Printer Friendly

Human Salmonella and concurrent decreased susceptibility to quinolones and extended-spectrum cephalosporins.

The National Antimicrobial Resistance Monitoring System monitors susceptibility among Enterobacteriaceae in humans in the United States. We studied isolates exhibiting decreased susceptibility to quinolones (nalidixic acid MIC [greater than or equal to] 32 [micro]g/mL or ciprofloxacin MIC [greater than or equal to] 0.12 pg/mL) and extended-spectrum cephalosporins (ceftiofur or ceftriaxone MIC [greater than or equal to] 2 [micro]g/mL) during 1996-2004. Of non-Typhi Salmonella, 0.19% (27/14,043) met these criteria: 11 Senftenberg; 6 Typhimurium; 3 Newport; 2 Enteridis; and 1 each Agona, Haifa, Mbandaka, Saintpaul, and Uganda. Twenty-six isolates had gyrA mutations (11 at codon 83 only, 3 at codon 87 only, 12 at both). All Senftenberg isolates had parC mutations (S801 and T57S); 6 others had the T57S mutation. The Mbandaka isolate contained qnrB2. Eight isolates contained [bla.sub.CMY-2]; 1 Senftenberg contained [bla.sub.CMY-23]. One Senftenberg and 1Typhimurium isolate contained [bla.sub.SHV-12]; the Mbandaka isolate contained [bla.sub.SHV-30]. Nine Senftenberg isolates contained [bla.sub.OXA-1]; 1 contained [bla.sub.OXA-9]. Further studies should address patient outcomes, risk factors, and resistance dissemination prevention strategies.

**********

Although antimicrobial agents are not indicated for uncomplicated Salmonella infections, fluoroquinolones and extended-spectrum cephalosporins are potentially lifesaving treatments for extraintestinal infections (1). The National Antimicrobial Resistance Monitoring System (NARMS) has monitored antimicrobial drug resistance among enteric pathogens since 1996. NARMS has documented decreased susceptibility to each of these drug classes, in most instances among separate serotypes (2). Historically, decreased susceptibility to fluoroquinolones, which can be monitored by tracking resistance to nalidixic acid, has been noted among Salmonella serotypes (ser.) Typhi, Senftenberg, and Virchow (2,3). More recently, decreased susceptibility to fluoroquinolones has been noted among Salmonella set. Enteritidis (4). Decreased fluoroquinolone susceptibility has also been seen among nalidixic acid--susceptible isolates (5). Extended-spectrum cephalosporin resistance was noted among 15 non-Typhi Salmonella NARMS isolates (including 12 ser. Typhimurium) during 1996-1998 (6). In all instances, extended-spectrum cephalosporin resistance was the result of [bla.sub.CMY-2]' a class C plasmid-encoded ampC gene (7). In addition to conferring resistance or decreased susceptibility to extended-spectrum cephalosporins such as ceftiofur and ceftriaxone, this gene also confers resistance to ampicillin (AMP), amoxillin-clavulanate, cephalothin, and cefoxitin. This AmpC resistance phenotype has been seen in strains of Salmonella ser. Newport along with resistance to other drugs including chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. This MDRAmpC strain rose from 1% (1/77) of Salmonella ser. Newport submissions in 1998 to 25% (31/124) in 2001 (4). CMY [beta]-1actamases are largely responsible for extended-spectrum cephalosporin resistance among Salmonella ser. Newport, Typhimurium, and others isolated in North America (6,8).

Coresistance to fluoroquinolones and extended-spectrum cephalosporins would limit therapeutic options for Salmonella infections. Decreased susceptibility to both drug classes was identified in Thailand in 1993 (ser. Anaturn, Derby, Enteritidis, Typhimurium, Weltevreden, and I 4,5,12:i:-) (9), the United Kingdom in 1998 (ser. Senftenberg, Typhimurium, and Virchow) (10), Belgium as early as 2001 (ser. Virchow) (11), India in 2002 (ser. Typhi) (12), the United States in 2002 (ser. Mbandaka) (13), France in 2003 (11), and Taiwan in 2004 (ser. Choleraesuis, Cairo, and Kaduna) (14). In the United States, 27 (4.6%) of 588 Salmonella ser. Typhimurium isolates (clinical and slaughter) obtained from food animals in 1999 were resistant to ceftiofur and nalidixic acid: 22 (81%) from turkeys, 4 (15%) from horses, and 1 (4%) from cattle (15).

To understand coresistance to both antimicrobial classes among Salmonella isolates obtained from humans in the United States, we studied the NARMS human collection from 1996 through 2004, looking for decreased susceptibility to quinolones and extended-spectrum cephalosporins. Information for some of the isolates has been presented elsewhere (3,13,16-18). We present the molecular epidemiology of this phenotype and mechanisms responsible for its decreased susceptibility.

Materials and Methods

Isolates and AnUmicrobial Drug Susceptibility Testing

NARMS-participating state and local public health laboratories submitted non-Typhi Salmonella isolates to the Centers for Disease Control and Prevention (CDC) for antimicrobial susceptibility testing: every 10th isolate from 1996 through 2002 and every 20th isolate from 2003 to present. Serotypes were determined by the submitting laboratory and, for this study, were confirmed by the CDC National Salmonella Reference Laboratory according to the Kaufmann-White scheme as described (19). MICs were determined by using broth microdilution (Sensititre, Westlake, OH, USA). Isolates exhibiting an amikacin MIC >4 [micro]g/mL were confirmed by Etest (ABBiodisk, Piscataway, NJ, USA). Criteria for decreased susceptibility to quinolones and extended-spectrum cephalosporins were as follows: MIC [greater than or equal to] 32 [micro]g/mL for nalidixic acid or [greater than or equal to] 0.12 [micro]g/mL for ciprofloxacin and [greater than or equal to] 2 [micro]g/mL for ceftiofur or ceftriaxone. Susceptibility testing was performed according to manufacturer's instructions by using control strains Escheriehia coli ATCC25922 and ATCC35218, and Klebsiella pneumoniae ATCC700603 (for extended-spectrum [beta]-lactamase [ESBL] confirmation only). When available, Clinical Laboratory Standards Institute (CLSI) guidelines were used for interpretation (20).

Isoelectric Focusing for [beta]-Lactamases

The methods of Rasheed et al. were used with modification (21). Three-hour trypticase soy broth cultures (grown at 37[degrees]C with shaking at 300 rpm) were pelleted, re-suspended in 0.2% sodium acetate to 5% of original culture volume, and freeze-thawed 4 times (dry ice/ethanol bath and 37[degrees]C water bath). Preparations were diluted 2-fold with distilled water and swirled occasionally on ice for 30 min. Supernatants were collected after centrifugation (30 min at 20,200x g), and 3-5-[micro]L aliquots were resolved for 1.5 h on Ampholine PAGplate polyacrylamide gels, pH 3.5-9.5 (APBiotech, Piscataway, NJ, USA). Gels were stained with nitrocefin (500 [micro]g/mL; Becton Dickinson, Franklin Lakes, NJ, USA). Isoelectric points (pIs) were estimated by comparison with the following standard [beta]-1actamases: TEM-12 (pI 5.25), KPC-2 (pI 6.7), SHV-3 (pl 7.0), SHV-18 (pI 7.8), and MIR-1 (pI 8.4).

PCR Detection of Antimicrobial Drug Resistance Genes

Presence of qnr genes was determined by using PCR with primers QP1 and QP2 for qnrA (22), FQ1 and FQ2 for qnrB (23), and 5'-ATGGAAACCTACAATCATAC-3' and 5'-AAAAACACCTCGACTTAAGT-3' for qnrS. The qnrB allele was determined by amplification and sequencing with primers FQ1 and FQ2. Screening for aac(6')-Ib-cr was performed as described (24). Primer pairs used for amplification of [beta]-lactamase genes were: [bla.sub.CMY] (5'-ATGATGAAAAAATCGTTATGC-3') and (5'-TTGCAGCTTTTCAAGAATGCGC-3') (25); [bla.sub.OXA-1] (5'-AATGGCACCAGATTCAACTT-3') and 5'CTTGGCTTTTATGCTTGATG-3') (26); [bla.sub.TEM] (5'-TTC TTGAAGACGAAAGGGC-3') and (5'-ACGCTCAGTG GAACGAAAAC-3') (27); and [bla.sub.SHV] (5'-GGTTATGCGT TATATTCGCC-3') and (5'-TTAGCGTTGCCAGTGCTC3') (28) or at Lahey (5'-GCCGGGTTATTCTTATTTGTC3') and (5'-TCTTTCCGATGCCGCCGCCAG-3') (29). [bla.sub.CTX-M] genes were screened by using a multiplex PCR assay (30).

DNA Sequencing

Full-length sequences were obtained for [beta]-1actamase genes. A 255-bp region covering the quinolone-resistant determining region (QRDR) of gyrA (Met52 to Leu137) was amplified by using primers gyrAl: 5'-CATGAACGTATTGGGCAATG-3' and gyrA2: 5'-AGATCGGCCATCAGTTCGTG-3'. QRDRs of gyrB, parC, and parE were amplified and sequenced by using previously described primers (31), except primers parCF (5'-ATCGTGCGTT GCCGTTTAT-3') and parCR (5'-GCCGCTTTCGC CACTTC-3') were used to enhance coverage of parC. Amplicons were sequenced by using ABI Big-Dye 3.1 chemistry and ABI 3730XL automated DNA sequencers (PE Bio-systems, Foster City, CA, USA). Analysis was performed by using BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit. htmL) or SeqMan software (DNAStar, Madison, WI, USA). QRDR sequences of gyrA, gyrB, parC, and parE were compared with those of Salmonella set. Typhimurium LT2 (GenBank accession nos. AE008801, AE008878, AE008846, and AE008846, respectively).

Pulsed-Field Gel Electrophoresis (PFGE)

PFGE was performed as previously described (32). Isolates that produced indistinguishable patterns with Xba] (Roche Molecular Biochemicals, Indianapolis, IN, USA) were restricted with BlnI. Patterns were analyzed by using the BioNumerics version 4.0 software (Applied Maths, Sint-Martens-Latem, Belgium) and compared by unweighted pair group method with averages by using the Dice coefficient with a 1.5% band position tolerance window. The DNA sequence and deduced amino acid sequence for the Salmonella ser. Senftenberg [bla.sub.CMY-23] gene were assigned GenBank accession no. DQ463751.

Results

Decreased susceptibility to quinolones and extended-spectrum cephalosporins was first noted in NARMS data in 1997 and represented 0.19% (27/14,043) of non-Typhi Salmonella from 1996 through 2004 (Table 1). Salmonella ser. Senftenberg was the most frequent serotype (n = 11), followed by Typhimurium (n = 6), Newport (n = 3), and Enteritidis (n = 2). The phenotype was found in 9 different serotypes in 13 states (Table 2).

PFGE comparison by Xbal and, if applicable, BlnI restriction showed that 15/27 Salmonella isolates differed by [greater than or equal to] 1 band. No indistinguishable patterns among different Salmonella serotypes were identified. Of the 3 set. Newport isolates tested, 2 (AM15201 and AM21465) had indistinguishable Xbal patterns but different BlnI patterns (87.51% similarity). The 2 Enteritidis isolates (AM09124 and AM15266) were indistinguishable by both enzymes. Of the 11 set. Senftenberg isolates, 5 exhibited unique XbaI PFGE patterns, while the remaining 6 were separated into 2 groups with indistinguishable XbaI PFGE patterns (group 1: AM06960, AM08081, AM 16094, and AM 19422; group 2:AM20227 and AM20256). Blnl restriction demonstrated that AM 19422 differed from the other group 1 isolates by a single band difference (97.44% similarity). PFGE results for some of the Senftenberg isolates are described elsewhere (16,18). All Typhimurium isolates exhibited unique Xbal PFGE patterns (77%-93% similarity).

Antimicrobial drug susceptibility results are presented in Table 3. For nalidixic acid, 25 isolates exhibited an MIC >32 [micro]g/mL, and 2 (Mbandaka and Newport) had an MIC of 16 [micro]g/mL. For ciprofloxacin, MICs of 0.12-0.5 [micro]g/mL were found for all isolates except the 11 Senftenberg, for which the MIC was >4 [micro]g/mL. For ceftiofur, 14 isolates exhibited resistance (MIC [greater than or equal to] 8 [micro]g/mL). For ceftriaxone, 2 isolates exhibited resistance according to the current CLSI breakpoint (64 [micro]g/mL), and 7 exhibited intermediate resistance (MIC 16 or 32 [micro]g/mL). Three isolates (Mbandaka, Senftenberg, and Typhimurium) exhibited an ESBL phenotype according to ceftazidime and cefotaxime MIC alone and with clavulanate. Seven isolates exhibited the MDRAmpC phenotype, including 1 Agona, 2 Newport, 3 Typhimurium, and 1 Uganda. According to current CLSI guidelines, 1 isolate (set. Senftenberg) was fully resistant to ciprofloxacin, ceftriaxone, ceftazidime, and cefotaxime.

The mechanisms responsible for resistance and decreased susceptibility are shown in Table 4. Some mechanisms for some of the isolates are presented elsewhere (3,17,18). At least l gyrA mutation was found in 26 of 27 isolates. A gyrA mutation at codon 83 only was found for 11 isolates; a mutation at codon 87 only was found for 3; mutations at both codons were found for 12. No functional mutations were detected in gyrB orparE genes. All Senftenberg isolates had parC mutations (S80I and T57S), and 6 other isolates had the T57S mutation. In addition to the T57S mutation in parC, the Mbandaka isolate contained a plasmid-mediated qnrB2 gene and has been described (13). Four isolates contained aac(6')-Ib, but none contained the ciprofloxacin-modifying aac(6')-Ib-cr variant.

Nine AmpC phenotype isolates produced [beta]-1actamase with a pI [greater than or equal to] 8.4 (Table 4); 8 contained [bla.sub.CMY-2], but the Senftenberg strain contained a [bla.sub.CMY-23] gene (GenBank accession no. DQ463751) identical to that found in an E. coli isolate (GenBank accession no. DQ438952). This gene differs from [bla.sub.CMY-2] by 1 amino acid. Three of the [bla.sub.CMY-2] positive isolates, including the strain positive for [bla.sub.CMY-23], also contained [bla.sub.TEM-1b]. The Mbandaka isolate was positive for [bla.sub.SHV-30] with pI 7.0 (33) and also produced an enzyme with a pI 7.6, the nature of which is still under study. Two isolates (1 Senftenberg and 1 Typhimurium) contained [bla.sub.SHV-12], and both also contained [bla.sub.OXA] and [bla.sub.TEM-1] genes. Of the 11 Senftenberg isolates, 10 contained [bla.sub.OXA-1] (n = 9) or [bla.sub.OXA-9] (n = 1). No isolates contained [bla.sub.CTX-M] genes.

Discussion

Fluoroquinolone and extended-spectrum cephalosporin coresistance is rare; however, the appearance of this phenotype in 2 commonly isolated serotypes from humans (Typhimurium and Newport) is concerning. Sporadic infections are alarming, but if clonal expansion of an isolate with this phenotype were to take place, as occurred with Salmonella ser. Typhimurium DT104 and Newport-MDRAmpC, the clinical consequences could be dramatic. Statistically significant increases in resistance to nalidixic acid (odds ratio [OR] 6.7, 95% confidence interval [CI] CI 2.6-17.7) and ceftiofur (OR 43.2, 95% CI 10.5-177.4) have been documented among non-Typhi Salmonella of human origin submitted to NARMS during 1996-2003 (4). Of 202 nalidixic acid--resistant non-Typhi Salmonella collected by NARMS during 1996-2003, most were ser. Enteritidis (31%) or Typhimurium (10%). Most of the 324 ceftiofur-resistant non-Typhi Salmonella collected by NARMS during the same time period were ser. Newport (56%) or Typhimurium (23%). A slightly broader geographic representation can be found in the SENTRY surveillance project, which analyzed 786 Salmonella isolates (blood and stool) from medical facilities in Latin America and North America (including Canada) during 2001-2003 (8). Of these, 11% were resistant to nalidixic acid, and 2% exhibited decreased susceptibility to ceftazidime, ceftriaxone, or aztreonam.

Extended-spectrum cephalosporin-resistant Newport and Typhimurium isolates are typically obtained from community-acquired infections. Newport-MDRAmpC infections have been associated with consumption of contaminated beef and unpasteurized dairy products (34). Salmonella containing [bla.sub.CMY] genes have been isolated from ground chicken (Typhimurium DT208), turkey (Agona), and beef(Agona) purchased from retail outlets in the Washington DC area (35). In addition, cattle, chickens, turkeys, pigs, horses, and dogs have all been sources of [bla.sub.CMY]-containing Salmonella, including common serotypes such as Typhimurium, Newport, and Heidelberg (26,36,37). Decreased susceptibility to fluoroquinolones among Salmonella serotypes that typically carry [bla.sub.CMY] genes warrants exploration of factors that could select for decreased susceptibility to fluoroquinolones in animal reservoirs and in the human host.

PFGE showed diversity within some serotypes and indistinguishable strains within others. PFGE diversity among 2 serotypes commonly associated with extended-spectrum cephalosporin resistance (Newport and Typhimurium) is not surprising, given that CMY-producing strains have been seen at least since the late 1990s. Isolates of set. Enteritidis are highly clonal; therefore, PFGE-indistinguishable patterns among isolates with no apparent epidemiologic link are not unusual. All PFGE-indistinguishable Senftenberg isolates from group 1 were isolated in the same state. Results for the Florida Senftenberg isolates are described elsewhere (16,18).

Salmonella set. Senftenberg exhibiting decreased susceptibility to fluoroquinolones has been associated with nosocomial infections in healthcare facilities in the United States (18). All 11 isolates contained identical gyrA mutations (S83Y and D87G) and parC mutations (T57S and S80I). These parC mutations have been identified in several Salmonella serotypes including Senftenberg (38). Ten Senftenberg isolates included in this study contained [bla.sub.OXA] genes; the [bla.sub.OXA]-negative Senftenberg strain contained a [bla.sub.CMY-23] mechanism of extended-spectrum cephalosporin resistance. Acquisition of a [bla.sub.CMY] gene by a traditionally nalidixic acid--resistant serotype warrants further epidemiologic and laboratory investigation. The [bla.sub.OXA-1] gene has been identified in Salmonella ser. Typhimurium and is reported to be carried by an integron (39); [bla.sub.OXA-9] has been associated with Tn 1331 (40).

The epidemiology of Salmonella with decreased susceptibility to fluoroquinolones is relatively well characterized, as is that of Salmonella with [bla.sub.CMY]-mediated extended-spectrum cephalosporin resistance. Conversely, little is known about the events leading to quinolone and extended-spectrum cephalosporin coresistance and the epidemiology of these infections in humans. Patients with Salmonella infections who exhibit decreased susceptibility to both antimicrobial drug classes should be interviewed to determine risk factors and the effects of antimicrobial drugs and other potential selective factors on this phenomenon.

Acknowledgments

We thank Ewelina Lyszkowicz, Linda Gheesling, and Matt Mikoleit for confirming Salmonella serotypes; Anne Whitney and Mike Frace for DNA sequencing; and NARMS-participating laboratories for providing the isolates used in this study.

This work was funded by an Interagency Agreement between the Food and Drug Administration and CDC. G.A.J. was supported in part by grant AI43312 from the National Institutes of Health, US Public Health Service.

Dr Whichard is a researcher with NARMS at CDC. Her interests include [beta]-1actamases, multidrug-resistant Salmonella isolates, bacteriophages, and other mobile genetic elements.

References

(1.) Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32:263-9.

(2.) Centers for Disease Control and Prevention. NARMS human isolates final report, 2002. 2005 [cited 2006 Nov 10]. Available from http://www.cdc.gov/narms/annual/2002/2002annualreportfinal.pdf

(3.) Stevenson JE, Gay K, Barrett TJ, Medalla F, Chiller TM, Angulo FJ. Increase in nalidixic acid resistance among non-Typhi Salmonella enterica isolates in the United States from 1996-2003. Antimicrob Agents Chemother. 2007;51:195-7.

(4.) Centers for Disease Control and Prevention. NARMS human isolates final report, 2003. 2006 [cited 2006 Nov 11]. Available from http:// www.cdc.gov/narms/annual/2003/NARMS2003AnnualReport.pdf

(5.)Hakanen AJ, Lindgren M, Huovinen P, Jalava J, Siitonen A, Kotilainen P. New quinolone resistance phenomenon in Salmonella enterica: nalidixic acid-susceptible isolates with reduced fluoroquinolone susceptibility. J Clin Microbiol. 2005;43:5775-8.

(6.) Dunne EF, Fey PD, Kludt P, Reporter R, Mostashari F, Shillam P, et al. Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC [beta]-lactamase. JAMA. 2000;284:3151-6.

(7.) Carattoli A, Tosini F, Giles WE Rupp ME, Hinrichs SH, Angulo FJ, et al. Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant Salmonella strains isolated in the United States between 1996 and 1998. Antimicrob Agents Chemother. 2002;46:1269-72.

(8.) Biedenbach DJ, Toleman M, Walsh TR, Jones RN. Analysis of Salmonella spp. with resistance to extended-spectrum cephalosporins and fluoroquinolones isolated in North America and Latin America: report from the SENTRY Antimicrobial Surveillance Program (1997-2004). Diagn Microbiol Infect Dis. 2006;54:13-21.

(9.) Boonmar S, Bangtrakulnonth A, Pornruangwong S, Samosornsuk S, Kaneko K, Ogawa M. Significant increase in antibiotic resistance of Salmonella isolates from human beings and chicken meat in Thailand. Vet Microbiol. 1998;62:73-80.

(10.) Threlfall EJ, Skinner JA, Graham A, Ward LR, Smith HR. Resistance to ceftriaxone and cefotaxime in non-typhoidal Salmonella enterica in England and Wales, 1998-99. J Antimicrob Chemother. 2000;46:860-2.

(11.) Bertrand S, Weill FX, Cloeckaert A, Vrints M, Mairiaux E, Praud K, et al. Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)--producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J Clin Microbiol. 2006;44:2897-903.

(12.) Prabha Adhikari MR, Baliga S. Ciprofloxacin-resistant typhoid with incomplete response to cefotaxime. J Assoc Physicians India. 2002;50:428-9.

(13.) Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43:297-304.

(14.) Yah JJ, Chiou CS, Lauderdale TL, Tsai SH, Wu JJ. Cephalosporin and ciprofloxacin resistance in Salmonella, Taiwan. Emerg Infect Dis. 2005; 11:947-50.

(15.) Zhao S, Fedorka-Cray PJ, Friedman S, McDermott PF, Walker RD, Qaiyumi S, et al. Characterization of Salmonella Typhimurium of animal origin obtained from the National Antimicrobial Resistance Monitoring System. Foodborne Pathog Dis. 2005;2:169-81.

(16.) Stamey K, Rossiter S, Kubota K, VanDuyne S, Blackmore C, Farah R, et al. PFGE patterns of multidrug-resistant Salmonella serotype Senftenberg isolated from patients in a Florida hospital nosocomial transmission. Proceedings of the 101 st General Meeting Abstracts; 2001 May 20-24; Orlando (FL). Washington: American Society for Microbiology; 2001.

(17.) Zuppardo A, Fiorella PD, Baker R, Farah R, Sieffert D, Hale Y. Genetic profiles of multidrug resistant strains of Salmonella Senftenberg from a nosocomial Florida outbreak. Proceedings of the 102nd General Meeting Abstracts; 2002 May 19-23; Salt Lake City (UT). Washington; American Society for Microbiology; 2002.

(18.) Kay RS, Vandevelde AG, Fiorella PD, Crouse R, Blackmore C, Sanderson R, et al. Outbreak of healthcare-associated infection and colonization with multidrug-resistant Salmonella enterica serovar Senftenberg in Florida. Infect Control Hosp Epidemiol. 2007;28:805-11.

(19.) Popoff MY. Antigenic formulas of the Salmonella serovars. 8th ed. Paris: World Health Organization Collaborating Centre for Reference and Research on Salmonella, Institute Pasteur; 2001.

(20.) Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Sixteenth Informational Supplement (M100-SI6). Wayne (PA): The Institute; 2006.

(21.) Rasheed JK, Anderson GJ, Yigit H, Queenan AM, Domenech-Sanchez A, Swenson JM, et al. Characterization of the extended-spectrum beta-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Anti-microb Agents Chemother. 2000;44:2382-8.

(22.) Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47: 559-62.

(23.) Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50:1178-82.

(24.) Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States ofaac(6')-1b-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50:3953-5.

(25.) Winokur PL, Vonstein DL, Hoftman LJ, Uhlenhopp EK, Doern GV. Evidence for transfer of CMY-2 AmpC beta-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother. 2001 ;45:2716-22.

(26.) Chen S, Zhao S, White DG, Schroeder CM, Lu R, Yang H, et al. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl Environ Microbiol. 2004;70:1-7.

(27.) Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother. 2002;46:3156-63.

(28.) Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L, Crellin J, et al. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother. 1997;41:647-53.

(29.) Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y. A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett. 2000;184:53-6.

(30.) Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum [beta]-1actamases. J Antimicrob Chemother. 2006;57:154-5.

(31.) Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, et al. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother. 2004;48:4012-5.

(32.) Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli 0157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 2006;3: 59-67.

(33.) Szabo D, Melan MA, Hujer AM, Bonomo RA, Hujer KM, Bethel CR, et al. Molecular analysis of the simultaneous production of two SHV-type extended-spectrum beta-lactamases in a clinical isolate of Enterobacter cloacae by using single-nucleotide polymorphism genotyping. Antimicrob Agents Chemother. 2005;49:4716-20.

(34.) Varma JK, Marcus R, Stenzel SA, Hanna SS, Gettner S, Anderson B J, et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003. J Infect Dis. 2006;194:222-30.

(35.) White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chert S, et al. The isolation of antibiotic-resistant Salmonella from retail ground meats. N Engl J Med. 2001;345:1147-54.

(36.) Rankin SC, Aceto H, Cassidy J, Holt J, Young S, Love B, ct al. Molecular characterization of cephalosporin-resistant Salmonella enterica serotype Newport isolates from animals in Pennsylvania. J Clin Microbiol. 2002;40:4679-84.

(37.) Winokur PL, Brueggemann A, DeSalvo DL, Hoffmann L, Apley MD, Uhlenhopp EK, et al. Animal and human multidrug-resistant, cephalosporin-resistant Salmonella isolates expressing a plasmid-mediated CMY-2 AmpC beta-lactamase. Antimicrob Agents Chemother. 2000;44:2777-83.

(38.) Hopkins KL, Arnold C, Threlfall EJ. Rapid detection of gyrA and parC mutations in quinolone-resistant Salmonella enterica using pyrosequencing technology. J Microbiol Methods. 2007;68:163-71.

(39.) Yamamoto T, Tanaka M, Nohara C, Fukunaga Y, Yamagishi S. Transposition of the oxacillin-hydrolyzing penicillinase gene. J Bacteriol. 1981;145:808-13.

(40.) Tolmasky ME, Crosa JH. Genetic organization of antibiotic resistance genes (aac(6')-Ib, aadA, and oxa9) in the multiresistance transposon Tn 1331. Plasmid. 1993;29:31-40.

Address for correspondence: Jean M. Whichard, Centers for Disease Control and Prevention, Mailstop G29, 1600 Clifton Rd NE, Atlanta, GA 30333, USA; email: zyr3@cdc.gov

(1) Current affliliation: Banfield. The Pet Hospital, Philadelphia, Pennsylvania, USA

(2) Current affiliation: Washington State University, Pullman, Washington, USA

Jean M. Whichard, * Kathryn Gay, * (1) Jennifer E. Stevenson, * (2) Kevin J. Joyce, * Kara L. Cooper, * Michael Omondi, * Felicita Medalla, * George A. Jacoby, ([dagger]) and Timothy J. Barrett *

* Centers for Disease Control and Prevention, Atlanta, Georgia, USA: and ([dagger]) Lahey Clinic, Burlington, Massachusetts, USA
Table 1. NARMS non-Typhi Salmonella serotypes with decreased
susceptibility to quinolones and extended-spectrum cephalosporins,
United States, 1996-2004 *

        No. that met
        MIC criteria/                    Serotype
        total tested
Year    (%)                Senftenberg   Typhimurium   Newport

1996    0/1,324(0)
1997    1/1,301 (0.08)                        1
1998    1/1,460 (0.07)                                      1
1999    1/1,497 (0.07)          1
2000    4/1,377 (0.29)          2             1
2001    4/1,419 (0.28)          2             1
2002    5/2,008 (0.25)          1             2             1
2003    4/1,864 (0.21)          2
2004    7/1,793 (0.39)          3             1             1

Total   27/14,043 (0.19)       11             6             3

                  Serotype

Year    Enteritidis        Other (no.)

1996
1997
1998
1999
2000       1
2001                      Haifa (1)
2002                     Mbandaka (1)
2003       1              Agona (1)
2004                     Saintpaul (1),
                         Uganda (1)
Total      2                  5

* NARMS, National Antimicrobial Resistance Monitoring System.
Reduced susceptibility to quinolones and extended-spectrum
cephalosporins defined as MIC [greater than or equal to] 32
[micro]g/mL for nalidixic acid or [greater than or equal to]
0.12 [micro]g/mL for ciprofloxacin and [greater than or equal
to] 2 [micro]g/mL for ceftiofur or [greater than or equal to]
2 [micro]g/mL for ceftriaxone.

Table 2. Isolate, year reported, state, and serotype for NARMS
non-Typhi Salmonella isolates with decreased susceptibility to
quinolones and extended-spectrum cephalosporins, United
States, 1996-2004 *

Isolate       Year       State       Serotype

AM18280       2003        TX          Agona
AM09124       2000        CA       Enteritidis
AM15266       2003        IL       Enteritidis
AM12389       2001        NJ          Haifa
AM15010       2002        NY         Mbandaka
AM03005       1998        NY         Newport
AM15201       2002        ME         Newport
AM21465       2004        GA         Newport
AM20428       2004        GA        Saintpaul
AM06960       1999        FL       Senftenberg
AM08081       2000        FL       Senftenberg
AM08208       2000        GA       Senftenberg
AM09864       2001        FL       Senftenberg
AM11007       2001        MA       Senftenberg
AM14058       2002        TX       Senftenberg
AM16094       2003        FL       Senftenberg
AM18622       2003        FL       Senftenberg
AM19422       2004        FL       Senftenberg
AM20227       2004        GA       Senftenberg
AM20256       2004        FL       Senftenberg
AM02544       1997        MN       Typhimurium
AM08739       2000        KS       Typhimurium
AM11682       2001        NY       Typhimurium
AM14364       2002        WI       Typhimurium
AM14807       2002        NY       Typhimurium
AM20205       2004        PA       Typhimurium
AM19537       2004        CA          Uganda

* NARMS, National Antimicrobial Resistance Monitoring System.

Table 3. Susceptibility results for NARMS non-Typhi Salmonella
isolates with decreased susceptibility to quinolones and
extended-spectrum cephalosporins, United States, 1996-2004 *

                         Resistance

Isolate      NAL      CIP      XNL           CRO

AM18280      >32      0.25      >8            16
AM09124      >32      0.5       2       [less than or
                                        equal to] 0.25
AM15266      >32      0.5       2       [less than or
                                        equal to] 0.25
AM12389      >32      0.5       2       [less than or
                                        equal to] 0.25
AM15010       16      0.25      8             8
AM03005       16      0.25      2            0.5
AM15201      >32      0.12      >8            8
AM21465      >32      0.12      >8            16
AM20428      >32      0.5       2       [less than or
                                        equal to] 0.25
AM06960      >32       >4       8             8
AM08081      >32       >4       4            0.50
AM08208      >32       >4       2       [less than or
                                        equal to] 0.25
AM09864      >32       >4       8             8
AM11007      >32       >4       4            0.5
AM14058      >32       >4       >8            64

AM16094      >32       >4       4       [less than or
                                        equal to] 0.25
AM18622      >32       >4       8             1
AM19422      >32       >4       4       [less than or
                                        equal to] 0.25
AM20227      >32       >4       2       [less than or
                                        equal to] 0.25
AM20256      >32       >4       4       [less than or
                                        equal to] 0.25
AM02544      256      0.25     >16            64
AM08739      >32      0.25      >8            32
AM11682      >32      0.25      >8            16
AM14364      >32      0.25      >8            32
AM14807      >32      0.25      >8            16
AM20205      >32      0.25      2       [less than or
                                        equal to] 0.25
AM19537      >32      0.12      >8            16

                         Resistance

                      TAZ/                   FOT/
Isolate      TAZ      CLAV     FOT           CLAV

AM18280       32      16/4      16           8/4
AM09124      0.5     0.25/4    0.25         0.12/4
AM15266      0.5     0.25/4    0.25         0.12/4
AM12389      0.25    0.25/4    0.10         0.12/4
AM15010       64     0.5/4      4           0.25/4
AM03005      0.25    0.12/4    0.12     [less than or
                                       equal to] 0.06/4
AM15201       16      16/4      16           8/4
AM21465       16      16/4      8            8/4
AM20428      0.5     0.5/4     0.5          0.12/4
AM06960      0.5     0.25/4     1           0.12/4
AM08081      0.5     0.25/4     1           0.12/4
AM08208      0.5     0.25/4    0.5          0.25/4
AM09864       64     0.25/4     8           0.25/4
AM11007       1      0.5/4      1           0.5/4
AM14058       64      64/4     128          >64/4
AM16094      0.5     0.25/4     1           0.25/4
AM18622       2      0.5/4      4           0.5/4
AM19422      0.5     0.5/4      2           0.25/4
AM20227       1       2/4       1           0.5/4
AM20256      0.5     0.5/4      1           0.25/4
AM02544      128     0.5/4      32          0.12/4
AM08739       16      16/4      16           8/4
AM11682       16      8/4       16           8/4
AM14364       32      16/4      32           16/4
AM14807       32      16/4      16           32/4
AM20205      0.5     0.5/4     0.25         0.25/4
AM19537       16      16/4      8            8/4

                         Resistance

Isolate              Other ([dagger])

AM18280              AMP, AMC, CHL, FOX, KAN,
                       STR, SUL, SXT, TET
AM09124                      ND
AM15266                     (CHL)
AM12389              (CHL), SUL, SXT, TET
AM15010              AMP, (CHL), SUL, SXT
AM03005              AMP, AMC, CHL, FOX, (GEN),
                       KAN, STR, SUL, SXT
AM15201              AMP, AMC, CHL, FOX, STR,
                          SUL, TET
AM21465              AMP, AMC, CHL, FOX, STR,
                          SUL, TET
AM20428              (CHL), (FOX)
AM06960              AMP, AMC, (CHL), GEN, KAN,
                          STR, SUL, SXT
AM08081              AMP, AMC, CHL, FOX, (GEN),
                       KAN, STR, SUL, SXT
AM08208              AMP, (AMC) CHL, GEN, KAN,
                       STR, SUL, SXT, TET
AM09864              AMP, (CHL), (FOX), GEN, KAN
AM11007              AMP, AMC, CHL, (FOX), KAN,
                              SUL
AM14058              (AMI), AMP, AMC, CHL, FOX,
                            KAN, SUL
AM16094              AMP, (AMC), CHL, (FOX),
                       (GEN), KAN, SUL, SXT
AM18622              AMP, AMC, CHL, KAN, STR,
                            SUL, SXT
AM19422              AMP, AMC, (GEN), KAN, STR,
                            SUL, SXT
AM20227              AMP, AMC, (CHL), (FOX), GEN,
                     KAN, STR, SUL, SXT
AM20256              AMP, (AMC), (CHL), (GEN),
                          KAN, SUL, SXT
AM02544              AMP, (AMC), KAN, STIR, SUL,
                              TET
AM08739              AMP, AMC, CHL, FOX, GEN,
                     KAN, STR, SUL, TET
AM11682              AMP, AMC, FOX
AM14364              AMP, AMC, CHL, FOX, GEN,
                     KAN, STR, SUL, TET
AM14807              AMP, AMC, CHL, FOX, STR,
                             SUL, TET
AM20205              AMP, KAN, STIR, SUL, TET
AM19537              AMP, AMC, CHL, FOX, (GEN),
                     (KAN), STIR, SUL TET

* NARMS, National Antimicrobial Resistance Monitoring System;
NAL, nalidixic acid; CIP, ciprofloxacin; XNL, ceftiofur; CRO,
ceftriaxone; TAZ, ceftazidime; TAZ/CLAV, ceftazidime/clavulanate;
FOT, cefotaxime, FOT/CLAV, cefotaxime/clavulanate; AMP, ampicillin;
AMC, amoxicillin/clavulanate; CHL, chloramphenicol; FOX, cefoxitin;
KAN, kanamycin; STIR, streptomycin; SUL, sulfamethoxazole or
sulfisoxazole; SXT, trimethoprim/sulfamethoxazole;
TET, tetracycline, AMI, amikacin; GEN, gentamicin.

(dagger]) Drugs in parentheses had intermediate results.

Table 4. Resistance mechanisms among NARMS non-Typhi Salmonella
with decreased susceptibility to quinolones and extended-spectrum
cephalosporins, United States, 1996-2004 *

            gyrA codon   gyrA codon   parC codon   parC codon
Isolate     83 change    87 change    57 change    80 change

AM18280        S83Y          WT          T57S          WT
AM09124        S83F          WT           WT           WT
AM15266         WT          D87Y          WT           WT
AM12389        S83Y          WT           WT           WT
AM15010         WT           WT          T57S          WT
AM03005        S83Y         D87G         T57S          WT
AM15201        S83F          WT          T57S          WT
AM21465        S83F          WT          T57S          WT
AM20428        S83F          WT           WT           WT
AM06960        S83Y         D87G         T57S         S801
AM08081        S83Y         D87G         T57S         S801
AM08208        S83Y         D87G         T57S         S801
AM09864        S83Y         D87G         T57S         S801

AM11007        S83Y         D87G         T57S         S801
AM14058        S83Y         D87G         T57S         S801
AM16094        S83Y         D87G         T57S         S801
AM18622        S83Y         D87G         T57S         S801
AM19422        S83Y         D87G         T57S         S801
AM20227        S83Y         D87G         T57S         S801
AM20256        S83Y         D87G         T57S         S801
AM02544         WT          D87N          WT           WT

AM08739        S83Y          WT           WT           WT
AMl1682        S83F          WT           WT           WT
AM14364        S83Y          WT           WT           WT
AM14807        S83Y          WT           WT           WT
AM20205         WT          D87N          WT           WT
AM19537        S83Y          WT          T57S          WT

              [beta]-Lactamase      [beta]-Lactamase
Isolate      isoelectric points           genes

AM18280      [greater than or        [bla.sub.CMY-2]
               equal to] 8.4
AM09124              ND                     ND
AM15266              ND                     ND
AM12389              ND                     ND
AM15010     7.0, 7.6 ([dagger])      [bla.sub.SHV-30]
AM03005              ND                     ND
AM15201      [greater than or        [bla.sub.CMY-2]
               equal to] 8.4
AM21465      [greater than or        [bla.sub.CMY-2]
               equal to] 8.4
AM20428             5.4              [bla.sub.TEM-1b]
AM06960             7.4              [bla.sub.OXA-1]
AM08081             7.4              [bla.sub.OXA-1]
AM08208             7.4              [bla.sub.OXA-1]
AM09864        5.3, 6.9, 8.0        [bla.sub.TEM-1],
                                     [bla.sub.OXA-9],
                                     [bla.sub.SHV-12]
AM11007             7.4              [bla.sub.OXA-1]
AM14058     5.4, [greater than      [bla.sub.TEM-1b],
              or equal to] 8.4       [bla.sub.CMY-23]
AM16094             7.4              [bla.sub.OXA-1]
AM18622           7.4, 7.8           [bla.sub.OXA-1]
AM19422             7.4              [bla.sub.OXA-1]
AM20227             7.4              [bla.sub.OXA-1]
AM20256             7.4              [bla.sub.OXA-1]
AM02544           5.4, 8.0          [bla.sub.TEM-1],
                                     [bla.sub.OXA-1],
                                     [bla.sub.SHV-12]
AM08739     5.4, [greater than      [bla.sub.TEM-1b],
              or equal to] 8.4       [bla.sub.CMY-2]
AMl1682      [greater than or        [bla.sub.CMY-2]
               equal to] 8.4
AM14364     5.4, [greater than      [bla.sub.TEM-1b],
              or equal to] 8.4       [bla.sub.CMY-2]
AM14807      [greater than or        [bla.sub.CMY-2]
               equal to] 8.4
AM20205             5.4              [bla.sub.TEM-1b]
AM19537        [greater than         [bla.sub.CMY-2]
              or equal to] 8.4

* NARMS, National Antimicrobial Resistance Monitoring System,
WT, wild type; ND, none detected.

([dagger]) Gene responsible  not yet identified.
COPYRIGHT 2007 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Whichard, Jean M.; Gay, Kathryn; Stevenson, Jennifer E.; Joyce, Kevin J.; Cooper, Kara L.; Omondi, M
Publication:Emerging Infectious Diseases
Article Type:Clinical report
Geographic Code:1USA
Date:Nov 1, 2007
Words:5633
Previous Article:Distribution of eosinophilic meningitis cases attributable to Angiostrongylus cantonensis, Hawaii.
Next Article:Non-A hepatitis B virus genotypes in antenatal clinics, United Kingdom.
Topics:


Related Articles
Extended-Spectrum Beta-Lactamase-Producing Salmonella Enteritidis in Trinidad and Tobago.
Ciprofloxacin treatment failure in typhoid fever case, Pakistan.
Cephalosporin and ciprofloxacin resistance in Salmonella, Taiwan.
Resistant Salmonella Virchow in quail products.
Drug-resistant nontyphoidal Salmonella bacteremia, Thailand [1].
Danish integrated antimicrobial resistance monitoring and research program.
Human multidrug-resistant Salmonella Newport infections, Wisconsin, 2003-2005.

Terms of use | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters