Printer Friendly

Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China).

1. Introduction

Increases of both population and water demand in coastal areas have made groundwater an important water resource for coastal regions; however, coastal groundwater is vulnerable to overexploitation and contamination [1, 2]. Therefore, sustainable management of coastal groundwater has become a critical issue [3]. Understanding the hydrochemical characteristics of coastal groundwater could provide guidance for sustainable groundwater management [4-6].

The characteristics of groundwater chemistry are primarily influenced by recharge water chemistry, water-rock interactions, solute transport, and chemical processes occurring along the flow paths [6-10]. By analyzing the hydrochemical and isotopic data together with considering the hydrogeological conditions, the origins, chemical compositions, and dominating hydrochemical processes (e.g., water-rock interactions, evaporation, and mixing between different water) of groundwater in aquifers can be assessed comprehensively [11-14].

In hydrogeological studies about the coastal groundwater management, analysis of the hydrochemistry and hydrogen-oxygen isotopes data has been used widely to determine the hydrogeological conditions, such as groundwater recharge sources, recharge rates, and flow patterns [15-20]. The application of chemistry and hydrogen-oxygen isotopes can be used also to identify processes of groundwater salinization induced by seawater intrusion [21-25]. In addition, many other isotopes (e.g., radium, carbon, chlorine, boron, and strontium) have been used as tracers for characterizing the hydrogeological conditions and hydrochemical processes in coastal aquifers, specifically identifying submarine groundwater discharge and describing seawater intrusion [10,13, 26, 27].

This study focused on the coastal multilayered aquifer system (including three layers of aquifer and two layers of aquitard) of Zhanjiang, which is located in the southwest of Guangdong Province, China (Figure 1). The groundwater in the middle and deep confined aquifers (Figure 2) has been the sole source of drinking water for the population of the city of Zhanjiang since the 1960s. According to the water resources bulletin of Zhanjiang, groundwater pumping amount has been about 2.2 x [10.sup.8] [m.sup.3]/a for the resident population and local industry in recent years. Because of this intense exploitation of groundwater, the confined groundwater level has dropped to about 20 m below sea level since the 1990s [28, 29] (Figures 3(b) and 3(c)). Recent investigations have shown that the groundwater in this multilayered aquifer system remains fresh, but parts of the unconfined groundwater in island areas (e.g., Donghai and Naozhou) and small parts of the confined groundwater in Naozhou island have suffered seawater intrusion [30-33]. It is a concern that the confined groundwater in Zhanjiang city will be risky in suffering from seawater intrusion in the future. Therefore, it is necessary and urgent to conduct a research to identify the origins, mineralization processes, and hydrochemical dynamics of the coastal groundwater to assess the risk of seawater intrusion.

The main objective of this study is to identify the origins, material sources, and hydrochemical processes of the groundwater in the coastal multilayered aquifer system of Zhanjiang through integrated analysis of hydrochemical and isotopic data. In addition, the risk of seawater intrusion into the confined groundwater is assessed by analysis of the dynamic data of groundwater level and hydrochemistry. The results will contribute to generate scientific information for the local coastal hydrogeology and be supportive for the sustainable management of the groundwater in this multilayered aquifer system.

2. Study Area and Its Hydrogeology Condition

Zhanjiang city with a land area of 1491 [km.sup.2] is located in southwestern Guangdong, China (Figure 1). The topography is high in the northwest and low in the south. The average annual precipitation and evaporation are 1347 and 1774 mm, respectively [29, 32].

The geology of the study area mainly consists of continental and marine sediments of upper Tertiary-Quaternary age overlying a basement of muddy sandstone of Cretaceous age ([K.sub.2]). According to earlier geological investigation [29, 35, 36], the sedimentary formations are characterized by five stratigraphic units, which include Holocene stratum (sand and clay), Beihai Group of middle Pleistocene age ([Q.sub.2]b, sand with gravel in the lower portion and clayey sand in the upper portion), Zhanjiang Group of lower Pleistocene age ([Q.sub.1]z, coarse sand with gravel and scattered lenses of clay), Xiayang Group of Pliocene age ([N.sub.2]x, medium to coarse sand with gravel and thin layers or scattered lenses of clay), and Weizhou Group of Miocene age ([N.sub.1]w, silty sand and fine sand with clay). These geological formations are intercalated with basalt and pyroclastic rock. The sediments mentioned above constitute the multilayered aquifer system that includes three aquifers (the unconfined aquifer, the middle confined aquifer, and the deep confined aquifer) separated by clay layers (aquitards) (Figure 2).

The unconfined aquifer is about 30-m thick and is composed of deposits of Holocene age, Beihai Group of middle Pleistocene age, and upper portion of Zhanjiang Group of lower Pleistocene age. This aquifer overlies a thick layer of clay that extends laterally under the seabed. The hydraulic conductivity (K) of this unconfined aquifer is 5-25 m/d. Because exploitation of the unconfined groundwater is scattered and intermittent, the groundwater flow field remains an approximately natural flow regime with the water table above the mean sea level (Figure 3(a)). The groundwater, which is recharged mainly by rainfall infiltration and discharged through evaporation and runoff to the ocean, flows radially from the watershed to the ocean (Figures 2 and 3(a)).

The middle confined aquifer is composed of Zhanjiang Group deposits of lower Pleistocene age ([Q.sub.1]z), with thickness of about 120 m and hydraulic conductivity (K) of 20-60 m/d. Induced by overexploitation, the groundwater level of this confined aquifer has dropped to -24 to 16 m (Figure 3(b)). The deep confined aquifer is composed of Xiayang Group deposits of Pliocene age ([N.sub.2]x), with K of 20-50 m/d. The groundwater level of the deep confined aquifer has dropped to -22 to -4 m (Figure 3(c)). These two confined aquifers are recharged mainly via lateral runoff and they are discharged by pumping.

3. Sampling and Analysis Method

To investigate the hydrochemistry of the groundwater in the multilayered aquifer system of Zhanjiang, 3 times of groundwater sampling activities were conducted from March 2009 to March 2011. As shown in Figure 1 and Table 1, a total of 95 groundwater samples were collected from public supply wells. These comprised 22 samples from the unconfined aquifer (depth < 30 m, sample numbers starting with Q), 35 samples from the middle confined aquifer (50 < depth < 140 m, sample numbers starting with Z), and 38 samples from the deep confined aquifer (depth > 200 m, sample numbers starting with S). All samples were filtered through membranes (0.45-[micro]m pore size) and stored in high-density polyethylene bottles, which were pretreated using deionized water and rinsed using sampled water. Then, the samples were preserved and acidified with HN[O.sub.3] for cation analysis. All bottles were sealed with wax to ensure a watertight seal.

The total dissolved solid (TDS), temperature, and pH were measured in situ using a portable multiparameter water analyzer (Hach, Sension 156). The concentration of HC[O.sub.3.sup.-] was also determined in the field via titration on the day of sampling. The major cations ([K.sup.+], [Ca.sup.2+], [Na.sup.+], and [Mg.sup.2+]) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, pHPerkin-Elmer Sciex Elan DRC-e) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The anions ([Cl.sup.-], S[O.sub.4.sup.2-], and N[O.sub.3.sup.-]) were measured by Ion Chromatography System (Dionex, ICS-1500) at IGGCAS. Dissolved silica (Si[O.sub.2]) was analyzed by spectrophotometry using the molybdate blue method. The charge balance (E = ([summation] [m.sub.c] - [summation][m.sub.a])/([summation][m.sub.c] + [summation][m.sub.a]) x 100%, where mc is the milligram equivalent of the cations and ma is the milligram equivalent of the anions) varied from -4.97% to 4.95% (within [+ or -] 5%), with an average of -1.84% (within [+ or -] 5%). This balance number can indicate the accuracy of the data.

The analyses of stable oxygen ([sup.18]O), hydrogen ([sup.2]H), and sulfur ([sup.34]S) isotopes were conducted using mass spectrometers (Finigan MAT 253 for [sup.18]O-[sup.2]H and Delta S for [sup.34]S) at the Stable Isotope Laboratory, IGGCAS. The isotope ratios ([delta][sup.18]O, [delta][sup.2]H, and [delta][sup.34]S) were given in the usual 5-units calculated with respect to standard sample: [[delta].sub.sample] = (([[delta].sub.sample]/[R.sub.standard]) 1) x 1000([per thousand]), in which [R.sub.sample] and [R.sub.standard] represent the ratio of heavy to light isotopes of the sample and standard, respectively. The results of the stable isotope are shown in Table 2.

In this study, first, according to the groundwater chemical and isotopic data (Tables 1 and 2), statistical analyses (including general statistics and Pearson correlation analysis) and Piper diagram were used to illustrate the general hydrochemical characteristics (e.g., groundwater composition, dominating ions, and groundwater type) (Table 3 and Figure 4) and to assess the correlation between the hydrochemical compositions (Table 4) in the groundwater of this multilayered aquifer system. Second, isotope analyses, Gibbs plots, and bivariate analyses of the compositions were conducted to determine the origins, controlling physical/chemical processes and material sources of the groundwater. Third, based on the understanding of the groundwater origins and the controlling processes, the groundwater dynamics were analyzed to assess the risk of seawater intrusion into this coastal aquifer system.

4. Results

4.1. Groundwater Hydrochemistry. Understanding the characteristics of groundwater chemistry is the base to identify the groundwater origins and the hydrochemical processes occurring in the aquifer. The hydro chemical data of groundwater in the multilayered aquifer system of Zhanjiang are presented in Table 1, and the statistical results of those data are presented in Table 3. As shown, the TDS of the unconfined groundwater varies from 149 mg/L to 823.39 mg/L with a mean value of 360.28 mg/L; that of the middle confined groundwater ranges from 64.31 mg/L to 252.94 mg/L with an average value of 124.47 mg/L; and that of the deep confined groundwater changes from 99.52 mg/L to 325.98 mg/L with a mean value of 158.01 mg/L. These low values of TDS indicate that the groundwater in this aquifer system is mainly fresh (TDS < 1000 mg/L). According to the hydrogeological conditions of this aquifer system, it can be concluded that the approximately natural flow regime of the water table above the mean sea level (Figure 3(a)) is the primary reason why most of the unconfined groundwater has not become salinized. Furthermore, the confined aquifer's roof with extremely low permeability prevents seawater intrusion into the confined groundwater. The pH value of the unconfined groundwater varies from 4 to 8.25 with an average value of 6.04; that of the middle confined groundwater changes from 4.15 to 7.34 with an average value of 6.25; and that of the deep confined groundwater ranges from 5.34 to 7.81 with an average value of 6.72. Therefore, the groundwater is generally acidity. The average concentrations of major cations in the unconfined and the middle confined groundwater follow the order of [Na.sup.+] > [Ca.sup.2+] > [K.sup.+] > [Mg.sup.2+], and those of the major anions follow the order of HC[O.sub.3.sup.-] > [Cl.sup.-] > S[O.sub.4.sup.2-] > N[O.sub.3.sup.-] (Table 3). The average concentrations of major cations in the deep confined groundwater follow the order of [Na.sup.+] > [K.sup.+] > [Ca.sup.2+] > [Mg.sup.2+], and those of the major anions follow the order of HC[O.sub.3.sup.-] > S[O.sub.4.sup.2-] > [Cl.sup.-] > N[O.sub.3.sup.-] (Table 3).

The relations between the major ions and TDS are useful for interpreting the major hydrogeochemical evolution processes occurring in the aquifer and for deducing the material sources of the ions in the groundwater [37-39]. In this study, correlation coefficients were calculated to represent the relations between TDS and the major ions ([Na.sup.+], [K.sup.+], [Ca.sup.2+], [Mg.sup.2+], HC[O.sub.3.sup.-], N[O.sub.3.sup.-], [Cl.sup.-], and S[O.sub.4.sup.2-]). As shown in Table 4, the correlations between TDS and the major ions are not strong (correlation coefficients < 0.900), which indicates no single ion can take dominant role in groundwater mineralization. This result also implies that the dissolution of various minerals together constitutes the groundwater composition.

4.2. Groundwater Types. Piper diagram can help to understand the groundwater type and the potential hydrochemical processes controlling groundwater chemistry [40]. According to the concentrations of major ions shown in Table 1, the Piper plot was made (Figure 4). As shown, the unconfined and middle confined groundwater show a relatively large range in the rhombus area (areas I and II). The unconfined groundwater is characterized by HC[O.sub.3.sup.-]Ca x Na, HC[O.sub.3.sup.-]Cl-Ca x Na, Cl x S[O.sub.4]-Na x Ca, and Cl-Na x Ca x Mg hydrochemical types. With comprehensive consideration of the complicated hydrochemical types and relatively high levels of [Cl.sup.-], [Mg.sup.2+], and TDS (i.e., samples Q2, Q4, and Q6, Figure 1 and Tables 1 and 3) of the unconfined groundwater, it can be concluded that slight seawater mixing occurs in the unconfined groundwater near the coastline but that seawater intrusion is still in the initial phase [32]. The middle confined groundwater is characterized by HC[O.sub.3]-Ca x Mg x Na, Cl x HC[O.sub.3]-Na x Ca, and Cl-S[O.sub.4]-Na x Ca x Mg hydrochemical types. The low TDS values and complicated hydrochemical types of this confined groundwater suggest that water-rock interactions (e.g., mineral dissolution or cation exchange) might occur in the middle confined aquifer.

Figure 4 also shows that the deep confined groundwater samples, which are distributed mainly in the bottom-left corner of rhombus area (II), are mainly represented by HC[O.sub.3]-Na x Ca(Mg) hydrochemical type, indicating that deep confined groundwater naturally evolves without any intensive hydrogeochemical process or anthropogenic impact.

4.3. [delta] [sup.18]O and [delta][sup.2]H Compositions. The stable oxygen ([sup.18]O) and hydrogen ([sup.2]H) isotopes of groundwater samples are related to the recharge sources, flow paths, and residence times of groundwater. The method of isotope analysis has been used widely in many hydrogeological studies [4, 5, 41, 42]. The analysis results of [delta][sup.18]O and [delta][sup.2]H are shown in Table 2 and Figure 5. According to the monthly rainwater data obtained from the GNIP (Global Network of Isotopes in Precipitation) of the IAEA (International Atomic Energy Agency), the local meteoric water lines (LMWLs) of Hong Kong and Haikou weather stations were calculated as [delta][sup.2]H = 8.28 [delta][sup.18]O + 12.78 and [delta][sup.2]H = 7.50 [delta][sup.18]O + 6.18, respectively. Then, these two LMWLs were used as the LMWL of Zhanjiang. As shown in Figure 5 and Table 2, the isotopic compositions of [delta][sup.2]H and [delta][sup.18]O of the unconfined groundwater vary from -38.40[per thousand] to -46.50[per thousand] (average: -42.07[per thousand]) and from -5.56[per thousand] to -7.05[per thousand] (average: -6.40[per thousand]), respectively. The isotopic compositions of [delta][sup.2]H and [delta][sup.18]O of the middle confined groundwater vary from -43.60[per thousand] to -52.90[per thousand] (average: -47.58%) and from -6.42[per thousand] to -7.42[per thousand] (average: -6.91[per thousand]), respectively. The isotopic compositions of [delta][sup.2]H and [delta][sup.18]O of the deep confined groundwater vary from -46.50[per thousand] to -54.62[per thousand] (average: -50.79[per thousand]) and from -6.90[per thousand] to -7.45% (average: -7.16[per thousand]), respectively.

5. Discussions

5.1. Origin of the Groundwater. For the unconfined groundwater, as shown in Figure 5, all samples (except Q2, Figure 1) plot along the global meteoric water line (GMWL) [43] and LMWL, indicating that the unconfined groundwater is mainly of meteoric origin. In comparison with the other groundwater samples, sample Q2 is relatively enriched in stable isotopes, it deviates slightly from the LMWL (part I in Figure 5), and it is characterized by comparatively high levels of TDS (563.74 mg/L) and a low water table (2.55 m). This might imply that this sample is influenced either by relatively intense evaporation or by slight mixing with seawater in the area near the coastline.

For the middle and deep confined groundwater, as shown in Figure 5, the distribution of the confined groundwater samples presents a pattern: the deeper the aquifer depth is, the more depleted the isotopic data are. This pattern may imply that the hydraulic connection between this two confined aquifers is relatively weak. The samples collected in the mainland area (i.e., Zhanjiang city area) are mainly located along the GMWL and LMWL, indicating that the confined groundwater in the mainland area is of meteoric origin. However, the relatively more depleted isotopic data compared to those of the unconfined groundwater implies that meteoric recharge to the confined groundwater is sourced from the mountain area of the north and northwest area, where the precipitation's isotopic data are more depleted. Meanwhile, the confined groundwater flow fields (Figures 3(b) and 3(c)) certify the occurrence of recharge from the northern and northwestern areas. In addition, the confined groundwater samples collected in the southern and southwestern areas (samples Z13, Z14, and S14 in Donghai and samples Z12 and S13 in Leizhou, Figure 1) are characterized by more depleted isotopic data than samples of the mainland area. These samples deviate significantly from the LMWL and they are distributed to the bottom-left of the LMWL (part II in Figure 5). This indicates that the confined groundwater of the Donghai and Leizhou areas is sourced from rainfall recharge during an older period with a colder climate. From the sulfur isotopes ([delta][sup.34]S) of the groundwater in Donghai (Table 2), it can be concluded that the [delta][sup.34]S values in groundwater become more enriched with increasing depth. This trend of enrichment of [delta][sup.34]S values in the confined fresh groundwater of Donghai also demonstrates that the confined groundwater of island is palaeowater. According to the recharge pattern of the confined groundwater in the southern and southwestern areas (Figures 3(b) and 3(c)), we consider that the palaeowater stored in the confined aquifers of Donghai and Leizhou will flow toward Zhanjiang through lateral flow because of the intensive groundwater pumping of recent years.

In conclusion, the unconfined groundwater is recharged by local modern precipitation. However, the confined aquifers are recharged by precipitation in northern and northwestern mountain areas and by palaeowater sourced originally from rainfall infiltration during an older time with a colder climate.

5.2. Controlling Processes and Material Sources of Groundwater Chemistry. To quantitatively study the controlling processes and material sources of the groundwater in Zhanjiang, Gibbs plots and bivariate analyses of the ionic relations were discussed in this section.

5.2.1. The Dominating Hydrochemical Process. Gibbs plots (i.e., a TDS versus Na/(Na + Ca) graph and a TDS versus Cl/(Cl + HC[O.sub.3]) graph) can be used to determine the primary hydrochemical processes (e.g., atmospheric precipitation, rock weathering, and evaporation) controlling groundwater chemistry [44]. According to the hydrochemical data (Table 1), Gibbs plots were made as Figure 6. Those plots indicate that rock weathering is the major mechanism controlling the groundwater chemistry of the multilayered aquifer system of Zhanjiang. This conclusion is coincident with the results deduced from the analysis of groundwater hydrochemistry and groundwater types.

5.2.2. Dissolution Material and Dissolution Process. To identify the dominant mineral in the rock weathering process in this aquifer system, molar ratio bivariate plots of Nanormalized Ca, Mg, and HC[O.sub.3] were made [45,46]. As shown in Figure 7, the groundwater of the multilayered aquifer system is mainly influenced by silicate weathering and carbonate dissolution, especially for the confined groundwater.

The milligram equivalent ratio of ([Na.sup.+] + [K.sup.+])/[C1.sup.-] can be an indicator of the sources of cations and of the occurrence of silicate weathering, where a ratio greater than 1 implies [Na.sup.+] released from silicate weathering and a ratio of 1 indicates halite dissolution [47]. As shown in Table 3, the ([Na.sup.+] + [K.sup.+])/[C1.sup.-] ratio values of the unconfined groundwater vary from 0.38 to 4.44 with an average value of 1.58; those values of middle confined groundwater range from 0.57 to 6.28 with an average value of 2.22; those values of deep confined groundwater change from 0.91 to 25.03 with average value of 6.95. These averages ([Na.sup.+] + [K.sup.+])/[C1.sup.-] ratio > 1 indicate the derivation of [Na.sup.+] and [K.sup.+] from silicate weathering. Moreover, the increase of the ([Na.sup.+] + [K.sup.+])/ [C1.sup.-] ratio with groundwater depth reveals that the silicate weathering in the confined aquifer is more remarkable than in the unconfined aquifer. Furthermore, the relatively higher concentration of Si[O.sub.2] (Table 3) in confined groundwater verifies evident silicate weathering in confined aquifers. The scatter plot of [Cl.sup.-] versus [Na.sup.+] + [K.sup.+] (Figure 8(a)) shows that the unconfined groundwater samples are distributed along the 1:1 line (or on either side of this line), which implies that ions ([Na.sup.+] and [K.sup.+]) are mainly resultant from the silicate weathering and halite dissolution. Conversely, most samples of the confined groundwater fall below the 1: 1 line, indicating that silicate weathering is the primary hydrochemical process in the confined aquifers. In addition, as shown in Figure 8(a), the excess of ([Na.sup.+] + [K.sup.+]) over [C1.sup.-] also implies that cation exchange may occur in the confined aquifers.

The plot of (HC[O.sub.3.sup.-] + S[O.sub.4.sup.2-]) versus ([Ca.sup.2+] + [Mg.sup.2+]) (Figure 8(b)) shows that most samples of fresh unconfined groundwater fall along the 1: 1 line and that some samples fall below the 1: 1 line, which indicates that the combined dissolutions of carbonate and silicate are the main sources of [Ca.sup.2+] and [Mg.sup.2+] in the unconfined groundwater [48]. Most samples of the confined groundwater fall above the 1 : 1 line, which demonstrates that silicate weathering is the main source of [Ca.sup.2+] and [Mg.sup.2+] in the confined groundwater [9,49-51]. The deficiency of [Ca.sup.2+] + [Mg.sup.2+] (Figure 8(b)) and the excess of [Na.sup.+] (Figure 8(a)) indicate the occurrence of cation exchange in the confined aquifers.

The plot of HC[O.sub.3.sup.-] versus ([Cl.sup.-] + S[O.sub.4.sup.2-]) (Figure 8(c)) shows that the groundwater samples of the unconfined and middle confined aquifers are distributed on both sides of the 1: 1 line, which implies that carbonate and evaporite dissolutions are also the main material sources of the chemical compositions of the unconfined and middle confined groundwater. The groundwater samples of the deep confined aquifer mainly plot above the 1: 1 line, indicating that carbonate dissolution is another material source of the chemical composition of the deep confined linebreak groundwater.

In conclusion, silicate weathering is the dominant process influencing the material source of ions ([Na.sup.+], [K.sup.+], [Ca.sup.2+], and [Mg.sup.2+]) in the coastal aquifer system of Zhanjiang. Carbonate and evaporite dissolutions also contribute to the groundwater compositions. With the dissolution by carbonic acid ([H.sub.2]C[O.sub.3]), the general reaction of silicate weathering is

[mathematical expression not reproducible] (1)

See [9].

5.2.3. Ion Exchange. As described in Section 5.2.2, most of the confined groundwater samples show an excess of [Na.sup.+] over [Cl.sup.+] and a deficiency of [Ca.sup.2+] + [Mg.sup.2+] over HC[O.sub.3.sup.-] + S[O.sub.4.sup.2-], which may indicate the contribution of cation exchange to the groundwater composition [39, 52]. The chloroalkaline index (CAI) of the groundwater samples can be an indicator of the type and the intensity of the ion exchange reactions between the groundwater and the aquifer matrix [53]. The CAI is calculated using the following formulae: CAI = [[Cl.sup.-] - ([Na.sup.+] + [K.sup.+])]/[Cl.sup.-]. Positive and negative values of the CAI indicate reverse cation exchange (2[Na.sup.+] + [Ca.sub.clay] [right arrow] [Ca.sup.2+] + 2[Na.sub.clay]) and cation exchange ([Ca.sup.2+] + 2[Na.sub.clay] [right arrow] 2[Na.sup.+] + [Ca.sub.clay]), respectively. As shown in Figure 9, the CAI values of the confined groundwater, especially that of the deep confined groundwater, are mainly negative, supporting the assumption of the occurrence of cation exchange in the confined aquifers. Meanwhile, the absolute value of the CAI can reflect the intensity of the cation exchange reactions. Figure 9 shows that the absolute CAI values of the deep confined groundwater are greater than the values of the middle confined groundwater, which means that the cation exchange reaction in the deep confined aquifer is more intense than in the middle confined aquifer.

In addition, to further investigate the occurrence of cation exchange in the confined aquifers, a bivariate plot of ([Ca.sup.2+] + [Mg.sup.2+] - HC[O.sub.3.sup.-] - S[O.sub.4.sup.2-]) versus ([Na.sup.+] - [Cl.sup.-]) can be used [54]. If cation exchange is an important process controlling the groundwater chemistry, the groundwater samples will fall in the lower-right quadrant of this diagram and along a line with a slope of -1. According to the chemistry data, plot of ([Ca.sup.2+] + [Mg.sup.2+] - HC[O.sub.3.sup.-] - S[O.sub.4.sup.2-]) versus ([Na.sup.+] - [Cl.sup.-]) was made (Figure 10). Figure 10 shows that most of the deep confined groundwater samples showed an excess of [Na.sup.+] over [Cl.sup.-] and a deficiency of [Ca.sup.2+] + [Mg.sup.2+] over HC[O.sub.3.sup.-] + S[O.sub.4.sup.2-] and that they mainly lie along the line with a slope of -1. Thus, it can be concluded that cation exchange occurs in the confined aquifer.

5.2.4. Anthropogenic Input. In an area with considerable demand for groundwater, anthropogenic activity is always an important factor regarding groundwater quality. The concentrations of N[O.sub.3.sup.-] can reflect the influence of anthropogenic activity on groundwater chemistry. In this study, the N[O.sub.3.sup.-] concentrations in the samples of the unconfined groundwater range from 0.5 to 120.0 mg/L with an average value of 41.36 mg/L, exceeding the quality standard for groundwater in China. This implies that the unconfined groundwater has been influenced by anthropogenic activities. The N[O.sub.3.sup.-] concentrations in the samples of the middle and deep confined groundwater are <15 mg/L, which meet the groundwater quality standard. This indicates that anthropogenic influence on the confined groundwater is minor.

5.3. Salinity Indications of the Seawater Intrusion Risk. As introduced in Section 2, the confined groundwater level has dropped to about 20 m below the mean sea level since the 1990s [28, 29]. Although the confined aquifers have not experienced seawater intrusion, it is of concern that the confined groundwater will be at risk from seawater intrusion because of continuous groundwater demand, low confined groundwater level, and landward recharge flow pattern. In this section, based on the analysis of the flow regime, groundwater level dynamics, and salinity dynamics of the confined aquifers, the seawater intrusion risk for confined aquifer is discussed.

First, as shown in Figures 3(b) and 3(c), the confined groundwater level has dropped to approximately 20 m below the mean sea level. Two groundwater depression cones have formed in the confined aquifers and the confined aquifers are partially recharged by lateral groundwater runoff from the south (i.e., the direction of the ocean). This recharge characteristic of confined aquifers constitutes a potential risk of seawater intrusion.

Second, the long-term monthly monitoring data in boreholes (Figure 3) of the multilayered aquifers are analyzed to assess the dynamics of the groundwater level of Zhanjiang. Plots of observed groundwater levels of the unconfined aquifer, middle confined aquifer, and deep confined aquifer are shown in Figure 11. The groundwater level dynamics can be concluded as follows: (i) the unconfined groundwater level is in a relatively steady state with fluctuations induced by rainfall dynamics (Figure 11(a)) and (ii) the confined groundwater levels fluctuate with declining trends (Figures 11(b) and 11(c)). The declining trends of the confined groundwater level are obvious even for the groundwater in recharge-runoff areas such as Donghai island (boreholes L38-1(B) and L401(B)) and Nanshan island (L39-1(B)). The declining trends of the confined groundwater levels reveal that groundwater exploitation in Zhanjiang city is excessive and unsustainable. Meanwhile, from the [delta][sup.18]O-[delta][sup.2]H isotopic analysis result of the recharge sources of the confined groundwater, it has been established that the confined groundwater in Donghai is palaeowater which is unrenewable in short time. This means that the unsustainable groundwater exploitation is consuming the groundwater storage resources in the confined aquifers. Therefore, this unsustainable groundwater exploitation will increase the risk of seawater intrusion.

Third, the TDS values during 2009-2011 were compared to analyze the salinity dynamics. Figure 12 shows the salinity dynamics in some of the monitoring boreholes of the three aquifers. For the unconfined groundwater, the average TDS value presents a slightly decreasing trend (Figure 12(a)). However, for the middle confined aquifer, the average TDS value shows a slightly increasing trend (from 113.27 to 140.53 mg/L), while the trend of increase of the groundwater in Donghai (borehole Z10, increasing from 144.74 to 252.94 mg/L) is comparatively obvious (Figure 12(b)). Similarly, the average TDS value of the deep confined groundwater also shows a slightly increasing trend (from 151.52 to 162.33 mg/L), while the trend of increase of the groundwater in Donghai (borehole S10, increasing from 159.68 to 196.66 mg/L) is relatively notable (Figure 12(c)).

According to the increasing trends of TDS values in the confined groundwater (especially the groundwater in Donghai island), it can be deduced that the fresh water seawater mixing zones in the coastal confined aquifers have begun extending landward as the inland groundwater levels decline. From the groundwater flow fields (Figure 3), it can be seen that Naozhou island which is located in the offshore area of Donghai island will be the first to suffer from seawater intrusion. To address the possibility of seawater intrusion in Naozhou island, we referred to the hydrochemistry data of Naozhou island investigated by Zhang et al. [34] in March 2011 (Table 5). These hydrochemical data showed that the confined groundwater in the southern and eastern coastal area (e.g., samples 26, 22, 20, and 14 in Figure 1(d)) has been saline with TDS value of 1.39-10.28 g/L. This means that freshwater-seawater mixing zones in the confined aquifers of Naozhou island have extended landward. This landward extension constitutes the reason for the increase in TDS of the confined groundwater in Donghai island. Thus, the confined groundwater in Donghai island and Zhanjiang city will be risky in suffering from saltwater intrusion if the current unsustainable groundwater exploitation is not optimized.

6. Conclusions

Based on the analysis of the hydrochemistry and isotope of groundwater, this study revealed the recharge sources, hydrochemical processes, and seawater intrusion risk of the coastal groundwater in the multilayered aquifer system of Zhanjiang, China. The stable isotope values of unconfined and confined groundwater indicate that the recharge sources of groundwater in those aquifers are different. The unconfined groundwater is recharged from local modern precipitation, the confined groundwater in the city area (mainland area) is sourced from modern rainfall from the mountain area in the northwest of Zhanjiang, and the confined groundwater in Donghai island and Leizhou areas is recharged from palaeowater originated from precipitation during an older time under a colder climate. Natural hydrochemical processes such as silicate weathering, carbonate dissolutions, and cation exchange reaction are the dominant processes controlling the material sources of ions in groundwater of this multilayered aquifer system. However, anthropogenic activities also have affected the quality of the unconfined groundwater leading to higher concentrations of nitrate. In addition, increase trend of TDS in the confined groundwater reveals the occurrence of seawater intrusion induced by groundwater exploitation. The confined groundwater exploitation is unsustainable and is consuming the palaeowater storage.

https://doi.org/10.1155/2017/7080346

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant no. 41502255). The authors thank the laboratory technicians of Institute of Geology and Geophysics for their great help in testing groundwater samples.

References

[1] P. M. Barlow and E. G. Reichard, "Saltwater intrusion in coastal regions of North America," Hydrogeology Journal, vol. 18, no. 1, pp. 247-260, 2010.

[2] N. R. Green and K. T. B. MacQuarrie, "An evaluation of the relative importance of the effects of climate change and groundwater extraction on seawater intrusion in coastal aquifers in Atlantic Canada," Hydrogeology Journal, vol. 22, no. 3, pp. 609-623, 2014.

[3] A. Singh, "Managing the environmental problem of seawater intrusion in coastal aquifers through simulation-optimization modeling," Ecological Indicators, vol. 48, pp. 498-504, 2015.

[4] P. Wu, C. Tang, L. Zhu, C. Liu, X. Cha, and X. Tao, "Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China," Hydrological Processes, vol. 23, no. 14, pp. 2012-2022, 2009.

[5] D. M. Han, X. F. Song, M. J. Currell, J. L. Yang, and G. Q. Xiao, "Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China," Journal of Hydrology, vol. 508, pp. 12-27, 2014.

[6] M. E. Zabala, M. Manzano, and L. Vives, "The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina," Science of the Total Environment, vol. 518-519, pp. 168-188, 2015.

[7] L. Andre, M. Franceschi, P. Pouchan, and O. Atteia, "Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France," Journal of Hydrology, vol. 305, no. 1-4, pp. 40-62, 2005.

[8] F. J. Alcala and E. Custodio, "Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal," Journal of Hydrology, vol. 359, no. 1-2, pp. 189-207, 2008.

[9] K. Rina, P. S. Datta, C. K. Singh, and S. Mukherjee, "Characterization and evaluation of processes governing the groundwater quality in parts of the Sabarmati basin, Gujarat using hydrochemistry integrated with GIS," Hydrological Processes, vol. 26, no. 10, pp. 1538-1551, 2012.

[10] S. Santoni, F. Huneau, E. Garel et al., "Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France)," Science of the Total Environment, vol. 573, pp. 233-246, 2016.

[11] C. D. Frost and R. N. Toner, "Strontium isotopic identification of water-rock interaction and ground water mixing," Groundwater, vol. 42, no. 3, pp. 418-432, 2004.

[12] N. O. Jorgensen, M. S. Andersen, and P. Engesgaard, "Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr)," Journal of Hydrology, vol. 348, no. 3-4, pp. 257-269, 2008.

[13] M. Khaska, C. Le Gal La Salle, J. Lancelot et al., "Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France)," Applied Geochemistry, vol. 37, pp. 212-227, 2013.

[14] P. Negrel, R. Millot, S. Roy, C. Guerrot, and H. Pauwels, "Lead isotopes in groundwater as an indicator of water-rock interaction (Masheshwaram catchment, Andhra Pradesh, India)," Chemical Geology, vol. 274, no. 3-4, pp. 136-148, 2010.

[15] K. Aji, C. Tang, X. Song et al., "Characteristics of chemistry and stable isotopes in groundwater of Chaobai and Yongding River basin, North China Plain," Hydrological Processes, vol. 22, no. 1, pp. 63-72, 2008.

[16] P. W. Swarzenski and J. A. Izbicki, "Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity," Estuarine, Coastal and Shelf Science, vol. 83, no. 1, pp. 77-89, 2009.

[17] N. Ettayfi, L. Bouchaou, J. L. Michelot et al., "Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco," Journal of Hydrology, vol. 438-439, pp. 97-111, 2012.

[18] S. M. Yidana and E. Koffie, "The groundwater recharge regime of some slightly metamorphosed neoproterozoic sedimentary rocks: An application of natural environmental tracers," Hydrological Processes, vol. 28, no. 7, pp. 3104-3117, 2014.

[19] S. Lamontagne, A. R. Taylor, D. Herpich, and G. J. Hancock, "Submarine groundwater discharge from the South Australian Limestone Coast region estimated using radium and salinity," Journal of Environmental Radioactivity, vol. 140, pp. 30-41, 2015.

[20] J. J. Tamborski, J. K. Cochran, and H. J. Bokuniewicz, "Application of 224Ra and 222Rn for evaluating seawater residence times in a tidal subterranean estuary," Marine Chemistry, vol. 189, pp. 32-45, 2017.

[21] A. Zghibi, L. Zouhri, J. Tarhouni, and L. Kouzana, "Groundwater mineralisation processes in Mediterranean semi-arid systems (Cap-Bon, North east of Tunisia): Hydrogeological and geochemical approaches," Hydrological Processes, vol. 27, no. 22, pp. 3227-3239, 2013.

[22] V. Re, E. Sacchi, J. Mas-Pla, A. Mencio, and N. El Amrani, "Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: A multi-tracer and statistical approach (Bou-Areg region, Morocco)," Science of the Total Environment, vol. 500-501, pp. 211-223, 2014.

[23] D. Han, V. E. A. Post, and X. Song, "Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers," Journal of Hydrology, vol. 531, pp. 1067-1080, 2015.

[24] M. A. Eissa, J. M. Thomas, G. Pohll, O. Shouakar-Stash, R. L. Hershey, and M. Dawoud, "Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir delta, Sinai, Egypt," Applied Geochemistry, vol. 71, pp. 48-62, 2016.

[25] S. Lee, M. Currell, and D. I. Cendoen, "Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance," Science of the Total Environment, vol. 544, pp. 995-1007, 2016.

[26] L. Cary, E. Petelet-Giraud, G. Bertrand et al., "Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach," Science of the Total Environment, vol. 530-531, pp. 411-429, 2015.

[27] S. Santoni, F. Huneau, E. Garel et al., "Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone," Journal of Hydrology, vol. 540, pp. 50-63, 2016.

[28] Z. Xun, Y. Xia, L. Juan, Y. Jinmei, and D. Wenyu, "Evolution of the groundwater environment under a long-term exploitation in the coastal area near Zhanjiang, China," Environmental Geology, vol. 51, no. 5, pp. 847-856, 2007

[29] First Hydrogeological Team and Guangdong Geological Bureau, "Report of regional hydrogeologic investigation of Donghai island" (Chinese), 2009 (in Chinese).

[30] Z. H. Su, "The layout of the monitoring system of groundwater in Zhanjiang to prevent seawater invasion," Geotechnical Investigation Surveying, vol. 2, pp. 17-21, 2005, in Chinese.

[31] Q. Luo and Z. H. Su, "The characteristic analysis and the prevention and control methods from the sea water invasion in Naozhou island," Journal of Geological Hazards and Environment Preservation, vol. 18, no. 2, pp. 28-32, 2007 (Chinese).

[32] W. Zhang, X. Chen, H. Tan, Y. Zhang, and J. Cao, "Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea," Marine Pollution Bulletin, vol. 93, no. 1-2, pp. 153-162, 2015.

[33] Y. Teng, J. Su, J. Wang et al., "Soil microbial community response to seawater intrusion into coastal aquifer of Donghai Island, South China," Environmental Earth Sciences, vol. 72, no. 9, pp. 3329-3338, 2014.

[34] W. Zhang, H. Tan, X. Chen, J. Cao, G. Zhang, and H. Zhou, "Geochemical evolution and formation mechanism of groundwater in Naozhou island, Guangdong province," Journal of China Hydrology, vol. 32, no. 3, pp. 51-59, 2012, in Chinese.

[35] P. Zhou, G. Li, Y. Lu, and M. Li, "Numerical modeling of the effects of beach slope on water-table fluctuation in the unconfined aquifer of Donghai Island, China," Hydrogeology Journal, vol. 22, no. 2, pp. 383-396, 2014.

[36] X. Zhou, M. Chen, and C. Liang, "Optimal schemes of groundwater exploitation for prevention of seawater intrusion in the Leizhou Peninsula in southern China," Environmental Geology, vol. 43, no. 8, pp. 978-985, 2003.

[37] S. K. Kumar, V. Rammohan, J. D. Sahayam, and M. Jeevanandam, "Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India," Environmental Modeling & Assessment, vol. 159, no. 1-4, pp. 341-351, 2009.

[38] T. Huang and Z. Pang, "Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from environmental isotopes and water chemistry," Journal of Hydrology, vol. 387, no. 3-4, pp. 188-201, 2010.

[39] P. Zhou, Z. Wang, J. Zhang, Z. Yang, and X. Li, "Study on the hydrochemical characteristics of groundwater along the Taklimakan Desert Highway," Environmental Earth Sciences, vol. 75, no. 20, article no. 1378, 2016.

[40] A. M. Piper, "A graphic procedure in the geochemical interpretation of water-analyses," Eos, Transactions, American Geophysical Union, vol. 25, no. 6, pp. 914-928, 1944.

[41] Z. Kattan, "Environmental isotope study of the major karst springs in damascus limestone aquifer systems: Case of the Figeh and Barada springs," Journal of Hydrology, vol. 193, no. 1-4, pp. 161-182, 1997.

[42] M. Barbieri, T. Boschetti, M. Petitta, and M. Tallini, "Stable isotope ([sup.2]H, [sup.18]O and [sup.87]Sr/[sup.86]Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy)," Applied Geochemistry, vol. 20, no. 11, pp. 2063-2081, 2005.

[43] H. Craig, "Isotopic variations in meteoric waters," Science, vol. 133, no. 3465, pp. 1702-1703, 1961.

[44] R. J. Gibbs, "Mechanisms controlling world water chemistry," Science, vol. 170, no. 3962, pp. 1088-1090, 1970.

[45] J. Gaillardet, B. Dupre, P. Louvat, and C. J. Allegre, "Global silicate weathering and C[O.sub.2] consumption rates deduced from the chemistry of large rivers," Chemical Geology, vol. 159, no. 1-4, pp. 3-30, 1999.

[46] J. Xiao, Z. D. Jin, J. Wang, and F. Zhang, "Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau," Quaternary International, vol. 380-381, pp. 237-246, 2015.

[47] A. Mukherjee and A. E. Fryar, "Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India," Applied Geochemistry, vol. 23, no. 4, pp. 863-894, 2008.

[48] E. Lakshmanan, R. Kannan, and M. Senthil Kumar, "Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India," Environmental Geosciences, vol. 10, no. 4, pp. 157-166, 2003.

[49] P. S. Datta, S. K. Bhattacharya, and S. K. Tyagi, "18O studies on recharge of phreatic aquifers and groundwater flow-paths of mixing in the Delhi area," Journal of Hydrology, vol. 176, no. 1-4, pp. 25-36, 1996.

[50] N. Rajmohan and L. Elango, "Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India," Environmental Geology, vol. 46, no. 1, pp. 47-61, 2004.

[51] I. Matiatos, A. Alexopoulos, and A. Godelitsas, "Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece)," Science of the Total Environment, vol. 476-477, pp. 577-590, 2014.

[52] H. El Mejri, A. Ben Moussa, and K. Zouari, "The use of hydrochemical and environmental isotopic tracers to understand the functioning of the aquifer system in the Bou Hafna and Haffouz regions, Central Tunisia," Quaternary International ,vol. 338, pp. 88-98, 2014.

[53] H. Khairy and M. R. Janardhana, "Hydrogeochemical features of groundwater of semi-confined coastal aquifer in AmolGhaemshahr plain, Mazandaran Province, Northern Iran," Environmental Modeling & Assessment, vol. 185, no. 11, pp. 9237-9264, 2013.

[54] R. S. Fisher and W. F. Mullican III, "Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA," Hydrogeology Journal, vol. 5, no. 2, pp. 4-16, 1997

Pengpeng Zhou, (1) Ming Li, (2) and Yaodong Lu (3)

(1) Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Science, No. 19 Beitucheng West Road, Chaoyang District, Beijing 100029, China

(2) Appraisal Center for Environment and Engineering, Ministry of Environmental Protection, No. 28 Anwaibeiyuan Road, Chaoyang District, Beijing 100012, China

(3) The First Hydrogeological Team, Guangdong Geological Bureau, Kangning Road, Chikan District, Zhanjiang 524049, China

Correspondence should be addressed to Pengpeng Zhou; zhoupengpeng@mail.iggcas.ac.cn

Received 18 May 2017; Accepted 13 September 2017; Published 19 October 2017

Academic Editor: Tobias P. Fischer

Caption: FIGURE 1: Location map of Zhanjiang (Line A-B illustrates the location of the hydrogeological cross-section displayed in Figure 2).

Caption: FIGURE 2: Hydrogeological cross-section (Line A-B in Figure 1) of the study area.

Caption: FIGURE 3: Groundwater level contour maps for the multilayered aquifer system: (a) the unconfined aquifer, (b) the middle confined aquifer, and (c) the deep confined aquifer

Caption: FIGURE 4: Piper plots of chemical compositions of the coastal groundwater of Zhanjiang.

Caption: FIGURE 5: Stable isotope compositions of groundwater in the multilayered aquifers of Zhanjiang.

Caption: FIGURE 6: Gibbs plots of the major ions in the coastal groundwater of Zhanjiang.

Caption: FIGURE 7: Bivariate plots of molar ratio. (a) Na-normalized Ca versus Na-normalized HC[O.sub.3]. (b) Na-normalized Ca versus Na-normalized Mg.

Caption: FIGURE 8: Bivariate plots of ionic relation. (a) [Cl.sup.-] versus [Na.sup.+] + [K.sup.+].(b) S[O.sub.4.sup.2-] + HC[O.sub.3] versus [Ca.sup.2+] + [Mg.sup.2+]. (c) HC[O.sub.3.sup.-] versus ([Cl.sup.-] + S[O.sub.4.sup.2]).

Caption: FIGURE 9: Plot of the chloroalkaline index (CAI) versus TDS of the groundwater in the multilayered aquifers of Zhanjiang.

Caption: FIGURE 10: Plot of ([Ca.sup.2+] + [Mg.sup.2+] - HC[O.sub.3.sup.-] - S[O.sub.4.sup.2-]) versus ([Na.sup.+] - [Cl.sup.-]).

Caption: FIGURE 11: Observed groundwater level dynamics in the multilayered aquifers during 2008-2011. (a) Groundwater level dynamics of the unconfined aquifer. (b) Groundwater level dynamics of the middle confined aquifer. (c) Groundwater level dynamics of the deep confined aquifer.

Caption: FIGURE 12: Salinity dynamics in the multilayered aquifers during 2009-2011. (a) TDS dynamics of the unconfined aquifer. (b) TDS dynamics of the middle confined aquifer. (c) TDS dynamics of the deep confined aquifer.

TABLE 1: Hydrochemical data of groundwater in the multilayered aquifer
system of Zhanjiang.

Sample    Aquifer     Sampling   [Ca.sup.2+]   [Mg.sup.2+]
number                  time       (mg/L)        (mg/L)

Q1       Unconfined   Mar 2009      17.86         6.91
Q2        aquifer                   15.4          70.67
Q3                                  12.91         5.71
Q4                                  77.37         23.75
Q5                                  52.58           6
Q6                                 105.15         15.64
Q7                                  18.36         8.42

Q1       Unconfined   Mar 2010      13.89         6.32
Q2        aquifer                   41.66         21.65
Q3                                  27.78          1.8
Q4                                  70.42         19.55
Q5                                  25.54         4.81
Q6                                  76.39         23.75
Q7                                  15.37         8.13
Q8                                  9.42          8.81

Q1       Unconfined   Mar 2011      13.21          7.4
Q2        aquifer                   43.51         22.82
Q3                                  28.84         4.45
Q4                                  33.57         8.51
Q5                                  29.82         16.2
Q6                                  74.29         21.04
Q7                                  16.61          7.7

Z1         Middle     Mar 2009      7.43          3.32
Z2        confined                  3.47           1.2
Z3        aquifer                   7.24          3.61
Z4                                  4.47          4.51
Z5                                  10.9          6.32
Z6                                  4.57          4.81
Z7                                  6.49          4.81
Z8                                  2.48          3.91
Z9                                  7.94          6.01
Z10                                 8.44          7.22
Z11                                 7.43          2.71

Z1         Middle     Mar 2010      9.92          3.61
Z2        confined                  2.48          1.51
Z3        aquifer                   3.97          2.41
Z4                                  3.47          3.32
Z5                                  11.91         5.42
Z6                                  4.97           4.2
Z7                                  9.42          5.12
Z8                                  2.97          2.41
Z9                                  8.44          5.71
Z10                                 9.92          7.22
Z11                                 7.43          2.41
Z12                                 9.13          8.11
Z13                                 8.46          6.72
Z14                                  5.8          4.04

Z1         Middle     Mar 2011      8.32          4.43
Z2        confined                  3.43          1.48
Z4        aquifer                   4.89          3.56
Z5                                  9.78           8.3
Z6                                  4.24          5.93
Z7                                  22.48         3.85
Z8                                  2.44          4.74
Z9                                  7.82          5.64
Z10                                  22           10.07
Z11                                 4.41          2.07

S1          Deep      Mar 2009      2.97          2.11
S2        confined                  3.47          3.01
S3        aquifer                   4.47          4.51
S4                                  10.33          4.2
S5                                  2.97          2.41
S6                                  6.45          3.61
S7                                  36.21          3.9
S8                                  9.92          4.51
S9                                  22.81         9.93
S10                                 22.87         5.41
S11                                 4.97           3.6
S12                                 4.97           3.3

S1          Deep      Mar 2010      2.97          2.11
S2        confined                  2.97          2.11
S3        aquifer                   5.95           3.3
S4                                  4.91          5.66
S5                                  2.48           2.7
S6                                  3.97           4.2
S7                                  10.09         6.62
S8                                  9.42          4.52
S9                                  16.87         13.22
S10                                 12.55         8.72
S11                                 12.37         2.71
S12                                 5.95          3.61
S13                                 6.48          5.65
S14                                 7.53          5.19

S1          Deep      Mar 2011      2.93          2.08
S2        confined                  2.44          3.56
S3        aquifer                   9.78          3.26
S4                                  4.89          4.74
S5                                  3.43          6.22
S6                                  4.86          3.85
S7                                  53.35         7.41
S8                                  14.24         5.03
S9                                  14.67         13.63
S10                                 14.17          8.3
S11                                 3.43          3.26
S12                                 6.35          5.33

Sample   [Na.sup.+]   [K.sup.+]   HC[O.sub.3.sup.-]   [Cl.sup.-]
number     (mg/L)      (mg/L)          (mg/L)           (mg/L)

Q1         31.24        6.45            13.42           49.77
Q2         17.74        45.63           5.98            183.35
Q3         51.38        6.59           171.16           19.21
Q4         46.58        146.6          206.86           111.77
Q5         27.12        13.68          145.84           32.29
Q6         101.81       41.68          324.44           154.56
Q7         28.26         1.4                            40.16

Q1         29.93        7.19            9.39            50.16
Q2         105.21       14.93           5.39            193.66
Q3         26.17        13.06           52.54           34.24
Q4         37.78        22.63          195.57           88.16
Q5         46.13        14.34          118.26           28.25
Q6         93.39       120.75          131.38           186.75
Q7         20.82        1.77                             29.1
Q8         10.06        3.39            69.33            8.44

Q1         32.03        8.09                            53.39
Q2         105.67       17.54           5.34            203.94
Q3         21.27        13.73           54.25           27.12
Q4          6.54        23.22          142.37           10.48
Q5          16.2        13.53          110.09           17.74
Q6         78.99        15.84          162.68           137.4
Q7         19.69        1.82                            28.89

Z1         11.43        10.04           61.02           12.23
Z2          7.56         1.8            5.98            12.23
Z3          3.97        7.28            46.13            2.62
Z4         20.02        8.01            22.33           27.93
Z5         11.42        6.43            80.36           10.49
Z6          8.14        4.62            5.45            13.08
Z7          7.94        4.62            58.56            6.1
Z8          5.35        3.66            7.44             7.87
Z9          8.87        1.45            68.46            5.25
Z10        12.62        9.36            44.67           28.82
Z11        20.63        6.09            93.79            6.98

Z1         13.67        9.01            56.4            26.05
Z2          6.96        2.53            5.86             8.58
Z3          7.98        8.61            47.46            4.29
Z4         18.71        6.78                            38.04
Z5         13.39        6.73            77.37            9.5
Z6          8.65        4.62            5.86            13.83
Z7          7.51        4.32            61.56            6.69
Z8          6.16        4.48            7.32             9.43
Z9          9.14        1.63            67.12            4.32
Z10        14.81         10             52.24           31.69
Z11        20.39        6.75            93.42            5.99
Z12         6.23         5.9            58.22            10.2
Z13         6.44        4.21            53.37            8.99
Z14         9.88        2.74            35.61           10.74

Z1         10.91        10.14           61.14           18.36
Z2          8.91        2.93                            13.12
Z4         21.82        8.16            16.29           35.88
Z5         11.64        7.37            86.77           10.49
Z6          8.24        5.68            7.52            14.36
Z7          6.26        4.74            92.2             7.87
Z8          7.63        4.54            8.12            13.12
Z9          9.58        1.88            67.79            3.51
Z10        24.12        4.27            35.27           72.64
Z11        18.43        5.53            67.79            8.76

S1         10.82        11.99           49.12            5.25
S2          9.32        12.34           55.04            1.74
S3         19.51        10.76           92.26            3.51
S4          4.67        8.09            65.47            4.36
S5          6.96        10.17           49.28            2.62
S6          8.66        9.81             67              3.51
S7         25.25        14.67           69.56           37.54
S8         14.71        7.04            90.8             4.36
S9         44.18        45.49          247.07           28.82
S10         12.4        10.97          132.47            6.1
S11         11.7        10.15           64.01            2.62
S12         7.1          10             53.58            0.89

S1         10.89        13.56           54.4             5.99
S2          7.39        13.4            52.33            3.44
S3         20.04        10.44           90.49            6.91
S4         10.61        9.76            69.93            4.36
S5          7.79        10.16           55.47            0.85
S6          9.03        9.91            62.19            3.44
S7         54.47        6.95           176.59           18.82
S8          14.7        8.19            94.89            3.44
S9         46.88        47.81          249.57           27.65
S10        15.87        4.73            97.82            17.3
S11         3.97        12.32           67.12            3.47
S12         9.74        9.97            67.59            4.29
S13        26.06         8.7            61.36           19.86
S14        23.17         14            127.83            2.54

S1          10.4        16.8            51.5             5.25
S2          7.37        12.25           53.25            3.51
S3         19.71        10.28           98.97            7.02
S4         10.65        9.48            81.34            4.36
S5          8.23        4.79            5.09            17.51
S6          9.25        12.28           63.7             2.62
S7         12.71        7.37           147.79           28.89
S8          9.78        10.35           98.97            3.51
S9         46.12        4.85           221.33            21.5
S10        17.75        10.08          116.72           10.49
S11        12.31        11.54           65.11            3.51
S12         9.29        9.94            65.45           15.74

Sample   S[O.sub.4.sup.2-]   N[O.sub.3.sup.-]   Si[O.sub.2]
number        (mg/L)              (mg/L)          (mg/L)

Q1             35.64                45             12.93
Q2             58.26               100             10.49
Q3             14.26               0.5             25.65
Q4            160.47                95             13.92
Q5             29.73                40             8.92
Q6             85.59               32.5            10.91
Q7             67.77                30             11.05

Q1             34.49               12.5            12.93
Q2            116.52                55             8.75
Q3             30.93                30             9.65
Q4             26.13                75             8.37
Q5             36.84                40             9.34
Q6            172.38                80             3.93
Q7             74.88                2              11.17
Q8             19.34                5              9.62

Q1             46.88                35             13.43
Q2             60.9                120             15.26
Q3             44.52               32.5            9.11
Q4             30.02                2              11.81
Q5             45.59                18             15.46
Q6            115.99                50             3.83
Q7             70.27                10              10

Z1              2.4                0.1             23.69
Z2             8.31                 3              14.62
Z3             13.06                               41.83
Z4             26.13                               29.09
Z5             4.75                0.3             43.35
Z6             36.09                               27.57
Z7             7.11                1.5             35.08
Z8             23.77                               24.42
Z9              2.4                0.1             29.31
Z10            19.02                               23.68
Z11             1.2                0.2             27.16

Z1             5.96                                13.28
Z2             12.82                2              16.52
Z3             5.96                                43.28
Z4             22.57               0.1             25.3
Z5             15.47                               38.34
Z6             34.24                               28.01
Z7             13.06               0.3             39.73
Z8             19.02               0.1             24.75
Z9             7.11                0.3             40.19
Z10            11.91               0.1             22.23
Z11             1.2                0.2             26.88
Z12            22.1                                26.84
Z13            18.06                               30.89
Z14            16.94                               29.42

Z1             7.01                                18.02
Z2             9.37                 15             17.91
Z4             22.24               0.1             37.21
Z5             14.07                               46.38
Z6             38.18               0.1             39.64
Z7             12.87                               43.85
Z8             24.59                               26.7
Z9             7.01                 1              48.13
Z10            21.09                5              10.9
Z11            4.71                                54.11

S1             7.11                0.3             26.9
S2             13.06                               25.91
S3             7.11                                32.95
S4              2.4                0.2             46.16
S5             5.26                 1              40.95
S6             8.31                                45.94
S7             51.1                 3              9.89
S8              1.2                 4              34.39
S9             11.91                               26.26
S10             1.2                0.3             31.03
S11            10.71               0.5             54.93
S12            13.06                               50.26

S1             8.31                0.1             27.16
S2             5.96                                26.17
S3             8.31                0.2             30.05
S4             12.97               0.8             43.44
S5             3.55                 1              33.57
S6             9.51                0.3             53.8
S7             14.26               0.1             24.89
S8              2.4                0.1             35.71
S9             16.62                               25.24
S10            8.31                0.3             48.76
S11            7.11                0.2             52.93
S12            8.31                                51.69
S13            18.37                               32.23
S14            6.88                                47.28

S1             14.07                               34.44
S2             8.37                0.3             29.68
S3             8.21                0.2             46.66
S4             1.15                                54.13
S5             23.26               0.1             40.4
S6             9.37                                60.03
S7             12.87                11             23.12
S8             5.86                 4              46.76
S9             7.01                                32.22
S10            22.24               0.2             36.83
S11            7.01                0.75            60.05
S12            2.35                0.2             31.92

Sample      TDS        pH         T
number     (mg/L)            ([degrees]C)

Q1         216.32     5.3         23
Q2         532.23     5.06        26
Q3         222.45     7.55        23
Q4         783.93     8.14        22
Q5         283.76     7.03        25
Q6         710.27     7.27        22
Q7         207.7      4.08        23

Q1         202.04      5          23
Q2         563.74     4.87        27
Q3         200.06     6.43        26
Q4         453.44     8.25        22
Q5         264.51     7.15        22
Q6         823.39     6.72        22
Q7         164.34      4          25
Q8          149       5.52        23

Q1         213.4      4.36        22
Q2         593.6      4.65        25
Q3         208.86     6.26        23
Q4         200.16     7.15        25
Q5         187.8      6.89        23
Q6         579.21     7.01        21
Q7         166.04     4.1         26

Z1         113.88     6.7         28
Z2         64.31      5.4         27
Z3         109.88     6.49        30
Z4         136.88     6.1         27
Z5         138.67     6.78        28
Z6         132.44     5.36        27
Z7         110.47     6.4         28
Z8         76.46      5.55        26
Z9         97.49      7.34        27
Z10        144.74     6.25        28
Z11        120.72     7.19       29.5

Z1         125.48     6.69        26
Z2         68.53      5.65        28
Z3         110.46     6.59        29
Z4         124.5      4.15        27
Z5         143.7      6.8         29
Z6         119.25     5.55        27
Z7         124.62     6.6         25
Z8          74.6      5.59        27
Z9         110.79     6.95        26
Z10        146.77     6.52        27
Z11        119.44     7.05        30
Z12         138       6.67        29
Z13         149       6.34        28
Z14         150       6.44        28

Z1         126.48     6.7         26
Z2          73.4      4.38        24
Z4         145.36     5.78       27.5
Z5         155.88     6.66        29
Z6         151.46     5.62        25
Z7         155.07     6.8         26
Z8         89.65      5.52        25
Z9         119.08     6.83        27
Z10        252.94     6.37        25
Z11        136.02     6.94        30

S1         100.69     6.51        32
S2         101.03     6.4         32
S3         131.77     6.99        32
S4         117.82     6.84       32.5
S5         131.82     6.56        30
S6          127       6.74        30
S7         239.1      6.3         33
S8         126.22     7.15        31
S9         323.46     6.14        31
S10        159.68     7.3         31
S11        135.68     6.7        32.5
S12        124.01     6.48        32

S1         110.74     6.64        31
S2         99.52      6.42        32
S3         133.04     6.97        32
S4         132.83     6.74        33
S5         103.84     6.7         30
S6         132.76     6.7         31
S7         226.26     7.81        33
S8         126.46     7.14        30
S9         325.98     6.12       32.5
S10        170.26     6.72        31
S11        133.09     6.87       31.5
S12        134.54     6.75        31
S13         214       6.68        30
S14         195       7.23        31

S1         120.82     6.58        32
S2         102.04     6.42        32
S3         161.08     7.12       32.5
S4         134.54     6.68        33
S5         163.5      5.34        31
S6         140.22     6.73        31
S7         231.54     7.66        33
S8         150.36     6.99        31
S9         281.44      6          35
S10        196.66     7.03        31
S11        142.08     6.68        32
S12        123.66     6.62        32

TABLE 2: Isotope data of groundwater in the multilayered aquifer
system of Zhanjiang.

Sample    Aquifer     Sampling      [sup.18]O
number                  time     ([per thousand])

Q1       Unconfined   Mar 2010        -6.93
Q2        aquifer                     -5.56
Q3                                    -7.05
Q4                                    -6.93
Q5                                    -5.92
Q6                                    -6.49
Q7                                     -5.9
Q8                                    -6.93

Z2         Middle     Mar 2010        -6.42
Z4        confined                     -7.4
Z6        aquifer                      -6.7
Z7                                    -6.94
Z8                                    -6.91
Z9                                    -6.58
Z11                                     -7
Z12                                   -6.71
Z13                                   -7.42
Z14                                   -7.05
S2          Deep                      -7.16
S3        confined                    -7.34
S6        aquifer     Mar 2010        -7.45
S7                                    -7.01
S13                                   -7.09
S14                                    -6.9

Sample          2H          [delta][sup.34]S
number   ([per thousand])   ([per thousand])

Q1            -43.7
Q2            -38.4
Q3            -45.8
Q4            -46.5
Q5            -39.8
Q6            -41.5
Q7            -38.8
Q8            -45.4               6.52

Z2             -44
Z4            -48.4
Z6            -45.7
Z7            -44.8
Z8            -46.8
Z9            -43.6
Z11           -46.1
Z12           -51.6
Z13           -51.9              12.38
Z14           -52.9              13.28
S2            -50.1
S3            -49.6
S6            -50.1
S7            -46.5
S13           -53.8
S14           -54.6              17.26

TABLE 3: Statistical results of groundwater chemistry data of the
multilayered aquifer system of Zhanjiang.

                       [Ca.sup.2+]   [Mg.sup.2+]   [N.sup.a+]
                         (mg/L)        (mg/L)        (mg/L)

Unconfined   Minimum      9.42           1.8          6.54
aquifer      Maximum     105.15         70.67        105.67
             Average      3727          14.55        43.36

Middle       Minimum      2.44           1.2          3.97
confined     Maximum      22.48         10.07        24.12
aquifer      Average      7.40          4.59         11.30

Deep         Minimum      2.44          2.08          3.97
confined     Maximum      53.35         13.63        54.47
aquifer      Average      9.78          4.93         16.04

                       [K.sup.+]   HC[O.sub.3.sup.-]   [Cl.sup.-]
                        (mg/L)          (mg/L)           (mg/L)

Unconfined   Minimum      1.4            5.34             8.44
aquifer      Maximum     146.6          324.44           203.94
             Average     25.18          106.91           76.77

Middle       Minimum     1.45            5.45             2.62
confined     Maximum     10.14           93.79           72.64
aquifer      Average     5.63            47.24           14.86

Deep         Minimum     4.73            5.09             0.85
confined     Maximum     47.81          249.57           37.54
aquifer      Average     12.14           90.33            9.15

                       S[O.sub.4.sup.2-]   N[O.sub.3.sup.-]
                            (mg/L)              (mg/L)

Unconfined   Minimum         14.26               0.5
aquifer      Maximum        172.38               120
             Average         62.61              41.36

Middle       Minimum          1.2                0.1
confined     Maximum         38.18                15
aquifer      Average         14.62               1.64

Deep         Minimum         1.15                0.1
confined     Maximum         51.1                 11
aquifer      Average         10.13               1.21

                       Si[O.sub.2]    TDS      pH         T
                         (mg/L)      (mg/L)          ([degrees]C)

Unconfined   Minimum      3.83        149      4          21
aquifer      Maximum      25.65      823.39   8.25        27
             Average      11.21      360.28   6.04      23.59

Middle       Minimum      10.9       64.31    4.15        24
confined     Maximum      54.11      252.94   7.34        30
aquifer      Average      30.52      124.47   6.25      27.31

Deep         Minimum      9.89       99.52    5.34        30
confined     Maximum      60.05      325.98   7.81        35
aquifer      Average      38.28      158.01   6.72      31.67

                       (Na + K)/
                          Cl

Unconfined   Minimum     0.38
aquifer      Maximum     4.44
             Average     1.58

Middle       Minimum     0.57
confined     Maximum     6.28
aquifer      Average     2.22

Deep         Minimum     0.91
confined     Maximum     25.03
aquifer      Average     6.95

TABLE 4: Correlation matrix between TDS and the major ions.

                          [Ca.sup.2+]   [Mg.sup.2+]   [Na.sup.+]

Unconfined aquifer
(n = 22)
  [Ca.sup.2+]                  1
  [Mg.sup.2+]                0.188           1
  [Na.sup.+]                 0.635         0.185          1
  [K.sup.+]                  0.601         0.406        0.314
  HC[O.sub.3.sup.-]          0.734        -0.141        0.196
  [Cl.sup.-]                 0.561         0.693        0.801
  S[O.sub.4.sup.2-]          0.595         0.346        0.580
  N[O.sub.3.sup.-]           0.451         0.670        0.503
  TDS                        0.814         0.570        0.766
Middle confined aquifer
(n = 35)
  [Ca.sup.2+]                  1
  [Mg.sup.2+]                0.554           1
  [Na.sup.+]                 0.204         0.085          1
  [K.sup.+]                  0.098         0.096        0.368
  HC[O.sub.3.sup.-]          0.550         0.193        0.237
  [Cl.sup.-]                 0.348         0.391        0.648
  S[O.sub.4.sup.2-]         -0.173         0.262        -0.111
  N[O.sub.3.sup.-]          -0.012        -0.194        -0.081
  TDS                        0.715         0.704        0.518
Deep confined aquifer
(n = 38)
  [Ca.sup.2+]                  1
  [Mg.sup.2+]                0.431           1
  [Na.sup.+]                 0.300         0.727          1
  [K.sup.+]                  0.181         0.388        0.468
  HC[O.sub.3.sup.-]          0.503         0.826        0.845
  [Cl.sup.-]                 0.713         0.661        0.656
  S[O.sub.4.sup.2-]          0.392         0.146        0.272
  N[O.sub.3.sup.-]           0.795         0.267        -0.018
  TDS                        0.606         0.844        0.849

                          [K.sup.+]   HC[O.sub.3.sup.-]   [Cl.sup.-]

Unconfined aquifer
(n = 22)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]                   1
  HC[O.sub.3.sup.-]         0.351             1
  [Cl.sup.-]                0.481          -0.036             1
  S[O.sub.4.sup.2-]         0.758           0.222           0.649
  N[O.sub.3.sup.-]          0.566          -0.126           0.798
  TDS                       0.774           0.356           0.881
Middle confined aquifer
(n = 35)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]                   1
  HC[O.sub.3.sup.-]         0.204             1
  [Cl.sup.-]                0.294          -0.239             1
  S[O.sub.4.sup.2-]        -0.049          -0.707           0.305
  N[O.sub.3.sup.-]         -0.312          -0.339           0.152
  TDS                       0.290           0.272           0.632
Deep confined aquifer
(n = 38)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]                   1
  HC[O.sub.3.sup.-]         0.584             1
  [Cl.sup.-]                0.381           0.564             1
  S[O.sub.4.sup.2-]         0.162           0.003           0.630
  N[O.sub.3.sup.-]         -0.143           0.365           0.464
  TDS                       0.569           0.851           0.835

                          S[O.sub.4.sup.2-]   N[O.sub.3.sup.-]   TDS

Unconfined aquifer
(n = 22)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]
  HC[O.sub.3.sup.-]
  [Cl.sup.-]
  S[O.sub.4.sup.2-]               1
  N[O.sub.3.sup.-]              0.473                1
  TDS                           0.788              0.760          1
Middle confined aquifer
(n = 35)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]
  HC[O.sub.3.sup.-]
  [Cl.sup.-]
  S[O.sub.4.sup.2-]               1
  N[O.sub.3.sup.-]             -0.022                1
  TDS                           0.217              -0.119         1
Deep confined aquifer
(n = 38)
  [Ca.sup.2+]
  [Mg.sup.2+]
  [Na.sup.+]
  [K.sup.+]
  HC[O.sub.3.sup.-]
  [Cl.sup.-]
  S[O.sub.4.sup.2-]               1
  N[O.sub.3.sup.-]              0.143                1
  TDS                           0.425              0.463          1

TABLE 5: Groundwater chemistry data of Naozhou island observed by
Zhang et al. [34].

Sample number        Aquifer         Sampling time     TDS (mg/L)

1               Unconfined aquifer     Mar 2011           2408
7                                                         3236
18                                                       444.7
21                                                       801.3
23                                                        6144
28                                                       597.3
30                                                       536.3
34                                                       739.2
38                                                       536.5
41                                                       309.3

3                Confined aquifer      Mar 2011           257
6                                                        178.1
14                                                   1393 (salted)
20                                                   5229 (salted)
22                                                   10280 (salted)
26                                                   4711 (salted)
45                                                       293.5
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Zhou, Pengpeng; Li, Ming; Lu, Yaodong
Publication:Geofluids
Date:Jan 1, 2017
Words:11716
Previous Article:A Low-Cost Automated Test Column to Estimate Soil Hydraulic Characteristics in Unsaturated Porous Media.
Next Article:Light Hydrocarbon Geochemistry of Oils in the Alpine Foreland Basin: Impact of Geothermal Fluids on the Petroleum System.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters