total gas production without any accompanying change in DM loss. DM disappearance only showed an effect with the addition of 1%, 3%, and 5% E. stolonifera extract at 24 h incubation, whereas the total gas production under all levels of E. stolonifera extract was higher as compared to that under incubation with Timothy hay alone at 24, 48, and 72 h, indicating the potential of this extract for improved feed efficiency [20]. The pH also remained consistent in the range of 6.49 to 7.48 for all doses of E. stolonifera applied during microbial fermentation, suggesting that ruminal microbial activity was not negatively affected since it was greater than the minimal pH of 5.0 to 5.5 [21].

By contrast, Wang et al [3] and Dubois et al [20] reported that brown algae species resulted in lower gas production than that of the control sample during in vitro ruminal fermentation. Therefore, some bioactive compounds of certain brown algae species might reduce the utilization of nutrients, thereby directly inhibiting microbial activity or indirectly by forming complexes with the nutrients [22]. Interestingly, the E. stolonifera extract caused a decrease in the total VFA and acetate concentrations, and resulted in a lower A/P ratio than those of the CON group at 48 h incubation, demonstrating that fermentation was affected. Secondary metabolites from E. stolonifera extracts have been reported to contain phlorotannins and polyphenolic compounds, which have strong antimicrobial properties and can deter the growth of the seaweed's predators [7]. Thus, it is possible that these secondary metabolites may have induced a reduction in the total VFA concentration and altered the acetate and propionate concentrations, which are common characteristics often associated with anti-nutritional factors that interfere with ruminal fermentation [23].

With regards to emission gases, E. stolonifera extracts appeared to increase the in vitro methane emissions, and hydrogen and ammonia production, while carbon dioxide production did not increase under in vitro ruminal fermentation. As such, these results do not demonstrate a clear consensus trend, given that a mixed outcome was observed under different conditions. Rumen ammonia production may vary depending on the proportion of feed protein and the degradation rate; therefore, it was difficult to observe any difference in ammonia production except at 24 h and 72 h of fermentation, since timothy hay was the only substrate utilized. Wang et al [3] and Machado et al [23] reported a reduction of methane emissions when experimenting with brown algae extracts under in vitro fermentation conditions. Brown algae species generally show the ability to reduce methane emissions, which is most likely attributed to their phlorotannins and a range of other natural products [22,24]. However, the results from our study are in disagree with those of Wang et al [3] and Machado et al [23] as the E. stolonifera extracts appeared to actually increase methane emissions and hydrogen production at 3 h. This finding is in line with the results of Mitsumori and Sun [25], who suggested that ruminal methanogens utilizing mainly hydrogen would be the main source of an increase in methane emissions.

The effects of E. stolonifera on microbial diversity also initially appeared to be counter intuitive with the observed increase in methane and hydrogen production. E. stolonifera extracts reduced the populations of the ciliate-associated methanogens, methanogenic archaea, and F. succinogenes, while increasing the R. flavefaciens population as compared with those of the CON group. However, the R. albus population was left unchanged. Ciliate-associated methanogens may generate up to 37% of the methane produced in the rumen [26], and most methanogenic archaea can reduce C[O.sub.2] with [H.sub.2] to produce methane [27]. However, F. succinogenes is a non-[H.sub.2]-producing species [28]. Therefore, given the major reduction in the ciliate-associated methanogens and methanogenic archaea populations, a consequent reduction in methane production would be expected; however, this was not the case. R. albus and R. flavefaciens are two of the three major members of the fibrolytic microorganism population, the third being F. succinogenes. R. albus has shown great promise in the production of [H.sub.2] from energy forage, with potential for utilizing cellulosic and hemicellulosic biomass [29]. In addition, R. flavefaciens normally produces succinic acid as a major fermentation product together with acetic and formic acids, [H.sub.2], and C[O.sub.2] [30]. As such, the increase in the R. flavefaciens population along with the unchanged R. albus population may have contributed to the observed increase in hydrogen production. Therefore, even with reductions in the ciliate-associated methanogens and methanogenic archaea populations, the increase in hydrogen availability may have allowed for increased methane emissions. Chaucheyras-Durand et al [28] showed that methane emissions clearly reduced when the dominant fibrolytic species was a non-[H.sub.2]-producing species such as F. succinogenes, without significantly impairing fiber degradation and fermentation in the rumen. This suggests that [H.sub.2] is the critical factor for the microbial ecosystem in ruminants. The [H.sub.2] produced during enteric fermentation is the precursor of methane emissions from ruminants, and thus the regulation of [H.sub.2], rather than methane appears to be the key to controlling ruminant methane emissions.

Lastly, the E. stolonifera extract doses that led to higher microbial growth rates also caused higher total gas production as compared to the CON group; therefore, the rumen microorganism growth rate appears to be closely related to the total gas production and fermentation process, as suggested by Hungate [31]. In particular, the E. stolonifera extracts significantly increased microbial growth at 48 h as compared to that of the CON group. Moreover, our results confirmed that rumen fermentation with E. stolonifera extracts did not result in any negative side effects on protein or glucose concentrations throughout the experimental period. In fact, E. stolonifera extracts appeared to reduce the protein concentration at 12 h and 24 h. However, the protein concentration does not appear to be correlated with ammonia concentration, as Mehrez et al [32] reported that the optimal ammonia concentration could lead to maximal protein synthesis by microorganisms.

In conclusion, we demonstrated the effects of E. stolonifera on in vitro ruminant fermentation characteristics. E. stolonifera extracts also appear to be capable of mitigating a series of effects throughout the period of in vitro rumen fermentation, some of which may not be desirable. For example, E. stolonifera extracts could increase methane emissions and hydrogen production, which disagrees with previous observations on brown algae extracts under in vitro fermentation conditions. However, the changes in ruminal microbial diversity were able to partially explain the observed increase in methane and hydrogen observed with treatment of E. stolonifera extracts. More research is required to elucidate the potential of E. stolonifera for improving growth performance and methane emissions of ruminants.

CONFLICT OF INTEREST

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

https://doi.org/10.5713/ajas.19.0092

Submitted Feb 1, 2019; Revised Apr 8, 2019;

Accepted May 16, 2019

ACKNOWLEDGMENTS

This work was supported by the National Foundation of Korea Grant funded by the Korean Government (NRF-2015R1A 6A1A03031413). Jin Suk Jeong was supported by Postdoctoral Fellowship from the BK21Plus Program, the Ministry of Education, Science and Technology, Republic of Korea. This work was presented as a part of a doctoral dissertation by Nyeon Hak Shin.

REFERENCES

[1.] Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPa and PPARy. Fitoterapia 2014;92: 260-9. https://doi.org/10.1016/j.fitote.2013.12.003

[2.] Chowdhury S, Huque K, Khatun M. Algae in animal production. Agracultural Science of Biodiversity and Sustainability Workshop, Tune Landboskole, Denmark; 1995. pp. 181-91.

[3.] Wang Y, Xu Z, Bach SJ, McAllister TA. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Technol 2008;145:375-95. https://doi.org/10.1016/j.anifeedsci.2007.03.013

[4.] Haugan JA, Liaaenjensen S. Algal Carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 1994;22: 31-41. https://doi.org/10.1016/0305-1978(94)90112-0

[5.] Kuda T, Kunii T, Goto H, Suzuki T, Yano T. Varieties of anti-oxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 2007;103:900-5. https:// doi.org/10.1016/j.foodchem.2006.09.042

[6.] Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2010;2:1-9. https://doi.org/10.1016/j.jff.2010.01.003

[7.] Winter FC, Estes JA. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson. J Exp Mar Biol Ecol 1992;155:263-77. https://doi.org/10.1016/0022-0981(92)90067-K

[8.] Lee SJ, Shin NH, Jeong JS, Kim ET, Lee SK, Lee SS. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. AsianAustralas J Anim Sci 2018;31:54-62. https://doi.org/10.5713/ajas.17.0620

[9.] Lee SJ, Shin NH, Jeong JS, et al. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations. Asian-Australas J Anim Sci 2018;31:71-9. https://doi.org/10.5713/ajas.17.0619

[10.] Pellikaan WF, Hendriks WH, Uwimana G, Bongers LJGM, Becker PM, Cone JW. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim Feed Sci Technol 2011;168:196-205. https://doi.org/10.1016/j.anifeedsci.2011.04.096

[11.] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https:// doi.org/10.1016/0003-2697(76)90527-3

[12.] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959;31:426-8. https:// doi.org/10.1021/ac60147a030

[13.] Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006; 58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x

[14.] Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002;148: 3521-30. https://doi.org/10.1099/00221287-148-11-3521

[15.] Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 2001;200:67-72. https://doi.org/10.1111/j.1574-6968.2001. tb10694.x

[16.] Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 2001;204:361-6. https://doi. org/10.1111/j.1574-6968.2001.tb10911.x

[17.] Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313-22. https:// doi.org/10.1111/j.1574-6941.2007.00394.x

[18.] SAS Institute Inc. SAS/STAT user's guide: Version 9.2 edn. Cary, NC, USA: SAS Institute Inc.; 2002.

[19.] Denis C, Morancais M, Li M, et al. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 2010;119:913-7. https:// doi.org/10.1016/j.foodchem.2009.07.047

[20.] Dubois B, Tomkins NW, Kinley RD, et al. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34-43. https:// doi.org/10.4236/ajps.2013.412A2005

[21.] Hoover WH. Chemical factors involved in ruminal fiber digestion. J Dairy Sci 1986;69:2755-66. https://doi.org/10.3168/jds.S0022-0302(86)80724-X

[22.] Min BR, Barry TN, Attwood GT, Mc-Nabb WC. The Effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 2003;106:3-19. https://doi.org/10.1016/S0377-8401 (03)00041-5

[23.] Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One 2014;9:e85289. https:// doi.org/10.1371/journal.pone.0085289

[24.] Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 2011;22:315-26. https://doi.org/10.1016/j-.tifs.2011.03.011

[25.] Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci 2008;21:144-54. https://doi.org/10.5713/ajas.2008.r01

[26.] Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994; 117:157-61.

[27.] Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6:579-91. https:// doi.org/10.1038/nrmicro1931

[28.] Chaucheyras-Durand F, Masseglia S, Fonty G, Forano E. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnoto-biotically reared lambs. Appl Environ Microbiol 2010;76: 7931-7. https://doi.org/10.1128/AEM.01784-10

[29.] Ntaikou I, Gavala HN, Kornaros M, Lyberatos G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 2008;33:1153-63. https://doi.org/10.1016/j.ijhydene.2007.10.053

[30.] Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methano-bacterium ruminantium. Appl Environ Microbiol 1977;34: 297-301.

[31.] Hungate RE. The rumen and it's microbes. NY, USA: Academic Press; 1966. pp. 92-446.

[32.] Mehrez AZ, 0rskov ER, Mcdonald I. Rates of rumen fermentation in relation to ammonia concentration. Br J Nutr 1977; 38:437-43. https://doi.org/10.1079/BJN19770108

Shin Ja Lee (1), (a), Jin Suk Jeong (2), (a), Nyeon Hak Shin (3), Su Kyoung Lee (4), Hyun Sang Kim (5), Jun Sik Eom (5), and Sung Sill Lee (1,2) *

* Corresponding Author: Sung Sill Lee Tel: +82-55-772-1883, Fax: +82-55-772-1889, E-mail: lss@gnu.ac.kr

(1) Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea

(2) Division of Applied Life Science (BK21Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea

(3) Livestock Experiment Station, Gyeongsangnamdo Livestock Promotion Research Institute, Sancheong 52733, Korea

(4) Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea

(5) Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea

(a) These authors contributed equally to the work.

ORCID

Shin Ja Lee

https://orcid.org/0000-0002-4224-1211

Jin Suk Jeong

https://orcid.org/0000-0001-6877-3067

Nyeon Hak Shin

https://orcid.org/0000-0002-9069-0601

Su Kyoung Lee

https://orcid.org/0000-0002-0997-2899

Hyun Sang Kim

https://orcid.org/0000-0002-3422-1990

Jun Sik Eom

https://orcid.org/0000-0001-5360-0147

Sung Sill Lee

https://orcid.org/0000-0002-4621-4333

Caption: Figure 1. Relative quantification of rumen microorganism populations under in vitro ruminal fermentation for (a) 12 h and (b) 24 h. Dietary treatments were as follows: CON, basal diet (without Ecklonia stolonifera extract); TRT 1, 1% Ecklonia stolonifera; TRT 2, 3% Ecklonia stolonifera; TRT 3, 5% Ecklonia stolonifera, on a substrate (timothy hay) basis. (a,b) Means with different superscripts in the same row indicate significant differences (p<0.05).
Table 1. Polymerase chain reaction primer sets for real-time
polymerase chain reaction assays

Target species       Primer sequences (5' to 3')          Reference

General bacteria     F: CGG CAA CGA GCG CAA CCC             [13]
                     R: CCA TTG TAG CAC GTG TGT AGC C
Ciliate-associated   F: AGG AATTGG CGG GGG AGC AC           [14]
  methanogens        R: TGT GTG CAA GGA GCA GGG AC
Methanogenic         F: GGT GGT GTM GGA TTC ACA CAR         [15]
                       TAY GCW ACA GC
  archaea            R: TTC ATT GCR TAG TTW GGR TAG TT
Fibrobacter          F: GGT ATG GGA TGA GCT TGC             [16]
  succinogenes       R: GCC TGC CCC TGA ACT ATC
Ruminococcus         F: CCC TAA AAG CAG TCT TAG TTC G       [16]
  albus              R: CCT CCT TGC GGT TAG AAC A
Ruminococcus         F: TCT GGA AAC GGA TGG TA              [16]
  flavefaciens       F: TCT GGA AAC GGA TGG TA

Table 2. Effect of Ecklonia stolonifera extracts on rumen
fermentation characteristics

Incubation time        Treatments (1)
(h)

                     CON         TRT1
pH
  3                 7.48         7.43
  12                7.32         7.25
  24                6.89         6.90
  48                6.63         6.67
  72                6.55         6.49
Gas production
(mL/g DM)
  3                175.01       187.58
  12               191.38       204.53
  24              248.99(b)   252.53(ab)
  48              282.89(b)   288.1 1(b)
  72              288.85(b)   306.54(a)
DM
disappearance
(%)
  3                 17.48       17.94
  12                17.83       19.03
  24              31.72(ab)    29.14(b)
  48                37.71       38.87
  72                41.34       41.99

Incubation time       Treatments (1)       SEM
(h)

                    TRT2        TRT3
pH
  3                 7.48        7.46      0.04
  12                7.33        7.28      0.03
  24                6.91        6.87      0.02
  48                6.64        6.59      0.03
  72                6.50        6.50      0.03
Gas production
(mL/g DM)
  3                176.12      176.65     6.96
  12               188.48      205.64     11.79
  24              250.31(b)   259.23(a)   2.31
  48              289.38(b)   300.10(a)   3.04
  72              314.04(a)   311.88(a)   3.21
DM
disappearance
(%)
  3                 16.94       16.44     0.59
  12                20.07       20.34     1.96
  24              29.99(ab)   32.52(a)    0.97
  48                38.13       39.28     0.62
  72                41.55       41.62     0.37

Incubation time       Contrast
(h)

                  Linear    Quadratic
pH
  3               0.9938     0.6867
  12              0.8845     0.8023
  24              0.7286     0.2639
  48              0.3154     0.2283
  72              0.3132     0.3039
Gas production
(mL/g DM)
  3               0.8386     0.4122
  12              0.6261     0.8691
  24              0.0245     0.2764
  48              0.0046     0.3933
  72              0.0007     0.0148
DM
disappearance
(%)
  3               0.1595     0.4458
  12              0.3557     0.8163
  24              0.4734     0.0299
  48              0.1911     0.9992
  72              0.8107     0.4616

SEM, standard error of the mean; DM, dry matter

(1) Dietary treatments were as follows: CON, basal diet (without
Ecklonia stolonifera extract); TRT 1, 1% Ecklonia stolonifera;
TRT 2, 3% Ecklonia stolonifera; TRT 3, 5% Ecklonia
stolonifera on a substrate (timothy hay) basis.

(a,b) Means with different superscripts in the same row indicate
significant differences (p< 0.05).

Table 3. Effect of Ecklonia stolonifera extracts on VFA by mixed
rumen microbial fermentation

                      Treatments (1)

Incubation time      CON        TRT 1
(h)

Total VFA
concentration
(mM/g)
  3               72.00(ab)   81.08(a)
  12                79.12       88.59
  24               101.92       96.37
  48              118.93(a)   102.76(b)
  72               189.75      178.98
Acetic acid
concentration
(mM/g)
  3                 51.63       59.29
  12                57.94       64.03
  24                73.81       68.96
  48              85.77(a)    71.11(b)
  72               153.63      142.62
Propionic
acid
concentration
(mM/g)
  3                 11.27       13.92
  12                11.72       15.55
  24                18.55       18.34
  48                22.13       21.98
  72                24.72       25.07
Butyric acid
concentration
(mM/g)
  3                4.55(a)     3.94(b)
  12                4.73        4.50
  24                4.78        4.54
  48                5.51        4.84
  72                5.70        5.64
A/P ratio
  3                 5.39        4.27
  12                5.63        4.12
  24                3.98        3.75
  48               3.89(a)    3.24(ab)
  72                6.24        5.74

                    Treatments (1)         SEM

Incubation time   TRT 2       TRT 3
(h)
Total VFA
concentration
(mM/g)
  3               67.62(b)   65.35(b)    2.85
  12               79.13       79.05     4.04
  24               88.34       88.23     10.06
  48              95.56(b)   100.16(b)   4.44
  72               191.12     202.28     22.52
Acetic acid
concentration
(mM/g)
  3                49.26       47.29     2.77
  12               56.69       55.60     3.06
  24               61.40       59.25     9.49
  48              61.79(b)   67.27(b)    3.54
  72               153.83     165.37     22.82
Propionic
acid
concentration
(mM/g)
  3                11.22       10.80     2.08
  12               13.06       13.88     1.74
  24               16.41       19.28     0.95
  48               21.86       21.81     1.36
  72               24.57       25.03     0.60
Butyric acid
concentration
(mM/g)
  3               3.57(b)     3.63(b)    1.36
  12                4.69       4.79      0.76
  24                5.27       4.85      0.51
  48                5.96       5.54      0.20
  72                6.36       5.94      0.99
A/P ratio
  3                 4.98       4.94      0.73
  12                4.50       4.01      0.69
  24                3.81       3.07      0.57
  48              2.86(b)     3.09(b)    0.60
  72                6.26       6.62      0.96

                      Contrast

Incubation time   Linear   Quadratic
(h)

Total VFA
concentration
(mM/g)
  3               0.0305    0.0814
  12              0.6079    0.2714
  24              0.3069    0.7936
  48              0.0127    0.0477
  72              0.6347    0.6393
Acetic acid
concentration
(mM/g)
  3               0.1000    0.1204
  12              0.3241    0.2740
  24              0.2619    0.8903
  48              0.0035    0.0218
  72              0.6613    0.6344
Propionic
acid
concentration
(mM/g)
  3               0.6705    0.4808
  12              0.6222    0.4129
  24              0.9536    0.1441
  48              0.8631    0.9670
  72              0.8713    0.9336
Butyric acid
concentration
(mM/g)
  3               0.0016    0.0555
  12              0.8562    0.7160
  24              0.8139    0.9251
  48              0.7575    0.8815
  72              0.6516    0.7975
A/P ratio
  3               0.9177    0.6993
  12              0.2236    0.5216
  24              0.2803    0.6290
  48              0.0150    0.0607
  72              0.7152    0.6738

VFA, volatile fatty acids; SEM, standard error of the mean; A/P
ratio, acetate to propionate acid ratio.

(1) Dietary treatments were as follows: CON, basal diet (without
Ecklonia stolonifera extract); TRT 1, 1% Ecklonia stolonifera;
TRT 2, 3% Ecklonia stolonifera; TRT 3, 5% Ecklonia
stolonifera on a substrate (timothy hay) basis.

(a,b) Means with different superscripts in the same row indicate
significant differences (p< 0.05).

Table 4. Effect of Ecklonia stolonifera extracts on in vitro gas
and ammonia production by mixed rumen fermentation

                    Treatments (1)

Incubation         CON       TRT 1
time (h)

Methane
emission
(mL/g DM)
  3              8.79(bc)    6.63(c)
  12               10.7      13.77
  24              22.21      15.34
  48              27.28      24.67
  72              31.92      32.45
Carbon dioxide
production
(mL/g DM)
  3                7.28      13.08
  12              14.45      28.96
  24              18.00      34.76
  48              30.62      42.25
  72              52.47      43.25
Hydrogen
production
(mL/g DM)
  3              1.40(b)    0.94(b)
  12               3.25       3.66
  24               4.26       4.23
  48               5.30       4.35
  72             8.78(b)    8.32(b)
Ammonia
production
(mg/dL)
  3                2.60       2.51
  12               3.44       3.40
  24             5.53(a)    4.91(ab)
  48               9.38       9.78
  72             13.40(b)   13.04(b)

                   Treatments (1)         SEM

Incubation        TRT 2       TRT 3
time (h)

Methane
emission
(mL/g DM)
  3              12.88(a)   11.71(ab)   1.11
  12              15.06       17.34     2.02
  24              27.10       20.13     4.95
  48              26.13       22.57     2.15
  72              26.20       30.28     7.06
Carbon dioxide
production
(mL/g DM)
  3                6.05       6.10      2.56
  12              20.74       13.50     6.08
  24              34.53       15.74     9.87
  48              38.56       31.33     12.30
  72              44.93       31.40     6.58
Hydrogen
production
(mL/g DM)
  3              3.04(a)     2.56(a)    0.32
  12               4.22       4.24      0.30
  24               5.56       4.80      0.95
  48               7.67       6.44      2.05
  72             9.48(b)    24.12(a)    3.83
Ammonia
production
(mg/dL)
  3                2.47       3.51      0.73
  12               3.24       5.11      0.69
  24             3.51(b)     5.62(a)    0.57
  48               9.38       9.40      0.60
  72             13.82(b)   16.98(a)    0.96

                     Contrast

Incubation       Linear   Quadratic
time (h)

Methane
emission
(mL/g DM)
  3              0.0168    0.6698
  12             0.0465    0.8510
  24             0.8090    0.9923
  48             0.2247    0.8331
  72             0.7329    0.8072
Carbon dioxide
production
(mL/g DM)
  3              0.3839    0.2945
  12             0.6948    0.1116
  24             0.8780    0.1096
  48             0.9781    0.4651
  72             0.0698    0.7521
Hydrogen
production
(mL/g DM)
  3              0.0047    0.9803
  12             0.0283    0.5330
  24             0.5072    0.7113
  48             0.4833    0.9470
  72             0.0248    0.0838
Ammonia
production
(mg/dL)
  3              0.4365    0.4623
  12             0.1563    0.2049
  24             0.6709    0.0447
  48             0.9044    0.7609
  72             0.0284    0.1061

SEM, standard error of the mean; DM, dry matter

(1) Dietary treatments were as follows: CON, basal diet (without
Ecklonia stolonifera extract); TRT 1, 1% Ecklonia stolonifera;
TRT 2, 3% Ecklonia stolonifera; TRT 3, 5% Ecklonia stolonifera
on a substrate (timothy hay) basis.

(a-c) Means with different superscripts in the same row indicate
significant differences (p <0.05).

Table 5. Effect of Ecklonia stolonifera extracts on rumen microbial
growth rate, protein and glucose concentration

                    Treatments (1)
Incubation
(h)                CON       TRT 1

Microbial
growth rate
(OD at 550 nm)
3                  0.33       0.33
12                 0.35       0.31
24                 0.28       0.32
48               0.32(b)    0.38(ab)
72                 0.27       0.29
Protein
concentration
(mM/g)
3                  0.14       0.16
12               0.19(a)    0.16(b)
24               0.24(a)    0.19(b)
48                 0.27       0.20
72                 0.28       0.23
Glucose
concentration
(mL/mg)
3                0.10(ab)   0.10(b)
12                 0.11       0.10
24                 0.14       0.12
48                 0.17       0.15
72                 0.34       0.19

                   Treatments (1)       SEM
Incubation
(h)               TRT 2      TRT 3

Microbial
growth rate
(OD at 550 nm)
3                  0.34      0.25     0.03
12                 0.36      0.30     0.02
24                 0.28      0.28     0.03
48               0.37(ab)   0.43(a)   0.03
72                 0.33      0.24     0.03
Protein
concentration
(mM/g)
3                  0.15      0.15     0.01
12               0.15(b)    0.16(b)   0.01
24               0.18(b)    0.19(b)   0.01
48                 0.18      0.21     0.03
72                 0.23      0.23     0.04
Glucose
concentration
(mL/mg)
3                0.11(ab)   0.12(a)   0.01
12                 0.12      0.13     0.01
24                 0.16      0.15     0.03
48                 0.16      0.16     0.03
72                 0.31      0.27     0.13

                     Contrast
Incubation
(h)              Linear   Quadratic

Microbial
growth rate
(OD at 550 nm)
3                0.1142    0.1683
12               0.4335    0.5646
24               0.8478    0.5006
48               0.0295    1.0000
72               0.7287    0.0977
Protein
concentration
(mM/g)
3                0.5664    0.5868
12               0.0323    0.0490
24               0.0017    0.0089
48               0.2304    0.1758
72               0.4818    0.6027
Glucose
concentration
(mL/mg)
3                0.0418    0.0868
12               0.1268    0.3292
24               0.5625    0.8210
48               0.9801    0.7620
72               0.8968    0.6775

SEM, standard error of the mean; OD, optical density.

(1) Dietary treatments were as follows: CON, basal diet
(without Ecklonia stolonifera extract); TRT 1, 1% Ecklonia
stolonifera; TRT 2, 3% Ecklonia stolonifera; TRT 3, 5% Ecklonia
stolonifera on a substrate (timothy hay) basis.

(a,b) Means with different superscripts in the same row indicate
significant differences (p < 0.05).
COPYRIGHT 2019 Asian - Australasian Association of Animal Production Societies
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Lee, Shin Ja; Jeong, Jin Suk; Shin, Nyeon Hak; Lee, Su Kyoung; Kim, Hyun Sang; Eom, Jun Sik; Lee, Su
Publication:Asian - Australasian Journal of Animal Sciences
Geographic Code:9SOUT
Date:Dec 1, 2019
Words:6588
Previous Article:Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with...
Next Article:Lactic acid bacterial inoculant effects on the vitamin content of alfalfa and Chinese leymus silage.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters