Printer Friendly

Identification of Two Types of Metallogenic Fluids in the Ultra-Large Huize Pb-Zn Deposit, SW China.

1. Introduction

The Pb-Zn deposits in the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic belt (Figure 1) are mainly carbonate-type deposits. Hence, carbonate-hosted Pb-Zn deposits are among the most important types of Pb-Zn deposits in the mining industry. Deposits of this type are widely distributed throughout the world and are concentrated in regions such as North America, Europe, and Southeast Asia. Carbonate-hosted Pb-Zn deposits are also the world's most important source of lead and zinc, as they single-handedly account for 25% of the world's reserves. These deposits tend to be large in scale, consistent in terms of ore quality, and straightforward to extract and smelt. The germanium-, lead-, and zinc-rich regions of Northeast Yunnan, which lie on the southwestern margin of the Yangtze Plate, are an important component of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic belt, which contains 221 Pb-Zn polymetallic deposits and mineralization points. In particular, the Huize Pb-Zn deposit, which is located on either side of the N-S trending Qujing-Zhaotong concealed fracture zone at the NE end of the Jinniuchang-Kuangshanchang tectonic belt, is one of the richest ultra-large Ge-Pb-Zn enriched deposits in the world [1]. The Huize deposit has a unique metallogenic system that is characterized by large reserves of lead and zinc (over 8Mt) and high average ore grades (Pb + Zn: 25%-35%, with some exceeding 60%) and is representative of the metallogenic zones in Sichuan, Yunnan, and Guizhou.

This particular deposit has been exhaustively studied by a number of scholars, and a series of important findings have been made in studies on the geological background of the mining areas in Northeast Yunnan [2-4], the geochemistry of the deposit [5-14], the tectonic setting of the ore fields [15-17], and the formation of the deposit [2-8, 15, 16, 18-22], thus providing a wide range of resources for this study to access and build upon. While consensus has been reached on topics such as the tectonic setting of the lead and zinc deposits in the region [11, 23-27] (boundaries of a stable platform), distribution characteristics of the deposits [23, 25, 27-29] (simultaneously controlled by lithological characteristics and tectonic structure), ore host rocks [23, 25, 28] (mainly medium-to-coarse-grained, thick-bedded dolomites), and connection between metallogenesis and large-scale fluid migration [8, 30-32], significant controversies remain regarding the origin and evolution of the metallogenic fluids, which are of great importance for deposit formation models. Liu and Lin [21] believe that the metallogenic fluids are mainly derived from water that cycles through subsurface layers, and the sulfur in the deposits comes from the reduction of marine sulfates, mainly by thermochemical sulfate reduction (TSR) [10]. In contrast, Han et al. [12, 27] believe that the sulfur in the metallogenic fluids mainly originates from carbonate strata, while the fluid itself is derived from mineral-rich metamorphic waters and deep-seated thermal fluids. Analysis of several stable isotopes also revealed that the metallogenic fluids may have different origins [8, 33]. Therefore, the origins of the metallogenic fluids in the Huize deposit remain controversial despite the comprehensive studies that have been performed in this region. It is also possible that the metallogenic fluids have undergone unique evolutionary processes.

There are also significant controversies regarding the precipitatory mechanisms of sulfides in the Huize deposit, and the current views on this matter may be categorized into the following three groups. (1) Fluid mixing: based on C-O isotopic analysis, Huang et al. [8, 33-35] believe that the mixing of crust and mantle fluids is the key to metallogenesis; Luo et al. [36] proposed that mixing between fluids is the primary mechanism of precipitation, based on their summation of previous studies on fluid inclusions; Zhang et al. [37-40] believe that the processes of fluid mixing and boiling are the primary causes of sulfide precipitation, based on the results of studies on strontium isotopes and fluid inclusions. (2) Fluid boiling: Han et al. [12, 13, 23] performed a detailed study of the geological characteristics and fluid inclusions and came to the conclusion that fluid boiling is the primary mechanism of mineral enrichment and metallogenesis. (3) pH changes: several authors believe that sulfide precipitation is mainly caused by changes in pH [7, 41, 42]. Based on a review of the literature, we [43] believe that fluid mixing is very likely to be the primary mechanism of precipitation in the Huize Pb-Zn deposit.

Nevertheless, some questions remain. For example, are there two different types of metallogenic fluids in the Huize mining region? What are the origins of these fluids, and what are their defining characteristics? These issues have yet to be studied in a thorough and systematic manner. In this work, we reorganized and reinterpreted the results of previous C, H, and O isotopic studies, supplemented these findings with new isotopic evidence from Kuangshanchang (which is comparatively scarce in the literature), and combined these findings with current geological information and previous studies on fluid inclusions, to discuss the origins of two different metallogenic fluids that are present in the Huize deposit, as well as their evolutionary processes. On this basis, we then hypothesized a rational process of metallogenesis for the Huize Pb-Zn deposit.

2. Regional Geological Setting

The Huize Pb-Zn mining area is located on the southwestern margin of the Yangtze Plate (Figure 1), on the western side of the Yunnan-Guizhou fold and thrust belt, in the Jinniuchang-Kuangshanchang metallogenic belt within the Dongchuan-Zhenxiong tectonic belt, in the southeastern part of the Northeast Yunnan fold-fault system. The mining area is bordered by the Weining-Langdai depressed fold-fault bundle, the major Xiaojiang fracture zone on the eastern margin of the Kangdian Axis, the Niushoushan uplifted fold-fault bundle, and the Liangshan fold-fault bundle to the east, west, south, and north, respectively [44].

The regional stratigraphy is composed of Precambrian basement overlain by a sedimentary cover sequence deposited in the Late Sinian, with an angular unconformable contact between these two units. The metamorphic basement is mainly composed of the Mesoproterozoic Hekou and Huili groups, the Neoproterozoic Yanbian and Yanjing groups, and large Neoproterozoic magmatic complexes, as well as their equivalent strata. The sedimentary cover comprises marine sediments composed of strata ranging in age from Sinian to Permian and terrestrial sediments that consist of Mesozoic and Cenozoic strata.

The Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic region is located within the Huili-Kunming rift [45, 46] and is surrounded by deep and large faults that act as boundaries. This region is bordered by the N-S trending Anninghe-Luzhijiang Fault, Kangding-Yiliang-Shuicheng Fault, and Mile-Shizong-Shuicheng Fault to the west, north, and south, respectively [45]. The tectonic structure of this region comprises 15 faults, which maybe categorized as near-NS-, NE-, and NW-trending faults (Figure 1). In particular, the N-S trending Xiaojiang Fault and Zhaotong-Qujing concealed fault play a significant role in controlling the magmatic activity in the region, as well as the distribution and development of lead, zinc, and silver deposits [8,16].

Magmatic activity in the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic region recurs frequently and persists for long periods of time, and it is known that magma outflows occurred from the Jinning Period until the Yanshan Period. Igneous rocks are distributed widely and inhomogeneously throughout this region. In particular, the Hercynian Emeishan basalts (Figure 1) are widely distributed and immensely thick and constitute the well-known Emeishan volcanic province [8].

3. Geological Characteristics of the Huize Deposit

The Huize deposit is located on both sides of the near-NS-trending Qujing-Zhaotong concealed fault, at the NE end of the Jinniuchang-Kuangshanchang tectonic belt. It comprises the ultra-large Kuangshanchang and Qilinchang Pb-Zn deposits, the Yinchangpo medium-sized Pb-Zn deposit (Guizhou), and the Longtoushan, Xiaoheiqing, and Lanyinchang Pb-Zn mines (Figure 2).

3.1. Stratigraphy. The stratigraphy of the mining region is composed of Early Sinian metamorphic basement and Sinian and Paleozoic sediments. The upper Paleozoic strata are well-developed, while the Qiongzhusi Formation is the only Cambrian outcrop of the lower Paleozoic strata; the Middle and Upper Cambrian, Ordovician, Silurian, and Lower Devonian strata are missing, and outcrops of the Upper Sinian Dengying Formation and Middle-Upper Devonian strata only appear in localized sections. In particular, the Lower Carboniferous Baizuo Formation ([C.sub.1]b) is the main ore-bearing layer.

3.2. Tectonic Structure. The faults within the mining region mainly developed in NE, NW, near-NS, NNW, and near-EW orientations. In particular, the NE-SW-trending reverse shear faults are important ore-controlling tectonic structures. The Kuangshanchang, Qilinchang, and Yinchangpo faults form a tectonic structure comprising three imbricated layers, and as the main faults in this region, they control the Kuangshanchang, Qilinchang, and Yinchangpo deposits (Figure 2), respectively. These faults are connected by the near-NS-trending Dongtou reverse fault [16].

3.3. Characteristics of the Orebodies

3.3.1. Kuangshanchang Deposit. The Kuangshanchang deposit occurs within the area defined by the Kuangshanchang Fault, F5 Fault, and Dongtou Fault (Figure 2), with the orebodies mainly occurring within the medium-to-coarse-grained dolomites of the Lower Carboniferous Baizuo Formation ([C.sub.1]b). Within a ~2000 m long section of land, 260 Pb-Zn orebodies of varying sizes can be found. The orebodies usually occur as sheets, lenticels, sacs, lentils, and irregular veins, and these generally propagate along interlayer fractures. Lateral end-to-end alignment of structures and expansion/contraction are usually observed along the strike and dip of the orebodies. The horizontal lengths of the orebodies range from 26 m to 233 m, with an average of 98.17 m. The horizontal widths range from 2 m to 35 m, with an average of 16.65 m, and the depths along dip exceed 1050 m. The Pb grades range from 4.73% to 44.05%, with an average of 20.60%, while the Zn grades range from 3.29% to 46.52%, with an average of 29.74%. As the depth increases, the distribution of ores changes from oxidized ores to mixed ores and finally to sulfide ores.

3.3.2. Qilinchang Deposit. The Qilinchang deposit is located above the Qilinchang Fault and comprises the Qilinchang and Dashuijing mining sections. Currently, more than 70 Pb-Zn orebodies have been discovered in this deposit (with 20 possessing industrial value). The Pb-Zn reserves exceed 2.46 Mt, with an average (Zn + Pb) ore grade of 25%. All of the ores occur within the coarse-grained dolomites and limestones in the middle and upper sections of the Lower Carboniferous Baizuo Formation ([C.sub.1]b). The boundaries between the orebodies and the host rocks are very distinct, and the orebodies are generally formed along interlayer fractures, with some ores produced in certain locations at low angles with respect to the strata. The orebodies have a strike of 20-30[degrees] NE and a steep dip of 50-76[degrees] SE. They also have a short horizontal length and great depth along dip. In the horizontal plane, the orebodies occur as sheets, stratoids, veins, sacs, flat columns, or stockworks; in the vertical plane, the ores are primarily present as lenticels, with thinning or pinched branches at the top and tail ends.

3.4. Ore and Mineral Characteristics. The Huize Pb-Zn deposit mainly contains sulfide and oxide ores. Currently, most of the ores extracted from the deposit are sulfide ores. The mineral composition of the sulfide ores is relatively simple and mainly comprises sphalerite, galena, and pyrite, with sporadic occurrences of chalcopyrite, matildite, and native antimony. The host rocks are mainly calcite and dolomite, followed by quartz, barite, gypsum, and clay-type materials.

The main ore structures consist of massive, disseminated, banded, veined, stockwork, miarolitic, and brecciated structures (Figure 3). The primary ore textures comprise euhedral-anhedral-grained, metasomatic, edge-shared, void-filling, poikilitic, slaty cleavage, skeletal, exsolution, graphic, crumpled, and cataclastic textures (Figure 4).

Based on the findings of previous studies [16] and this work on the macroscopic characteristics, ore structures, and textures, and mineral assemblage characteristics of the deposit, the metallogenesis of this deposit can be divided into two periods: hydrothermal metallogenesis and supergene oxidation. The hydrothermal metallogenesis stage may be further divided into four metallogenic stages: the pyrite (sphalerite) stage, sphalerite-galena stage, galena-sphalerite stage, and pyrite-carbonate stage (Figures 5 and 6). A study by Wang [47] also demonstrated that the barite veins produced within (or on either side of) the Kuangshanchang and Qilinchang faults are usually cemented with various forms of dolomite (e.g., medium-fine-grained, coarse-grained pinhole). This indicates that barites are formed by fluids that fill voids along fractures, and these are likely to be an early product of metallogenesis.

The alteration of adjacent rocks within the deposits is relatively simple, and the alteration processes (Figure 7) mainly include dolomitization, calcitization, and pyritization, with silification and argillation also occurring over a smaller distribution range. The simultaneous emergence of combinations of these alteration types is an important indicator for locating prospective deposits.

3.5. Mineralogenetic Epoch. The reported timing for the metallogenic epoch of the Huize deposit varies greatly in the literature. Based on the results of Pb isotope-based age modeling, Liu and Lin [21] concluded that metallogenesis occurred during the Hercynian and Yanshan periods. In contrast, Zhang [3] and Chen [18] concluded that the metallogenic epoch occurred during the Sinian to Permian, from analyses based on sedimentary mineralization. Huang et al. [33] obtained ages of 225-226 Ma from isochron dating of Rb-Sr in sphalerite and Sm-Nd in calcite. Han et al. [24] applied geological deductions in combination with the screening of tectonic deformations and chronology constraints from isotope dating and came to the conclusion that the thrust fault and fold orogenesis occurred during the same period as Pb-Zn metallogenesis, thus placing the metallogenic epoch in the Late Indosinian (200-230 Ma).

4. Methods

4.1. Sample Collection. Although a large accumulation of data already exists on the isotope geochemistry of the ultra-large Huize Pb-Zn deposit, most of these studies have focused on the Qilinchang deposit. While some samples have been obtained from the Kuangshanchang deposit, these samples are lacking in representativity. Hence, we chose the 15th stope of tunnel 1752 m in Kuangshanchang as the primary focus (Figure 8) for C-H-O isotopic measurements in this work. We combined our findings with previous studies on fluid inclusions and systematically investigated the origins of the metallogenic fluids, in order to identify the two fluids that are present in the mixed metallogenesis of the Huize deposit. Fifteen dolomite samples and five calcite samples were obtained for C-O isotopic analysis following the selection of monomineralic rocks from the 17 dolomite or limestone samples that were acquired for this study.

Through the collection and organization of data from previous studies, it was found that the H and O isotopes in the Huize deposit were sourced from the H of calcite fluid inclusions and mineralic O. The calculated [delta][sup.18]O of the fluid may not be truly representative of the actual isotopic composition of the original metallogenic fluid because of issues such as the selection of the isotope equilibrium temperature and uncertainties in the equilibrium fractionation of mineral-water oxygen isotopes. Furthermore, calcites are products of the late stages of metallogenesis and lack information on the early stages of metallogenesis. Therefore, calcite samples are incapable of indicating the evolution of metallogenic fluids during different stages of metallogenesis. In this study, the macroscopic characteristics of orebodies were observed in the field, followed by rough division of the metallogenic stages. Microscopic identifications and hand specimen studies were then performed in a laboratory based on paragenetic sequences, textures, structures, and intercalation relationships, from which the ages of the selected monomineralic sphalerite samples were determined. Finally, three samples were selected from each of the stages (I-III) for a total of nine samples, and these samples were used for the measurements of fluid inclusion H and O isotopes in sphalerites. To track the processes of metallogenic fluid evolution in a comprehensive manner, we examined ten stage [I.sub.1] barite samples (Figure 9).

As barite is widely distributed throughout the Pb-Zn deposits in Huize, Maozu, and Jinshachang, we also performed H-O isotopic measurements on the barites in the Huize mining area. In the periphery of the Huize mining area, barites are mainly distributed within the Kuangshanchang Fault and the Zhujiayakou section of tunnel 1571m in the Qilinchang deposit (Figure 9). In the former, barites are distributed within four veins or clots that take on irregular shapes and the shape of sacs and veins, while the barites occur as white nodules, sheets, and slabs that are distributed within calcitic and debritic dolomite cements, with developments of stockwork calcites. In the latter, the barites mainly occur as white nodules, radial growths, and veins within light-flesh-colored coarse-grained dolomites.

4.2. C-O Isotopic Analysis Method. C-O isotope analyses were carried out by ALS Minerals. Pulverized samples of carbonate were placed in borosilicate glass vials sealed with butyl rubber septa and reacted with concentrated phosphoric acid at 72[degrees] C for at least 1h in a heated aluminum block. The evolved C[O.sub.2] gas was then conducted to an LGR Analyzer (Los Gatos Research, model 908-0021), which utilizes off-axis integrated cavity output spectroscopy (OA-ICOS), and the carbon and oxygen isotope ratios were measured and recorded from the absorption spectra of [sup.12]C[sup.16]O[sup.16]O, [sup.13]C[sup.16]O[sup.16]O and [sup.12]C[sup.16]O[sup.18]O in the near-infrared wavelength region.

The instrument was calibrated using standard CaC[O.sub.3] minerals known as the Vienna Pee Dee Belemnite (VPDB) for [delta][sup.13]C and Vienna Standard Mean Ocean Water (VSMOW) for [delta][sup.18]O, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS18 and NBS19. Individual analyses were demonstrated to have an internal precision of better than 0.05% for [delta][sup.13]C and [delta][sup.18]O.

4.3. H-O Isotopic Analysis Method. Data on calcite samples from the late stages of metallogenesis were compiled from previous studies, while data on [I.sub.1] barite samples were obtained from our measurements. The H isotope ratios in both sets of samples were determined through hydrogen gases generated from the zinc reduction of water (the samples were baked at low temperatures (100[degrees]C-120[degrees]C) for 3h to remove all adsorbed water and secondary inclusions), while O isotope analyses were carried out using the Br[F.sub.5] technique. [delta][sup.18][O.sub.H2O] of the calcites were obtained from the conversion of [delta][sup.18][O.sub.calcite], using the formula: 1000 [ln.sub.Calcite]-[H.sub.2]O = 4.01 x [l0.sup.6]/[T.sup.2]- 4.66 x [l0.sup.3]/T + 1.71 [50], where the temperatures T and [T.sup.2] are the homogenization temperature of the calcite fluid inclusions and the average measured temperature of the sulfur isotopes (200[degrees]C), respectively. [delta][sup.18][O.sub.H2O] values of the barites were calculated using 1000 ln [[alpha].sub.Barite]-[H.sub.2]O = 3.01 x [10.sup.6]/T2- 7.30, and the temperature data required for this calculation were taken from the fluid inclusion temperature data of the corresponding samples.

H-O isotope analyses were also carried out by ALS Minerals. For hydrogen isotope analysis (with H in inclusions), the sorted 40 mesh sphalerite samples were baked at low temperatures (100[degrees]C-120[degrees]C) to remove adsorbed water and secondary fluid inclusions in the minerals and loaded into a zero-blank autosampler. The hydrogen isotopic composition was measured using a Thermo Finnigan thermal combustion elemental analyzer (TC/EA) coupled to a Thermo Finnigan Delta Plus XP continuous-flow isotope ratio mass spectrometer (CF-IRMS). Values of [delta][sup.2]H are reported using delta (S) notation in permil units ([per thousand]) relative to VSMOW, with a precision of 3[per thousand].

For oxygen isotope analysis (with O in inclusions), the sorted 40 mesh sphalerite samples were baked at low temperatures (100[degrees]C-120[degrees]C) to remove adsorbed water and secondary fluid inclusions in the minerals and loaded into tin capsules and placed in a Thermo Scientific TC/EA high-temperature conversion elemental analyzer, then heated to 1450[degrees]C, and cracked to release the fluid inclusions in the form of gas. The extracted oxygen reacts with carbon rods in the furnace to produce CO, which is analyzed for [sup.18]O/[sup.16]O using a Thermo Finnigan MAT 253 stable isotope ratio mass spectrometer. Values of [delta][sup.18]O were calculated by normalizing the [sup.18]O/[sup.16]O ratio in the sample to that in the VSMOW international standard. Values are reported using the delta (S) notation in permil units ([per thousand]) and are normally reproducible to 0.2[per thousand].

5. Measurements and Reinterpretation of Existing Results

5.1. C-O Isotopes. It is well known that the measurement of C and O isotope compositions is an effective method for tracing the origins of C[O.sub.2] within metallogenic fluids [50]. We obtained the C-O isotopic compositions of 83 samples through our measurements, as well as from the reorganization of relevant data from the literature (Table 1).

Figure 10 shows that the C-O isotopic compositions of the Huize Pb-Zn deposit have the following characteristics:

(1) The C-O isotopic compositions of the Huize Pb-Zn deposit are relatively homogeneous. The [delta][sup.13][C.sub.PDB]-[delta][sup.18][O.sub.SMOW] maps (Figure 10(a)) show that the isotopic compositions cluster within a narrow range between magmatic carbonates and marine carbonates, with the compositions edging closer to those of marine carbonates. The isotopic compositions, as a whole, display the following order of isotopic values: [delta][sup.13][C.sub.calcite] < [delta][sup.13][[C.sub.altered dolomite] < [delta][sup.13][C.sub.dolomite] < [delta][sup.13][C.sub.limestone] and [delta][sup.18][O.sub.calcite] < [delta][sup.18][O.sub.altered dolomite] < [delta][sup.18][O.sub.dolomite] < [delta][sup.18][O.sub.limestone]. The [delta][sup.18]O values of the Mid-to-Late Devonian marine limestones are mainly distributed around 20[per thousand][+ or -], with [delta][sup.13]C = 0 [+ or -]. The average [delta][sup.18]O and [delta][sup.13]C values of limestones found in the Huize mining area are equivalent to these values, which decrease as dolomitization increases. However, the [delta][sup.18]O and [delta][sup.13]C isotopic compositions of calcite are noticeably different from those of the Mid-to-Late Devonian marine limestones, as the calcite [delta][sup.18]O and [delta][sup.13]C values of the orebodies and tectonic belts are clearly lower than those in the adjacent carbonate rocks.

(2) Similar C-O isotopic compositions were observed for gangue calcites in different orebodies and calcites with different occurrences, with [delta][sup.13][C.sub.PDB] values that vary within -1.9[per thousand] to -3.5[per thousand] and [delta][sup.18][O.sub.SMOW] values varying within 16.8[per thousand]-18.7[per thousand]. This indicates that the metallogenic fluid has a [delta][sup.13]C value that is much lower than that of the host rocks.

(3) The altered dolomites and bioclastic limestones of Kuangshanchang, carbonates from strata in the periphery of the mining area, and miarolitic calcites have similar C-O isotopic compositions, with most of these compositions projecting within the region of marine carbonates. This indicates that the source of carbon in these rocks is innate to the carbonate strata in this region, as their C-O isotopic compositions indicate that the carbon was produced via leaching of adjacent rocks by fluids, which is significantly different from calcites found in ores of the Huize deposit.

(4) The C-O isotopic compositions of calcites from the NE-trending tectonic belt are similar to those of gangue calcites, which is distinctly different from the C-O isotopic compositions of the previously described rock strata. This is because the main channel through which the metallogenic fluids of the Huize Pb-Zn deposit pass is the NE-trending tectonic belt [15, 21, 33, 51]. Therefore, the C-O isotopic compositions of the calcites in this tectonic belt plot closest to those of the metallogenic fluid.

(5) In the source region of the metallogenic fluid or organic matter-rich strata below the orebodies penetrated by the fluid, water-rock reactions will solvate adjacent carbonates and cause an exchange of C-O isotopes between the fluid and the strata. This ultimately causes [delta][sup.13]C of the fluid to increase and [[delta][sup.13]C of the adjacent rocks to decrease.

5.2. H-O Isotopes. As [H.sub.2]O is an important component of metallogenic fluids, it is important to elucidate the source of [H.sub.2]O in order to investigate the origin of the metallogenic fluid. The H and O isotopic compositions of gangue minerals, ore minerals, and their related alteration minerals are the most direct and effective indicators of the source of [H.sub.2]O in metallogenic fluids. The [delta]D value measured in calcite fluid inclusions reflects the H-O isotopic composition of metallogenic hydrothermal solutions more accurately than [delta]D measurements in quartz [51, 52]. Therefore, previous researchers have generally chosen to use calcites to determine the H-O isotopic composition of the metallogenic fluid; these results are shown in Table 2.

In the Huize deposit, the characteristics of sphalerites from different stages of metallogenesis are very distinct. Isotope exchange reactions do not happen between fluid inclusions and minerals in later stages, and fluid inclusion petrography has shown that inclusions in sphalerite are mainly comprised of primary and pseudosecondary inclusions, with few secondary inclusions [48, 49]. As the adsorbed water and the associated secondary inclusions have been removed from the sphalerite samples during the measurement process, the direct measurement of the H and O isotopic composition of sphalerite inclusions from different stages of metallogenesis is representative of the native isotopic composition of the metallogenic fluids, and these data also allow us to track the evolution of metallogenic fluids during different stages of metallogenesis.

Figure 11 shows the following.

(1) Similar to the C and O isotopic composition characteristics, the H-O isotopic compositions of the Huize Pb-Zn deposit are also relatively stable, with [delta]D ranging within -43.5[per thousand] to -66[per thousand], with an average of -56.3[per thousand], and [delta][sup.18][O.sub.H2O] values ranging within -2.05[per thousand]-10.08[per thousand], with an average of 7.55[per thousand].

(2) The H-O isotopic compositions of calcites from different orebodies, with different occurrences, do not differ significantly from one another. This characteristic reflects the presence of two different fluids within the metallogenic system, that is, a deeply sourced fluid, and a fluid sourced from atmospheric precipitation. Based on the geological conditions for metallogenesis and comparison between the H-O isotopic compositions of the metallogenic fluid and those of orogenic mineral deposits [53-64], we deduced that the metallogenic fluid is a mix between deeply sourced fluids and basin brines.

However, it is worth noting that the [delta][sup.18][O.sub.H2O] value was calculated from the isotope equilibrium fractionation equation. During these calculations, the determination of the isotope equilibrium temperature significantly affects the [delta][sup.18][O.sub.H2O] value of the metallogenic fluid. Researchers in the past have chosen an average temperature of 200[degrees]C for this calculation, but this leads to an excessive aggregation of [delta][sup.18][O.sub.H2O] values in the distribution, as shown in the plot (6[per thousand]-10[per thousand]). Apart from that, measurements of the temperature of the fluid inclusion are somewhat subjective and limited, and only statistical analysis of a large quantity of data can provide a reasonable approximation of reality. We collected all of the fluid inclusion temperature measurement data that are currently available for the Huize Pb-Zn deposits [48, 49] (Figure 12); based on analysis of these data and our measurements, the temperatures of the metallogenic fluid in Stages I, II, III, and IV are (190[degrees]C-205[degrees]C), (170[degrees]C-190[degrees]C), (145[degrees]C-170[degrees]C), and (130[degrees]C-150[degrees]C), respectively. Since calcites are products of Stages III and IV, 200[degrees]C is an overestimation of the average temperature. Studies have shown that the [delta][sup.18][O.sub.H2O] value and average temperature are proportionally related [65, 66]; therefore, the projection of the actual [delta][sup.18][O.sub.H2O] values (for calcites) should be biased towards atmospheric precipitation, such that the distribution range of its H-O isotopic compositions should be similar to or the same as that of Stage III sphalerite fluid inclusions.

(3) Among the nine sphalerite samples, except for Z08071-0r, which appears to be an outlier, the eight remaining samples are aggregated according to their stage of metallogenesis, in three clumps of 3, 2, and 3, respectively. This indicates that the distribution of H and O isotopic compositions in the sphalerite fluid inclusions aggregate according to their stage of metallogenesis. Therefore, the results obtained here are representative of the native isotopic composition of metallogenic fluids during different stages of metallogenesis. The change in H isotopic compositions only varies slightly between Stages I, II, and III. In the figure, the range of distribution of samples from different stages contracts only slightly in the upwards direction. Changes in the isotopic composition of O are much more distinct, varying from (25.5[per thousand]-28.9[per thousand]) [right arrow] (12.2[per thousand]-17.1[per thousand]) [right arrow] (2.2[per thousand]-5.5[per thousand]) from Stage I to Stage III. This indicates that the metallogenic fluid evolved from a deeply sourced fluid in Stage Itoa fluid with increasing levels of mixing from atmospheric precipitation in Stage III.

(4) The calculated [delta][sup.18][O.sub.H2O] values of the six Qilinchang barites range within 9.85[per thousand]-12.36[per thousand], with an average of 11.49[per thousand]. The [delta]D values range within -91.3[per thousand] to -79.8[per thousand], with an average of -83.1[per thousand]. The [delta][sup.18][O.sub.H2O] values of the four Kuangshanchang barites range within 12.39[per thousand]-13.69[per thousand], with an average of 13.20[per thousand]; the [delta]D values range within -75.1[per thousand] to -61.7[per thousand], with an average of-65.7[per thousand]. As a whole, the water in the inclusions within the Kuangshanchang barites is significantly more deuterium-enriched than the Qilinchang fluid inclusion water. The ranges of H-O isotopic compositions of stage [I.sub.1] barites and stage [I.sub.2] sphalerites are essentially the same in this figure.

(5) The H-O isotopic composition of the fluid shows systematic changes from Stage I (barite, sphalerite) [right arrow] Stage II (sphalerite) [right arrow] Stage III (sphalerite, calcite) [right arrow] Stage IV (calcite), as the metallogenic fluid gradually evolved from a deeply source fluid to a fluid that was mainly composed of atmospheric precipitation, which also reflects the gradual increase of basin brine mixing during metallogenesis (Figure 11).

6. Identification of the Two Fluid Types

We have previously studied the fluid inclusions of this deposit in detail [48, 49] and found that the homogenization temperature and salinity of sphalerite fluid inclusions in Kuangshanchang are the same as those of the Qilinchang deposit, which is consistent with the findings of Liu and Lin [21]; that is, the homogenization temperatures were distributed within 150[degrees]C-320[degrees]C, and the decrepitation temperatures of the metallic minerals (pyrite, sphalerite, and galena) ranged within 140[degrees] C-480[degrees]C.

The homogenization temperatures of sphalerite fluid inclusions in the Huize Kuangshanchang deposit covered a wide range, from 126[degrees]C to 280[degrees]C (Figures 12 and 13(b)), with a correspondingly high level of salinity, which ranged within 3.2%-22.7%; the dolomite fluid inclusions had homogenization temperatures that ranged within 86[degrees] C-163[degrees]C, with comparatively low levels of salinity, which ranged from 1.1% to 14.8%.

The dolomite and sphalerite that correspond to each of the three stages of metallogenesis have fluid inclusions that display highly distinct distribution characteristics in their salinities and homogenization temperatures. From the first stage of metallogenesis (hydrothermal metallogenesis) to the alteration of adjacent rocks, the fluids evolved according to the following pattern: moderate-to-high temperatures and moderate-to-high salinity [right arrow] moderate temperatures and moderate-to-high salinity [right arrow] moderate-to-low temperatures and moderate-to-high salinity [right arrow] moderate-to-low temperatures and low salinity. Patterns related to the mixing of moderate-to-high temperature-moderate-to-high salinity fluids with moderate temperature-moderate-to-high salinity fluids were also observed in the first stage of metallogenesis. The mixing of fluids with different levels of salinity under isothermal (moderate-to-low temperatures) conditions was observed for the Sp-Gn and Gn-Sp stages of metallogenesis (i.e., the primary stages of metallogenesis), while mixing between fluids with moderate-to-high levels of salinity with fluids of low salinity under moderate-to-low temperatures was observed in the alteration of adjacent rocks.

It is thus shown that a minimum of two fluids with different levels of salinity participated in hydrothermal metallogenesis. Hence, the mixing of fluids was likely the primary mechanism of mineral precipitation in the Huize deposit. This is consistent with the immiscibility represented by the coexistence of purely gaseous and gas-liquid inclusions, which were observed in fluid inclusion studies [48, 49, 67].

The C-O and H-O isotopic compositions and the homogenization temperature-salinity distribution map obtained from the results of previous fluid inclusion studies (Figure 13) are both indicative of fluid mixing during metallogenesis. In particular, the H-O isotopic composition of stage [I.sub.1] barites and the C-O isotopic compositions of calcites from the NE-trending tectonic belt show that the metallogenic Fluid A of the Huize Pb-Zn deposit originates from deep-seated sources and is rich in lighter C and O isotopes. The C-O isotopic compositions of wall rocks in the periphery of the mining area and the H-O isotopic compositions of early-stage sphalerites indicate that Fluid B comprises subsurface brines formed by atmospheric precipitation that leached adjacent carbonate rocks and extracted reduced sulfurs from various strata. This fluid has heavier C-O and H-O isotopic compositions than Fluid A. When fluids A and B were mixed, their isotopes were exchanged, which led to the final mixed fluid having C-O and H-O compositions that are in between those of the two metallogenic fluids.

Based on the geological characteristics of the deposit and the findings of fluid inclusion studies, the high-temperature barites that occur within the fracture zone and side fractures were precipitated from Fluid A because of high oxygen fugacity and oversaturation; hence, the geological body that corresponds to Fluid A is high-temperature barite. In contrast, Fluid B is composed of stratigraphic brine formed by atmospheric precipitation that leached adjacent carbonates and extracted reduced sulfides from the strata, and its corresponding geological bodies are carbonate strata, as well as pyrite and gypsum strata formed during sedimentation and diagenesis. The mixing of fluids A and B caused the precipitation of sulfides; hence, the geological bodies that correspond to the mixed fluid are zinc and lead sulfide ores. Information on the two types of fluids and the mixed fluid is shown in Table 3.

Based on the above characteristics, we hypothesize that the metallogenesis of the Huize Pb-Zn deposit occurred according to the following process: tectonic activity during the Indosinian caused large-scale upward movement of deep-seated fluids; as these fluids flowed through the carbonate strata, they exchanged C and H isotopes with these strata and extracted the metallic elements, thus forming the metal-rich, acidic, moderate-to-high temperature and low salinity Fluid A, whose lead and zinc contents mainly exist as Pb-Zn-Cl compounds. Furthermore, as the carbonate strata provided sufficient C[O.sub.3.sup.2-] and HC[O.sub.3.sup.-] to buffer the pH of the metallogenic fluid, Pb-Zn-Cl compounds were stably maintained within the fluid (because of its acidity), which prevented the precipitation of lead and zinc sulfides from the fluid [48]. As the metallogenic fluid moved towards ore-containing strata along large ore-inducing tectonic structures, decompression boiling occurred when the fluids penetrated the NE-trending interstratum reverse shear fracture [48, 49], causing the metallogenic substances to become even more concentrated and enriched, which led to the partial precipitation of sphalerites and galena. Sulfides precipitated in this manner have a high temperature, ~300[degrees]C. This fluid then mixed with Fluid B, causing its temperature to decrease and its pH to increase, resulting in the precipitation of large quantities of sulfides. The sulfides precipitated in this stage have a lower temperature, between 170[degrees]C and 230[degrees]C, and overlap with the sulfides formed during the boiling of the fluid, thus forming the primary orebodies.

7. Conclusion

Based on C-O and H-O isotopic compositions and the findings of fluid inclusion studies, it was found that there are two metallogenic fluids present in the Huize Pb-Zn deposit: Fluid A and Fluid B. Fluid A originates from deep-seated fluid sources and is enriched in lighter C and O isotopes, whereas Fluid B is composed of subsurface brine formed by atmospheric precipitation that leached carbonate wall rocks and extracted thermochemically reduced sulfurs from stratigraphic pyrites and carbonates (gypsum). Fluid B is characterized by heavier C-O and H-O isotopic compositions than Fluid A. These fluids mixed during metallogenesis, which resulted in the exchange of isotopes between the two fluids. Consequently, the final mixed fluid has C-O and H-O isotopic compositions that lie between those of the two metallogenic fluids.

Therefore, the metallogenesis of the Huize Pb-Zn deposit can be summarized as follows. During tectonic activity in the Indosinian Period, deep-seated fluids moved upwards on a large scale through carbonate strata of various ages. The fluids extracted the metallic elements of these strata to form a metal-rich metallogenic fluid, which underwent gas-liquid separation under the process of decompression boiling in structurally favorable spaces. After further enrichment and concentration and precipitation of some of the higher-grade ores, this fluid then mixed with Fluid B and continued to precipitate sulfides within the Huize Pb-Zn deposit.

https://doi.org/10.1155/2017/6345810

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported jointly by the National Natural Science Foundation of China (nos. 41572060 and U1133602), projects of YM Lab (2011) and Innovation Team of Yunnan Province and KMUST (2008 and 2012), and Yunnan and Kunming University of Science and Technology Postdoctoral Sustentation Fund.

References

[1] Z. X. Dai, "The distributions, types and rules of exploration of lead and zinc all over the world," World Nonferrous Metals, vol. 3, pp. 15-23, 2005.

[2] J. R. Xie, A Discussion on the Deposits Classify, Science Press, Beijing, China, 1st edition, 1963.

[3] W. J. Zhang, "A preliminary discussion on the sedimentary origin and metallogenic rule of Pb-Zn deposits in Northeastern Yunnan," Geology and Exploration, vol. 7, pp. 11-16, 1984.

[4] G. Z. Tu, Geochemical of Strata Bound Ore Deposits in China: First Volume, Science Press, Beijing, China, 1st edition, 1984.

[5] W. Liao, "The features of S and Pb isotope and the discussion on model of metallogenic in Eastern of Yunnan and Western of Guizhou," Geology Deposit, vol. 1, pp. 1-6, 1984.

[6] C. X. Zhou, The Source of Mineralizing Metals, Geochemical Characterization of Ore Forming Solution, and Metallogenetic Mechanism of Qilingchang Pb-Zn Deposit, Northeastern Yunnan Province, China, [M.S. thesis], The Institute of Geochemistry, Chinese Academy of Sciences, 1996.

[7] C. X. Zhou, "The source of mineralizing metals, geochemical characterization of ore-forming solution, and metallogenetic mechanism of qilingchang Pb-Zn deposit, Northeastern Yunnan province, China," Bulletin of Mineralogy, Petrology and Geochemistry, vol. 17, no. 1, pp. 34-36, 1998.

[8] Z. L. Huang, J. Chen, and R. S. Han, Geochemistry and Ore Genesis ofHuize Super-Large Lead-Zinc Deposit, Yunnan Province, Concurrently Discuss the Relationship Between Emeishan Basalt and Lead-Zinc Deposits, Geological Publishing House, Beijing, China, 1st edition, 2004.

[9] W. B. Li, Z. L. Huang, and Y. X. Wang, "Age of the giant huize Zn-Pb deposits determined by Sm-Nd dating of hydrothermal calcite," Georgica Review, vol. 50, no. 2, pp. 189-195, 2004.

[10] W. Li, Z. Huang, and G. Zhang, "Sources of the ore metals of the huize ore field in yunnan province: constraints from Pb, S, C, H, O and Sr isotope geochemistry," Acta Petrologica Sinica, vol. 22, no. 10, pp. 2567-2580, 2006.

[11] Z. B. Zhang, C. Y. Li, G. Z. Tu, B. Xia, and Z. Q. Wei, "Geotectonic evolution background and ore forming process of Pb-An deposits in Chuan-Dian-Qian Area of Southwest China," Geotectonica et Metallogenia, vol. 30, no. 3, pp. 343-354, 2006.

[12] R. S. Han, C. Q. Liu, Z. L. Huang et al., "Sources of ore-forming fluid in huize Zn-Pb-(Ag-Ge) district, Yunnan, China," Acta Geologica Sinica, vol. 78, no. 2, pp. 583-591, 2004.

[13] R.-S. Han, C.-Q. Liu, Z.-L. Huang et al., "Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China," Ore Geology Reviews, vol. 31, no. 1-4, pp. 360-383, 2007.

[14] H. Run-sheng, L. Cong-Qiang, E. J. M. Carranza et al., "REE geochemistry of altered tectonites in the Huize base-metal district, Yunnan, China," Geochemistry: Exploration, Environment, Analysis, vol. 12, no. 2, pp. 127-146, 2012.

[15] R. S. Han, C. Q. Liu, Z. L. Huang, J. Chen, D. Y. Ma, and Y. Li, "Study on the metallogenic model of the huize Pb-Zn deposit in Yunnan Province," Acta Mineralogica Sinica, vol. 21, no. 4, pp. 674-680, 2001.

[16] R. S. Han, J. Chen, Z. L. Huang et al., ynamics of Tectonic Ore-forming Process and Localization-Prognosis of Concealed Orebodies--As Exemplified by the Huize Super-large Zn-Pb-(AgGe) District, Yunnan, Beijing Science Press, Beijing, China, 1st edition, 2006.

[17] R. Han, W. Li, W. Qiu, T. Ren, and F. Wang, "Typical geological features of rich Zn-Pb-(Ge-Ag) deposits in Northeastern Yunnan, China," Acta Geologica Sinica, vol. 88, no. s2, pp. 160-162, 2014.

[18] S. J. Chen, "A Discussion on the sedimentary origin of PbZn deposits in Western Guizhou and Northeastern Yunnan," Guizhou Geology, vol. 8, no. 3, pp. 35-39, 1984.

[19] J. Chen Jin, "A discussion on the genesis and metallogenic model of the qilinchang Pb-Zn sulfide deposit," Non-Ferrous Mineral Resources and Exploration, vol. 2, pp. 85-90, 1993.

[20] Z. Zhao, "Metallogenic model of Pb-Zn deposits in Northeastern Yunnan," Yunnan Geology, vol. 14, no. 4, pp. 350-354, 1985.

[21] H. C. Liu and W. D. Lin, Metallogenic Rules of Zn-Pb-(Ag) Deposits in Northeastern Yunnan, Yunnan University Publishing House, Kunming, China, 1st edition, 1999.

[22] C. Q. Zhang, he Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Provinces, China, [M.S. thesis], Chinese Academy of Geological Sciences, 2008.

[23] R. S. Han, Y. Z. Hu, X. K. Wang et al., "Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in Northeastern Yunnan, China," Acta Geologica Sinica, vol. 86, no. 2, pp. 280-293, 2012.

[24] R. Han, F. Wang, Y. Hu et al., "Metallogenic tectonic dynamics and chronology constrains on the huize-type (HZT) germanium-rich silver-zinc-lead deposits," Geotectonica et Metallogenia, vol. 38, no. 4, pp. 758-771, 2014.

[25] D. R. Gao, "The ore -forming geological condition and the ore prospecting direction of huize lead zinc deposit," Journal of Kunming University of Science and Technology, vol. 25, no. 4, pp. 19-24, 2000.

[26] J. Chen, D. R. Gao, and D. C. Wu, The Report of the Geology Exploration of 8# Ore Body in Qilinchang Pb-Zn Deposit, Huize, Yunnan, Huize Lead-Zinc Deposit, Huize, China, 2001.

[27] R. S. Han, H. J. Zou, B. Hu, Y. Z. Hu, and C. D. Xue, "Features of fluid inclusions and sources of ore-forming fluid in the maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China," Acta Petrological Sinica, vol. 23, no. 09, pp. 2109-2118, 2007

[28] C. Q. Zhang, J. W. Mao, S. P. Wu et al., "Distribution, characteristics and genesis of mississippi valley-type lead-zinc deposits in Sichuan-Yunnan-Guizhou area," Mineral Deposits, vol. 24, no. 3, pp. 336-348, 2005.

[29] C. Q. Zhang, Z. Y. Rui, Y. C. Chen, D. H. Wang, Z. H. Chen, and D. B. Lou, "The main successive strategic bases of resources for Pb-Zn deposits in China," Geology in China, vol. 40, no. 1, pp. 248-272, 2013.

[30] J. Z. Wang, C. Y. Li, Z. Q. Li, and J. J. Liu, "The geological setting, characters and origin of mississippi valley-type Pb-Zn deposits in Sichuan and Yunnan provinces," Geology-Geochemistry, vol. 29, no. 2, pp. 41-45, 2001.

[31] J. Z. Wang, C. Y. Li, Z. Q. Li, B. H Li, and W. Z. Liu, "The comparison of mississippi valley-type lead-zinc deposits in Southwest of China and in mid-continent of United States," Bulletin of Mineralogy, Petrology and Geochemistry, vol. 21, pp. 127-132, 2002.

[32] G.-Z. Tu, "Two unique mineralization areas in Southwest China," Bulletin of Mineralogy Petrology and Geochemistry, vol. 21, no. 1, pp. 1-2, 2002.

[33] Z. L. Huang, J. Chen, R. S. Han et al., "REE Geochemistry of calcite- A Gangue mineral in the Huize ore deposit, Yunnan," Acta Mineralogica Sinica, vol. 31, no. 4, pp. 659-666, 2001.

[34] Z. L. Huang, W. B. Li, J. Chen et al., "Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super-large Pb-Zn deposits, Yunnan Province, China," Journal of Geochemical Exploration, vol. 78-79, pp. 637-642, 2003.

[35] Z. Huang, X. Li, M. Zhou, W. Li, and Z. Jin, "REE and C-O Isotopic geochemistry of calcites from the world-class huize PbZn deposits, Yunnan, China: implications for the ore genesis," Acta Geologica Sinica, vol. 84, no. 3, pp. 597-613, 2010.

[36] D. F. Luo, Z. L. Huang, F. Wang, J. X. Zhou, and X. B. Li, "Mechanism of transportation and precipitation of mineralization elements in the huize super-large Pb-Zn deposit, Yunnan Province, China," Acta Mineralogica Sinica, vol. 32, no. 2, pp. 288-293, 2012.

[37] Z. L. Zhang, Z. L. Huang, B. Rao, T. Guan, and Z. F. Yan, "Study on the ore forming fluid characteristics of huize Pb-Zn ore deposits," Geological Prospecting Review, vol. 20, no. 2, pp. 115-121, 2005.

[38] Z. L. Zhang, Z. L. Huang, B. Rao, T. Guan, and Z. F. Yan, "Concentration mechanism of ore-forming fluid in huize lead-zinc deposits, Yunnan province," Earth Science--Journal of China University of Geosciences, vol. 30, no. 4, pp. 443-450, 2005.

[39] Z. L. Zhang, Feature and Sources of Ore-Forming Fluid in the Huize Lead-Zinc Ore Deposit, Yunnan Province, China: Evidence from Fluid Inclusions and Water-Rock Reaction Experiments, [M.S. thesis], The Institute of Geochemistry, Chinese Academy of Sciences, 2006.

[40] Z. L. Zhang, Z. L. Huang, B. Rao, T. Guan, and Z. F. Yan, "Are lead sulphides and zinc sulphides of lead-zinc ore deposits precipitated from acidic solutions? a discussion on the ore-forming fluid of Huize lead-zinc ore deposit, Yunnan province," Acta Mineralogica Sinica, vol. 26, no. 01, pp. 53-58, 2006.

[41] X. R. Yan, The Ore-Forming Pattern and The Ore-Forming Prognosis of the Huize Lead And Zinc Deposit, [M.S. thesis], Kunming University of Science and Technology, 2007.

[42] K. H. Zhong, W. Liao, M. Y. Song, and Y. Q. Zhang, "Discussion on sulfur isotope of Huize Pb-Zn deposit in Yunnan, China," Journal of Chengdu University of Technology (Science & Technology Edition), vol. 40, no. 2, pp. 130-138, 2013.

[43] Y. Zhang, R. S. Han, and P. T. Wei, "Research overview on the migration and precipitation mechanisms of lead and zinc in ore-forming fluid system for carbonate-hosted lead--zinc deposits," Geological Review, vol. 62, no. 1, pp. 187-201, 2016.

[44] W. H. Hu and Z. H. Feng, "Quality evaluation of deep rock mass in the Huize lead zinc mine," Mining Technology, vol. 9, no. 01, pp. 43-47, 2009.

[45] Z. C. Liu, F. Y. Li, K. H. Zhong, W. Li, and S. Y. Wen, The Tectonic and Metallogenic of the Western Margin of the Yangtze Platform and Its Adjacent Area, Press of University of Electronic Science and Technology of Beijing, 1996.

[46] B. L. Wang, S. K. Lv, and J. G. Hu Jugui, "A tentative description of the Chuan-dian-qian rhombic massif," Yunnan Geology, vol. 23, no. 2, pp. 140-153, 2004.

[47] L. Wang, The Research on Original of Ore-Forming Fluid and Matter in the Huize Lead-Zinc Deposit, Kunming University of Science and Technology, 2016.

[48] Y. Zhang, R. S. Han, P. T. Wei, and W. L. Qiu, "Fluid inclusion features and physical and chemical conditions of the ore-forming fluid in kuangshanchang Pb-Zn deposit, Huize, Yunnan," Journal of Jilin University (Earth Science Edition), vol. 47, no. 3, pp. 719-733, 2017

[49] R. Han, B. Li, P. Ni, W. Qiu, X. Wang, and T. Wang, "Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of Huize super-large Zn-Pb-(GeAg) deposit, Yunnan province," Journal of Jilin University (Earth Science Edition), vol. 46, no. 1, pp. 91-104, 2016.

[50] Y. F. Zheng and J. F. Cheng, Stable Isotope Geochemistry, Scientific Publishing House, Beijing, China, 2000.

[51] C. Y. Li, Y. P. Liu, Q. Zhang, D. H. Pi, W. L. Zhang, and J. Chen, "Discovery of antimony and distribution characteristics of associated elements in Huize Pb-Zn deposit," Mineral Deposits, vol. 24, no. 1, pp. 52-60, 2005.

[52] P. F. Dennis, P. J. Rowe, and T. C. Atkinson, "The recovery and isotopic measurement of water from fluid inclusions in speleothems," Geochimica et Cosmochimica Acta, vol. 65, no. 6, pp. 871-884, 2001.

[53] R. J. Goldfarb, R. J. Newberry, W. J. Pickthorn, and C. A. Gent, "Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: constraints on the origin of hydrothermal fluids," Economic Geology, vol. 86, no. 1, pp. 66-80, 1991.

[54] R. J. Goldfarb, L. D. Miiler, D. L. Leach, and L. W. Snee, "Gold deposits in metamorphic rocks of Alaska," Economic Geology Monograph, vol. 9, pp. 151-190, 1997.

[55] D. J. Kontak and R. Kerrich, "Geological and geochemical studies of a metaturbidite-hosted lode gold deposit: the Beaver Dam deposit, Nova Scotia: II. Isotopic studies," Economic Geology, vol. 90, no. 4, pp. 885-901, 1995.

[56] T. Oberthur, A. S. Mumm, U. Vetter, K. Simon, and J. A. Amanor, "Gold mineralization in the Ashanti belt of Ghana: genetic constraints of the stable isotope geochemistry," Economic Geology, vol. 91, no. 2, pp. 289-301, 1996.

[57] S. M. Ivanov, K. M. Ansdell, and D. L. Melrose, "Ore texture and stable isotope constraints on ore deposition mechanisms at the Kumtor lode gold deposit," in Gold in 2000: Luke Tahoe-Reno, Nevada, November 10-11, 2000, Centre for Global Metallogeny, University of Western Australia, Extended Abstract Volume, L. A. Bucci and J. L. Mair, Eds., pp. 47-52, 2000.

[58] R. Kerrich, The Stable Isotope Geochemistry of Au-Ag Vein Deposits in Metamorphic Rocks, Mineralogical Association of Canada Short Course Handbook, 1987.

[59] S. D. Golding, N. J. McNaughton, M. E. Barley et al., "Archean carbon and oxygen reservoirs: Their significances for fluid sources and circulation paths for Archean mesothermal gold deposits of the Norseman-Wiluna belt, Western Australia," Economic Geology Monograph, vol. 6, pp. 376-388, 1989.

[60] C. E. J. De Ronde, E. T. C. Spooner, M. J. De Wit, and C. J. Bray, "Shear zone-related, Au quartz vein deposits in the Barberton Greenstone Belt, South Africa: field and petrographic characteristics, fluid properties, and light stable isotope geochemistry," Economic Geology, vol. 87, no. 2, pp. 366-402, 1992.

[61] T. C. McCuaig and R. Kerrich, "P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics," Ore Geology Reviews, vol. 12, no. 6, pp. 381-453, 1998.

[62] Y. Jia, X. Li, and R. Kerrich, "Stable isotope (O, H, S, C, and N) systematics of quartz vein systems in the turbidite-hosted Central and North Deborah gold deposits of the Bendigo gold field, Central Victoria, Australia: Constraints on the origin of ore-forming fluids," Economic Geology, vol. 96, no. 4, pp. 705-721, 2001.

[63] R. J. Goldfarb, R. Ayuso, M. L. Miller et al., "The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation," Economic Geology, vol. 99, no. 4, pp. 643-671, 2004.

[64] K. Faure, "SD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: Do values reflect those of original hydrothermal water?" Economic Geology, vol. 98, no. 3, pp. 657-660, 2003.

[65] L. Q. Yang, J. Deng, J. Zhang, C. Y. Guo, B. F. Gao, and Q. J Gong, "Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China: implications for metallogeny and exploration," Journal of Earth Science, vol. 19, no. 4, pp. 378-390, 2008.

[66] C. Y. Guo, L. Q. Yang, J. Zhang, B. F. Gao, Q. F. Wang, and H. J. Yu, "Ore fluid chemical evolution and stable isotope composition of Damo Qujia gold deposit in Shandong province," Mineralogy and Petrology, vol. 28, no. 3, pp. 51-56, 2008.

[67] H. Z. Lu, H. R. Fan, and P. Ni, Fluid Inclusions, Science Press, Beijing, China, 1st edition, 2004.

Yan Zhang, (1) Runsheng Han, (1) Pingtang Wei, (2) and Lei Wang (1)

(1) Southwest Institute of Geological Survey, Geological Survey Center for Non-Ferrous Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China

(2) Kunming Geological Prospecting Institute, China Metallurgical Geological Bureau, Kunming 650024, China

Correspondence should be addressed to Runsheng Han; 554670042@qq.com

Received 3 March 2017; Revised 27 May 2017; Accepted 4 July 2017; Published 27 August 2017

Academic Editor: Tobias P. Fischer

Caption: FIGURE 1: Tectonic map showing distribution of Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou triangle, SW China (modified after [23]). 1: Emeishan flood basalt; 2: main fault; 3: secondary fault; 4: province boundary; 5: town; 6: river; 7: large deposit; 8: medium deposit; 9: small deposit.

Caption: FIGURE 2: Geological sketch map of the Huize Pb-Zn ore deposit (modified after [16]). 1: Permian carbonate rock, Emeishan flood basalt, and shale; 2: Lower Permian Qixia-Maokou Fm. limestone and dolomitic limestones; Liangshan Fm. charcoal, shale, and sandstone; 3: Lower Permian Emeishan flood basalt; 4: Carboniferous: Maping Fm. brecciform limestone; Weining Fm. oolitic limestone; Baizuo Fm. coarse-grained dolostones and dolomitic limestones; Datang Fm. aphanitic limestone and oolitic limestone; 5: Devonian: Zaige Fm. limestone, siliceous dolostone, and dolostone; Haikou Fm. siltstone and shale; 6: Cambrian Qiongzhusi Fm. shale and sandy mudstone; 7: Sinian Dengying Fm. siliceous dolomite; 8: fault; 9: stratigraphic boundary; 10: Pb-Zn deposit.

Caption: FIGURE 3: Typical structure photographs of minerals in the Huize Pb-Zn deposit. (a) Massive ore, miarolitic structure. (b) Dense massive ore, massive structures. (c) Massive ore, massive structures. (d) Massive ore, vein structure. (e) Disseminated ore, disseminated structures. (f) Banded structure. Sp: sphalerite; Gn: galena; Py: pyrite; Dol: dolomite; Cal: calcite.

Caption: FIGURE 4: Typical texture photographs of minerals in the Huize Pb-Zn deposit. (a) Xenomorphic granular texture of Sp, (-) 10 x 10. (b) Hypidiomorphic-xenomorphic granular textures of Sp and Gn, (-) 10 x 2. (c) Cataclastic texture of Py, (-) 10 x 4. (d) Edge-shared texture between Sp and Gn, (-) 10 x 4. (e) Skeleton crystal structure of Gn replacing Py, (-) 10 x 10. (f) Metasomatic texture of Gn, (-) 10 x 10. (g) Harbor structure of Gn replacing Sp, (-) 10 x 10. (h) Inclusion structure of Py, (-) 10 x 10. Sp: sphalerite; Gn: galena; Py: pyrite; Dol: dolomite; Cal: calcite.

Caption: FIGURE 5: Typical photographs of the mineral-forming sequence of the Huize Pb-Zn deposit. (a, b) Coarse-grained Py stage (Stage I); (a) (+) 10 x 2; (b) (-) 10 x 2. (c) Sp-Gn stage (Stage II): edge-shared texture between Sp and Gn; the sphalerite content is far greater than galena. (d) Gn-Sp stage (Stage III): harbor structure of Gn replacing Sp; Gn is the main mineral. (e, f) Fine-grained Py-Dol-Cal stage (Stage IV); (e) (+)10 x 2; (f) (-) 10 x 4. Sp: sphalerite; Gn: galena; Py: pyrite; Dol: dolomite; Cal: calcite.

Caption: FIGURE 7: Photographs of adjacent rock alterations. (a) Dolomitization, coarse-grained structures are shown in the dolomites, (+) 10 x 2. (b) Weakly dolomitized recrystallized sparitic limestone, in which the dolomites are present as euhedral-to-semieuhedral diamond-shaped crystals, and significant recrystallization is shown in the calcites, (-) 10 x 2. (c) Pyritization, with the pyrites presented as euhedral-anhedral grains, (-) 10 x 10. (d) Argillation, with the clay substances occurring as cryptocrystalline microflakes with grain sizes smaller than 0.02 mm and gaps interspersed between opaque minerals, (-) 10 x 2. Sp: sphalerite; Py: pyrite; Dol: dolomite; Cal: calcite.

Caption: Figure 8: Documentation and sampling of Stope 15# in tunnel 1752 m in Kuangshanchang. (1)Oxidized Pb-Zn orebodies; (2) beige dolomites, with veined, porphyritic calcite developments; (3) light grey-to-grey-white medium-grained calcitic dolomite; (4) grey-to-dark-grey fine-grained limestones; (5) calcite. I. First stage ores are mainly coarse-grained pyrites with small quantities of deep brown sphalerites; II. Second stage ores are mainly brown sphalerites with small amounts of galena; III. Third stage ores, rose-colored sphalerite + galena. (a)Morphology of the orebody 0-5 m above head height in Stope 15# of tunnel 1752 m. Yellow-brown and reddish-brown Pb-Zn oxide orebodies were found on either side of the grey-black Pb-Zn sulfide ores, while yellow coarse-grained dolomites lie outside the ores. Several vein-shaped oxide ores were intercalated within the sulfide orebodies. (b) Morphology of the orebody 4m into Stope 15# of tunnel 1752 m. The joint fractures are more developed in this area, the oxide orebodies formed through leaching, and sulfide orebodies occur in alternating layers. The top part of this wall is composed of ocher-red carbonates that are likely to have been produced during the later stages of hydrothermal metallogenesis. (c) Bottom part of the sulfide orebody 8m into Stope 15# of tunnel 1752 m. The main mineral in this orebody is coarse-grained pyrite, with sporadic occurrences of deep-red sphalerites. (d) Top part of the sulfide orebody on the left wall, 8m into Stope #15 of tunnel 1752 m. The main minerals in the orebody are yellow-brown to brown sphalerites, followed by galena. The sphalerites are distributed in porphyritic and vein-like shapes, with lead-grey star-like points of galena tightly associated with the sphalerite. (e) Sulfide orebody on the right wall, 8m into Stope #15 of tunnel 1752 m, which we deduce to be the top part of the orebody, based on its occurrence. The main minerals found in this orebody are lead-grey-colored galena, followed by yellow-brown-colored sphalerite.The galena displays a porphyritic, vein-like distribution, while the sphalerites display a vein-like, spotted distribution. (f) Morphology of an oxide orebody and its adjacent rocks, 19.5 m into Stope 15# in tunnel 1752 m. (g) Interstratum fracture 46m into Stope 15# of tunnel 1752 m. The surface of the fracture has a relaxed wave-like shape, and the fracture is 1-10 cm wide, is filled with yellow-brown fault gouge, and displays schistosity. This fracture acts as the boundary between the C1b and C1d strata. The hanging wall is composed of C1b light grey-to-grey white calcitic fine-grained dolomite, while the footwall is composed of C1d grey-to-dark grey limestone breccia cemented with clay, which appears to be lenticularized. The fracture is a left-lateral reverse shear fracture, with an orientation of NE45[degrees] [angle] 40[degrees]SE.

Caption: FIGURE 9: Documentation and sampling of 51# transverse tunnel 1571 m of Zhujiayakou section in Qilinchang [47]. 1: barite; 2: fault; 3: sample location and sample number; 4: Lower Carboniferous Baizuo Fm. pale-red coarse- grained dolomite.

Caption: FIGURE 10: (a) C-O isotope composition diagram of Huize Pb-Zn deposit. (b) C-O isotope composition diagram of different orebody and wall rocks in Huize Pb-Zn deposit. Data sources: (A) previous data [6,10,16,18, 21]; (B) this paper.

Caption: FIGURE 11: Plot of 5D versus [delta][sup.18][O.sub.H2O] values from Huize Pb-Zn deposit. Data sources: (a) previous data [10,16, 21]; (b) this paper; (c) Wang [47].

Caption: FIGURE 12: Distributions of homogenization temperatures and salinity in sphalerite and calcite (Zhang et al. [48]). Data sources: (a) Han et al. [49]; (b) Zhang et al. [48]; (c) Zhang [39]. There is no information from (c) in the salinity-frequency diagram because the data is incomplete; (a, c) Qilinchang deposit; (b) Kuangshanchang deposit.

Caption: FIGURE 13: Identification diagram for the two fluid types in the Huize Pb-Zn deposit. (a) H-O isotope composition diagram. (b) Homogenization temperature-salinity diagram. (c) C-O isotope composition diagram.

TABLE 1: C-O isotopic compositions of sphalerite, calcite, and barite
in Huize Pb-Zn deposit, SW China.

Numbers           Objects               Positions

HQO-99-1          Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

HQO-109-4         Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

1631-38           Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

HQ-84             Calcite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

HQ-109-4          Calcite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

1571-2            Calcite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-2-3           Calcite           Tunnel 1751 m of 6
                                      (#) orebody in
                                        Qilinchang

38-3              Calcite           Tunnel 1884 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-6-10          Calcite           Tunnel 1648 m of 6
                                      (#) orebody in
                                        Qilinchang

13-61             Calcite           Tunnel 1691 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-1-1           Calcite           Tunnel 1836 m of 6
                                      (#) orebody in
                                        Qilinchang

14-2-8            Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

14-3-6            Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-5-1           Calcite           Tunnel 1631 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-4-23          Calcite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

23-4R             Calcite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

Hui-8              Barite           Tunnel 1571 m of 6
                                      (#) orebody in
                                        Qilinchang

HQC-25          Baritization        Tunnel 1631 m of 6
                cataclasites          (#) orebody in
                                        Qilinchang

HQC-98         Mineralization       Tunnel 1631 m of 6
            dolomitic granulitic      (#) orebody in
                    rock                Qilinchang

HQC-92         Mineralization       Tunnel 1631 m of 6
            dolomitic granulitic      (#) orebody in
                    rock                Qilinchang

41707         Altered dolomite       Tunnel 2233 m in
                                      Kuangshanchang

Hui-1-2      Near ore dolomite       Tunnel 2233 m in
                                      Kuangshanchang

HE-16        Biogenic limestone      Tunnel 2233 m in
                                      Kuangshanchang

HE-18        Biogenic limestone      Tunnel 2233 m in
                                      Kuangshanchang

HE-17        Middle-fine grain       Tunnel 2233 m in
                  dolomite            Kuangshanchang

SC-33       Dolomitic limestone    Sunjiagou section of
                                     mining periphery

SC-34           Coarse grain       Sunjiagou section of
                  dolomite           mining periphery

SC-35           Coarse grain       Sunjiagou section of
                  dolomite           mining periphery

HE11         Middle-fine grain     Zhujiayakou section
                  dolomite         of mining periphery

HE10        Dolomitic limestone    Zhujiayakou section
                                   of mining periphery

HE12        Dolomitic limestone    Zhujiayakou section
                                   of mining periphery

HE02         Middle-fine grain     Qingchaojie section
                  dolomite         of mining periphery

HE01         Biogenic limestone    Qingchaojie section
                                   of mining periphery

HE03        Dolomitic limestone    Qingchaojie section
                                   of mining periphery

HZ911-3     Porphyritic calcite       1 (#) orebody

HZ911-10       Lumpy calcite          1 (#) orebody

HZ911-15       Lumpy calcite          1 (#) orebody

HZQ25          Lumpy calcite          6 (#) orebody

HZQ40       Porphyritic calcite       6 (#) orebody

HZQ47          Lumpy calcite          6 (#) orebody

HZQ55           Vein calcite          6 (#) orebody

HZQ66          Lumpy calcite          6 (#) orebody

HZQ70       Porphyritic calcite       6 (#) orebody

HZQ77           Vein calcite          6 (#) orebody

HZQ85       Porphyritic calcite       6 (#) orebody

HZQ90       Porphyritic calcite       6 (#) orebody

HZQ96          Lumpy calcite          6 (#) orebody

HQ10-7         Lumpy calcite          10 (#) orebody

HQ10-12        Lumpy calcite          10 (#) orebody

HQ10-18        Lumpy calcite          10 (#) orebody

HQ10-25        Lumpy calcite          10 (#) orebody

HQ10-5         Lumpy calcite          10 (#) orebody

HQ8-115        Lumpy calcite          8 (#) orebody

HQ18-143       Lumpy calcite          8 (#) orebody

HQ8-98          Vein calcite          8 (#) orebody

HZQ35        Miarolitic calcite        Carbonate of
                                       Qixia-Maokou
                                     formation (500 m
                                      from orebody)

HZK33        Miarolitic calcite        Carbonate of
                                       Qixia-Maokou
                                     formation (500 m
                                      from orebody)

HZQ74       Whole rock of coarse   Host rock of Baizuo
               grain dolomite      formation in number
                                       10 ore body

HZ2053-29   Whole rock of coarse   Host rock of Baizuo
               grain dolomite      formation in number
                                    1 ore body (1500 m
                                      from orebody)

HZS40       Whole rock of coarse   Baizuo formation in
               grain dolomite       Sunjiagou section
                                       (1500 m from
                                         orebody)

HZX-3       Whole rock of coarse   Baizuo formation in
               grain dolomite      Xiaoheiqing (1000 m
                                      from orebody)

HZ911-4      Calcite filled in       NE tectonic belt
                 fractures         (150 m from orebody)

HZQ28        Calcite filled in       NE tectonic belt
                 fractures         (150 m from orebody)

Z0807-2r         Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-3r         Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-7r         Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-8r         Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-15r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-18r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-21r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-22r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-23r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-24r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-25r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-26r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-27r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-28r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-29r        Dolostone           15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-14r         Calcite            15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-19r         Calcite            15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-25r         Calcite            15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-26r         Calcite            15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Z0807-27r         Calcite            15 (#) stope of
                                     tunnel 1752 m in
                                      Kuangshanchang

Numbers     [delta][sup.13]   [delta][sup.18]    Date
              [C.sub.PDB]/      [O.sub.SMOW]/     source
             [per thousand]     [per thousand]

HQO-99-1         -1.94              17.09           a

HQO-109-4        -3.27              17.79

1631-38          -2.97              18.56

HQ-84            -3.23              18.21

HQ-109-4         -3.31              17.79

1571-2           -3.30              18.21

Hui-2-3          -2.75              17.80           b

38-3             -2.80              17.10

Hui-6-10         -2.90              17.80

13-61            -2.70              18.10

Hui-1-1          -3.20              18.43

14-2-8           -2.60              18.70

14-3-6           -2.70              18.40

Hui-5-1          -2.40              18.10

Hui-4-23         -3.10              17.50

23-4R            -3.00              17.60

Hui-8                                8.29

HQC-25            0.30              20.40           a

HQC-98           -3.20              19.50

HQC-92           -1.60              17.80

41707            -0.80              20.50           c

Hui-1-2           0.77              21.16

HE-16            -0.44              22.45           d

HE-18            -1.50              21.33

HE-17             0.85              20.98

SC-33            -0.90              21.00           a

SC-34            -2.20              20.50

SC-35            -1.20              21.40

HE11              0.85              19.32           d

HE10             -3.35              19.42

HE12             -1.10              20.09

HE02              0.09              22.60

HE01             -1.15              22.59

HE03             -0.53              23.14

HZ911-3          -2.20              17.50

HZ911-10         -3.40              18.40

HZ911-15         -3.50              18.60

HZQ25            -2.50              17.50

HZQ40            -2.60              17.70

HZQ47            -3.10              17.50

HZQ55            -2.70              17.70

HZQ66            -3.40              18.10

HZQ70            -3.30              18.10

HZQ77            -2.80              17.80

HZQ85            -2.70              17.30

HZQ90            -2.70              17.20

HZQ96            -2.10              17.50           e

HQ10-7           -2.90              17.00

HQ10-12          -3.20              18.50

HQ10-18          -2.30              16.80

HQ10-25          -3.00              17.90

HQ10-5           -2.80              17.20

HQ8-115          -2.20              17.00

HQ18-143         -2.70              17.60

HQ8-98           -3.00              17.80

HZQ35             0.50              22.10

HZK33             1.10              23.50

HZQ74            -0.80              22.60

HZ2053-29         0.40              23.20

HZS40             0.70              22.80

HZX-3            -0.20              23.10

HZ911-4          -3.00              16.70

HZQ28            -3.40              16.30

Z0807-2r         -1.31              19.60           f

Z0807-3r         -2.52              17.25

Z0807-7r          0.17              20.30

Z0807-8r         -0.75              21.90

Z0807-15r        -0.83              19.95

Z0807-18r        -4.11              15.80

Z0807-21r        -0.49              20.00

Z0807-22r        -0.89              20.80

Z0807-23r        -0.07              23.80

Z0807-24r         0.13              20.50

Z0807-25r         0.71              20.70

Z0807-26r         0.64              21.50

Z0807-27r        -0.53              20.40

Z0807-28r         0.54              21.40

Z0807-29r        -0.66              22.30

Z0807-14r        -1.36              16.90

Z0807-19r        -0.91              18.65

Z0807-25r        -1.77              21.30

Z0807-26r        -3.70              20.20

Z0807-27r        -1.59              20.70

TABLE 2: H-O isotopic compositions of sphalerite, calcite, and barite
in Huize Pb-Zn deposit, SW China.

Numbers          Positions               Objects

HZ911-10       1 (#) orebody          Lumpy calcite
HZ911-15       1 (#) orebody          Lumpy calcite
HZQ25          6 (#) orebody          Lumpy calcite
HZQ40          6 (#) orebody       Porphyritic calcite
HZQ47          6 (#) orebody          Lumpy calcite
HZQ55          6 (#) orebody           Vein calcite
HZQ66          6 (#) orebody          Lumpy calcite
HZQ77          6 (#) orebody           Vein calcite
HZQ85          6 (#) orebody       Porphyritic calcite
HQ10-12        10 (#) orebody         Lumpy calcite
HQ10-18        10 (#) orebody         Lumpy calcite
HQ10-25        10 (#) orebody      Porphyritic calcite
HQ10-5         10 (#) orebody          Vein calcite
HQ8-115        8 (#) orebody          Lumpy calcite
HQ8-143        8 (#) orebody          Lumpy calcite
HQ8-98         8 (#) orebody           Vein calcite
HQO-99-1         Qilinchang              Calcite
HQO-109-4        Qilinchang              Calcite
1631-38          Qilinchang              Calcite
HQ-84            Qilinchang              Calcite
HQ-109-4         Qilinchang              Calcite
1751-2           Qilinchang              Calcite
HW-2-3           Qilinchang              Calcite
38-3             Qilinchang              Calcite
Hui-6-10         Qilinchang              Calcite
13-61            Qilinchang              Calcite
14-2-8           Qilinchang              Calcite
Hui-8          Kuangshanchang             Barite
Z0807-1r      15 (#) stope of           1st stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-4r      15 (#) stope of           3rd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-5r      15 (#) stope of           3rd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-6r      15 (#) stope of           1st stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-10r     15 (#) stope of           2nd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-11r     15 (#) stope of           3rd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-12r     15 (#) stope of           2nd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-13r     15 (#) stope of           2nd stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
Z0807-17r     15 (#) stope of           1st stage
              tunnel 1752 m in          sphalerite
               Kuangshanchang
JS-11-1          Qilinchang               Barite
JS-11-2          Qilinchang               Barite
JS-11-3          Qilinchang               Barite
JS-12-1          Qilinchang               Barite
JS-12-3          Qilinchang               Barite
JS-13-1          Qilinchang               Barite
JS-40-3       Kuangshangchang             Barite
JS-40-5       Kuangshangchang             Barite
JS-41-1       Kuangshangchang             Barite
JS-42-2       Kuangshangchang             Barite

Numbers     [delta][sup.18]      [delta]D          Date
              [O.sub.H2O]      [per thousand]      source
             [per thousand]

HZ911-10          8.6              -59.8              a
HZ911-15          8.8              -52.4
HZQ25             7.7              -50.2
HZQ40             7.9              -55.6
HZQ47             7.7              -57.9
HZQ55             7.9              -54.1
HZQ66             8.3              -53.9
HZQ77             8.0              -58.0
HZQ85             7.5              -52.7
HQ10-12           8.7              -53.2
HQ10-18           7.0              -57.3
HQ10-25           8.1              -53.0
HQ10-5            7.4              -52.8
HQ8-115           7.2              -55.2
HQ8-143           7.8              -54.1
HQ8-98            8.0              -54.3
HQO-99-1          7.8              -43.5              b
HQO-109-4         10.1             -54.8
1631-38           7.8              -48.0
HQ-84             9.7              -51.5
HQ-109-4          7.6              -43.5
1751-2            7.7              -55.4
HW-2-3            7.1              -55.8              c
38-3              6.4              -64.0
Hui-6-10          7.1              -75.0
13-61             8.0              -57.0
14-2-8            -2.1             -66.0
Hui-8             7.8              -86.0
Z0807-1r          28.0             -52.0              d

Z0807-4r          5.5              -50.0

Z0807-5r          2.2              -55.0

Z0807-6r          25.5             -50.0

Z0807-10r         171              -27.0

Z0807-11r         4.0              -43.0

Z0807-12r         13.2             -49.0

Z0807-13r         12.2             -57.0

Z0807-17r         28.9             -51.0

JS-11-1          -91.3              11.6              e
JS-11-2          -85.5              9.9
JS-11-3          -87.8              11.8
JS-12-1          -77.4              11.8
JS-12-3          -80.5              11.7
JS-13-1          -79.8              12.4
JS-40-3          -73.7              12.4
JS-40-5          -63.9              13.7
JS-41-1          -75.1              13.4
JS-42-2          -61.7              13.4

a, b, c, d, and e: data from Li et al. [10], Han et al. [16], Liu and
Lin [21], this paper, and Wang [47]. Different stages of sphalerite
from the same ores can be separated based on textural and structural
observations (Figures 3, 4, 6, and 8).

TABLE 3: Characteristics of the two fluid types in the Huize
Pb-Zn deposit, SW China.

                                   Fluid A

Source                               Deep

Salinity                         <10 wt% NaCl
pH                                   <3.6
C[O.sub.2]                         Abundant
S[O.sub.4.sup.2-]                   70 ppm
H[S.sup.-]                            No
Pb, Zn complex                    Cl-complex
[delta][sup.13]              -3[per thousand] <
C[per thousand]        [delta][sup.13]C[per thousand] <
                               -4[per thousand]
[delta]                      -92[per thousand] <
D[per thousand]            [delta]D[per thousand] <
                              -50[per thousand]
[delta][sup.18]              10[per thousand] <
O[per thousand]        [delta][sup.18]O[per thousand] <
                               17[per thousand]
Property                        Acid oxidation
Corresponding major    Barite and sphalerite in I stage
minerals

                                     Fluid B

Source                    Brine water from atmospheric
                      Precipitation leaching the host rock
Salinity                          >20 wt% NaCl
pH                                     >6
C[O.sub.2]                          Abundant
S[O.sub.4.sup.2-]                      No
H[S.sup.-]                  Sulfate strata reduction
Pb, Zn complex                   Little or none
[delta][sup.13]               -2[per thousand] <
C[per thousand]         [delta][sup.13]C[per thousand] <
                                 1[per thousand]
[delta]                        -66[per thousand] <
D[per thousand]             [delta]D[per thousand] <
                                -43[per thousand]
[delta][sup.18]                2[per thousand] <
O[per thousand]         [delta][sup.18]O[per thousand] <
                                24[per thousand]
Property                  Neutral-alkaline and reducing
Corresponding major            Calcite in IV stage
minerals

                                 Mixed fluid

Source                          Mixed A and B

Salinity                        2-23 wt% NaCl
pH                                   5-8
C[O.sub.2]             First increased, then decreased
S[O.sub.4.sup.2-]                     No
H[S.sup.-]                 Precipitated as sulfides
Pb, Zn complex              Sulfide precipitation
[delta][sup.13]              -4[per thousand] <
C[per thousand]        [delta][sup.13]C[per thousand] <
                               1[per thousand]
[delta]                      -75[per thousand] <
D[per thousand]            [delta]D[per thousand] <
                              -43[per thousand]
[delta][sup.18]              7[per thousand] <
O[per thousand]        [delta][sup.18]O[per thousand] <
                               22[per thousand]
Property                         Near neutral
Corresponding major         Galena, sphalerite in
minerals                      II and III stages

FIGURE 6: Mineral paragenesis of the Huize Pb-Zn deposit, SW China.
Modified from Han et al. [16]. Sp: sphalerite; Gn: galena; Py:
pyrite; Dol: dolomite; Cal: calcite; Brt: barite; Qtz: quartz.

Periods                         Hydrothermal

Stages                          I stages

                [I.sub.1] stages   [I.sub.2] stages

Mineral              Brt +           Coarse grain
  assemblage     ferrodolomite      Py + a little
                                    dark brown Sp

Pyrite
Sphalerite
Galena
Chalcopyrite
Acanthite
Cerargyrite
Freibergite
Matildite
Dolostone
Calcite
Ferrodolomite
Quartz
Barite
Gypsum
Hemimorphite
Cerusite
Siderite
Limonite
Mineral                                Massive,
  structure                          disseminated
Mineral                                 Coarse
  texture                               grain,
                                    metasomatism,
                                       mosaic,
                                       crushing

Mineral                               Py-Sp ore
  type

Periods                          Hydrothermal

Stages            II stages       III stages      IV stages

Mineral          Brown Sp +      Gn + brown,      Fine grain
  assemblage        Gn +         light yellow    Py Dol + Cal
                ferrodolomite   Sp + Qtz + Cal

Pyrite
Sphalerite
Galena
Chalcopyrite
Acanthite
Cerargyrite
Freibergite
Matildite
Dolostone
Calcite
Ferrodolomite
Quartz
Barite
Gypsum
Hemimorphite
Cerusite
Siderite
Limonite
Mineral             Dense           Dense        Vein, dense
  structure        massive         massive         massive
Mineral         Coarse-medium    Medium-fine     Fine grained
  texture          grain,           grain,         euhedral
                metasomatism,   metasomatism,
                interstitial,   interstitial,
                common edge,      kneading,
                  including        kneading
Mineral         Py-Sp-Gn ore      Gn-Sp ore         Py ore
  type

Periods         Supergene
                oxidizing
Stages

Mineral
  assemblage

Pyrite
Sphalerite
Galena
Chalcopyrite
Acanthite
Cerargyrite
Freibergite
Matildite
Dolostone
Calcite
Ferrodolomite
Quartz
Barite
Gypsum
Hemimorphite
Cerusite
Siderite
Limonite
Mineral          Earthy,
  structure     honeycomb
Mineral           Jelly
  texture

Mineral           Pb-Zn
  type          oxide ore
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Zhang, Yan; Han, Runsheng; Wei, Pingtang; Wang, Lei
Publication:Geofluids
Date:Jan 1, 2017
Words:12251
Previous Article:New Insight into the Kinetics of Deep Liquid Hydrocarbon Cracking and Its Significance.
Next Article:The Effect of Water Chemistry on Thermochemical Sulfate Reduction: A Case Study from the Ordovician in the Tazhong Area, Northwest China.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters