Printer Friendly

Host specificity tests of Gratiana graminea (Coleoptera: Chrysomelidae), a poteneial biological control agent of tropical soda apple, Solanum viarum (Solanaceae).

Tropical soda apple, Solanum viarum Dunal (Solanaceae), is a perennial weed, originally from northeast Argentina, southern Brazil, Paraguay, and Uruguay, that has been spreading throughout Florida at an alarming rate during the last two decades. The pasture-land infested in 1992 was estimated to be approximately 60,000 hectares (Mullahey et al. 1993), and increased to more than 300,000 hectares in 1995-96 (Mullahey et al. 1997). Currently, the infested area is estimated at more than 400,000 hectares (Medal et al. 2008). Tropical soda apple, first reported in the United States in Glades County, Florida in 1988 (Coile 1993; Mullahey & Colvin 1993), is also present in Alabama, Georgia, Mississippi, North Carolina, South Carolina, Texas, and Puerto Rico (Bryson & Byrd, Jr. 1996; Dowler 1996; Mullahey et al. 1997; Medal et al. 2003). The potential range of tropical soda apple in the United States may be extended even further based on studies of the effects of temperatures and photoperiods conducted by Patterson (1996) in controlled environmental chambers. This invasive exotic weed was placed on the Florida and Federal Noxious Weed Lists in 1995.

In addition to its invasion of pasture lands and reduction of cattle carrying capacity (Mullahey et al. 1993; Bredow et al. 2007), tropical soda apple is known to harbor at least 6 viruses that affect cultivated solanaceous crops such as tomato, tobacco, and pepper (McGovern et al. 1994a, 1994b, 1996). Tropical soda apple is also an alternative host for key pests such as the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), major defoliating insect pest of potato in North America; the tomato hornworm, Manduca quinquemaculata (Haworth) and the tobacco hornworm, Manduca sexta (L.), (Lepidoptera: Sphingidae), major pests of tomato and tobacco plants; the silverleaf whitefly, Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) one of the most troublesome insect pest worldwide of many ield and vegetable crops; the tobacco budworm, Heliothis virescens (Fabr.) (Lepdoptera: Noctuidae) one of the most destructive pests of tobacco; the green peach aphid, Myzus persicae (Sulzer) an important pest of peach trees and vector of plant viruses to solanaceous plants and other food crops (Homoptera: Aphididae); the southern green stinkbug, Nezara viridula (L.) (Hemiptera: Pentatomidae) an important pest of soybean and vegetable crops; and the suckfly, Tupiocoris notatus (Distant) (Hemiptera: Miridae) a pest of several crops including tobacco (Habeck et al. 1996; Medal et al. 1999a; Sudbrink et al. 1999). Although it is very difficult to estimate the real (direct and indirect) economic losses due to this invasive weed, the production loss to Florida ranchers by tropical soda apple was estimated from $6.5-16 million annually (Thomas 2007).

Although tropical soda apple is able to spread vegetatively from the root system, the primary method of dispersal is by seed dissemination (Bryson et al. 1995; Medal et al. 1999b), which occurs mainly by livestock and wildlife that feed on the fruits and scarify the seeds (Akanda et al. 1996; Brown et al. 1996). A single plant of tropical soda apple can produces up to 150 fruits per year, with each fruit containing on average 400 seeds. The estimated seed production is 60,000 seeds/ plant/season with a viability of more than 75% (Mullahey & Colvin 1993; Pereira et al. 1997).

Currently recommended management practices for this invasive plant in southeastern United States include herbicide applications and mechanical techniques (mowing/tilling) (Mislevy et al. 1996; Mullahey et al. 1996; Sturgis & Colvin 1996; Akanda et al. 1997). These control tactics provide temporary weed suppression at an economic cost estimated at $62 and $47 per hectare in chemical and mechanical control methods, respectively (Thomas 2007). However, application of these control methods is often dificult to employ in remote and/or inaccessible areas.

A biological control project for tropical soda apple was started in Dec 1996 by the University of Florida in collaboration with the Universidade Estadual Paulista, Jabotical campus, Brazil, Universidade Federal do Parana in Curitiba, Brazil, Universidade Regional de Blumenau, Santa Catarina state, Brazil, Universidade CentroOeste in Irati, Parana state, Brazil, and the USDAS-ARS, Biological Control Laboratory in Hurlingham, Buenos Aires Province, Argentina. The release of the Brazilian leaf-beetle Graminea graminea Klug (Coleoptera: Chrysomelidae) in Florida will complement the defoliation effects that Gratiana boliviana Spaeth has been making on tropical soda apple plants during the warm season in Florida since it was released in the summer 2003 (Medal et al. 2008; Overholt et al. 2008). Tropical soda apple defoliation by G. boliviana and G. graminea, in southern Brazil is causing a major suppressive effect on tropical soda apple density (Gandolfo et al. 2007; Medal et al. unpublished data). These two leaf-feeder beetles have a synergistic effect on tropical soda apple defoliation and occupy different niches in somewhat overlapped geographical regions in southern parts of Brazil.

In this paper we report the results of the host-specificity tests conducted at the Florida Department of Agriculture-Division of Plant Industry quarantine facility in Gainesville with the leaf-beetle G. graminea as a potential biological control agent of the non-native weed tropical soda apple.

MATERIALS AND METHODS

Host-Feeding Specificity Tests

Plant-host speciicity tests with Gratiana graminea adults and first instars were conducted from Sep 2000 to Aug 2004 at the Florida Department of Agriculture and Consumer Services-Division of Plant Industry quarantine facility in Gainesville, Florida. Additional feeding/oviposition tests with G. graminea adults were conducted at the Gainesville quarantine facility from May to Sep 2008. Gratiana graminea (all developmental stages) were collected on tropical soda apple plants in Rio Grande do Sul, Brazil, introduced into Florida-quarantine, placed on caged plants of tropical soda apple growing in 1-gallon pots and eggs were removed twice a week to provide the insects required for testing.

Multiple-Choice Feeding and Oviposition Tests

One hundred fifteen plant species in 32 families were included in the feeding and oviposition preference tests in quarantine (Table 1). The plants tested included 56 species in the family of the target weed (Solanaceae) of which 29 were from the genus Solanum and 27 from 15 other genera that include plants of agricultural or ecological importance. Ten species representing 5 families (Boraginaceae, Convolvulaceae, Ehretiaceae, Nolanaceae, Polemoniaceae) that are very closely related phyllogenetically to the Solanaceae and in the same order Polemoniales (Heywood 1993) were included. Forty-nine plant species representing 26 families, most of them with an economically and/or environmentally value in North America, were also tested. The major target weed (tropical soda apple), and 10 plant species in the Solanaceae were tested at least 3 times (Table 1). They included Solanum donianum Walpers that is in the list of Florida threatened plants (Coile 1998); 4 secondary target-weeds (Solanum tampicense Dunal, Solanum torvum Sw., Solanum capsicoides All., Solanum elaeagnifolium Cav.); and the 5 major cultivated Solanaceae (Capsicum annuum L., Lycopersicon esculentum Mill., Nicotiana tabacum L., Solanum melongena L., Solanum tuberosum L.). Eight to 12 plant species, including always the main target weed, growing in 1-gallon pots were simultaneously exposed to 20 G. graminea adults (10 males and 10 females which were newly emerged from pupae most of the time) in an aluminum cage (60 x 60 x 60 cm). At the beginning of each test the insects were placed at the bottom center of each cage to allow them to orient by themselves to the tested plants. Plant species in each test were replicated 3-4 times (1 replication of tested plants in each separate cage). Plants were exposed to G. graminea adults from 3-6 weeks. Observations of oviposition and feeding were made during most of the weekdays. Plants consumed were replaced as needed. Plants were checked for oviposition sites and eggs were removed and counted weekly. On the last day of each experiment, plants were checked for feeding and eggs laid on them. Leaf area consumed was measured with a Portable Area Meter Model LI-3000 (Lambda Instrument Corporation) and the leaf-feeding area is reported on a scale from 0-5 (0 = no feeding, 1 = probing or <5% of leaf area consumed, 2 = light feeding or 5-20% of the area, 3 = moderate feeding or 21-40%, 4 = heavy feeding or 4160%, and 5 = intense feeding or >60% of the leaf area consumed).

No-Choice Larval Feeding Tests

No-choice host speciicity tests were conducted with G. graminea neonate larvae in an environmental chamber at a temperature of 22 [+ or -] 2[degrees]C, relative humidity of 55-65%, and a photoperiod of 12:12 (L:D). Recently hatched non-fed larvae were exposed to 31 plant species including 30 species in the family of the target weed (Solanaceae) and 1 species in the family Convolvulaceae. The species tested included 7 genera of plants very closely related phyllogenetically in the same family as the target weed, and with an economical and/or environmental value in North America (Table 2). Larvae were exposed to clusters of leaves of each individual plant tested by placing the clusters individually in a 30-mL plastic-cup containing water and fitted with a paper lid to avoid insect contact with the water. The leaf petiole was inserted through a hole (3-4 mm diameter) made in the middle of the paper-lid. The cup and plant cluster was placed inside a clear-plastic container covered with a plastic-lid having 6-7 small holes to allow air circulation. Moistened tissue paper was placed at the bottom of the plastic container and under the plastic-lid to provide moisture. The plants (treatments) were arranged in a completely randomized design. Three to 4 replications were used with 10 one-d- old larvae per replication. Each group of 10 G. graminea larvae was provided with only 1 plant species which they fed on or died. Daily observations of feeding were made and leaves were replaced as needed. Larval mortality counts were made 3 and 7 d after the experiment started.

No-Choice Adult Feeding Tests

No-choice host speciicity tests were conducted with G. graminea adults at the Gainesville quarantine facility with potted plants (20-60 cm height) in cages. Gratiana graminea adults were exposed to 29 plant species including S. donianum in the list of Florida threatened plants, all major cultivated Solanaceae, and 7 exotic (Table 3). Five to 6 plant species were individually tested each time due to limitation in availability of cages. Ten G. graminea adults (5 males, 5 females) per replication (3-4 replications) were exposed to plants during 21 to 35 d. Cages were made of clear plastic cylinders (15 cm diameter, 50-60 cm height), with a mesh screen at the top and covering 6 circular holes (6 cm diameter) located in pairs at the bottom, middle, and upper part of the cylinder to allow for air circulation.

Adults tested originated from F2- F3 generations reared in quarantine from larvae and adults collected on tropical soda apple plants in southern Brazil. The adults had either recently emerged from pupae or were still young (1-2 week old) and showing the intense green color that differentiate them from pale-yellow older adults. Eggs laid on plants, if any, were removed weekly and plants replaced as needed. At the end of the testing periods, feeding and adult mortality were recorded.

RESULTS AND DISCUSSION

Multiple-Choice Feeding-Oviposition Tests

In the quarantine multiple-choice tests (Table 1), Gratiana graminea adults fed heavily to intensively (41-100% of the leaf area offered) on the major target weed tropical soda apple. It fed lightly to moderately (5-40% of the leaf area offered) on turkeyberry, Solanum torvum Sw. (native to west Africa and on the list of Federal noxious weeds and on Florida's invasive species list of the Florida Exotic Pest Plant Council; webpage: http://www.fleppc.org/97list.htm). Minor or exploratory feeding (<5% of the leaf area offered) was observed on the non-native red soda apple, Solanum capsicoides All. (prickly weed of South American origin also present and spreading in Florida), on eggplant, Solanum melongena L. (crop of economic importance), on the non-native Solanum mamosum L. (native from Central America, not growing in USA), on the non-native Solanum tampicense Dunal (weed of Mexico, Central America, and Caribbean origin and now established and expanding in south Florida; also on the Florida's invasive species list of the Florida Exotic Pest Plant Council). No feeding was observed on any of an additional 109 plant species in 32 families that were tested. The adults laid from 58-104 eggs (average: 86) on tropical soda apple, and from 0-2 (average: 0.1 eggs) on eggplant (Table 1). No eggs were deposited on any of the other 113 plant species tested, including the threatened S. donianum. Although some minor feeding on eggplant has occurred in quarantine,

this insect has never been recorded attacking eggplant in South America. Expanded host ranges of weed biocontrol candidates under confined quarantine laboratory conditions have been reported by South African researchers (Neser et al. 1989; Hill & Hulley 1995; Olckers et al. 1995; Hill & Hulley 1996; Olckers 1996). They indicated that almost all the agents that have been tested for biocontrol of Solanum weeds have shown feeding on closely related plant species, but they are never attacked under natural conditions. For example, Gratiana spadicea (Klug) (Coleoptera: Chrysomelidae) as a biocontrol agent against Solanum sisymbrifolium Lam. in South-Africa (Hill & Hulley 1995), fed and was successfully reared on eggplant in laboratory tests. This insect was field released in South Africa in 1994 based mainly on the lack of records as a pest of eggplant in South America. This insect has become established on S. sisymbriifolium with no reports of attacks of eggplant fields in South Africa.

No-Choice Larval Feeding Tests

Larvae of G. graminea exposed to individual plants (31 species) in quarantine growth chambers (Table 2) completed development on the target weed tropical soda apple (74% reached the pupae stage, n = 70, 2 trials). Some feeding (5-20%) was observed on Solanum capsicoides (red soda apple), and also some probing or exploratory feeding (<5% of the leaf area offered) was observed on Solanum melongena (eggplant) and on Solanum torvum (turkeyberry), but larvae stopped feeding and died within a week after the experiment began. The rapid death of the G. graminea larvae with no feeding and no development on the 30 non-target plant species tested clearly indicated no risk of attack on these plants by this beetle.

No-Choice Adult Feeding Tests

Starvation tests (no-choice) with G. graminea adults exposed to individual potted plants (29 species) in cages at the quarantine facility (Table 3) indicated that the insect fed and laid eggs (47-61 eggs per female; average: 57 per female) only on tropical soda apple. Feeding on tropical soda apple was intense (>60% of the leaf area offered) compared to a probing or exploratory feeding (<5%) observed in S. melongena (eggplant cultivars Black Beauty and Market), on S. tampicense, and on S. elaeagnifolium (secondary target weeds). Although there was some feeding (5-20% of the leaf area offered) on S. torvum (secondary target weed), and on S. mammosum (non-native), the females did not lay eggs on these plants. No eggs were laid on any of the 28 non-target plant species tested including the 9 eggplant cultivars (Black Beauty, Classic, Ichiban, ItalianNadia, Market, Neon, Orient Charm, Orient Express, and Thai).

The high specificity shown by this beetle in the host range feeding tests and development only on the target weed, indicated no adverse impacts would be expected on the 6 solanaceous species that were not tested and are listed as threatened or endangered in Hawaii and Puerto Rico. Indirect beneficial effects on wildlife populations as sociated with release and establishment of G. graminea may be expected due to recolonization by native plants that have been displaced by the rapidly growing and highly competitive tropical soda apple plants.

The host specificity tests in quarantine indicated that G. graminea is safe to release. Occasional temporary feeding might occur on the nonnative weeds S. torvum and S. tampicense (in the Federal Noxious Weed list), and S. capsicoides, a prickly weed introduced from South America (Kissman & Groth 1995). Noticeable damage to eggplant is unlikely to occur based on our host tests. The lack of a record as a crop pest in the native range of the beetle support our findings on the specificity and safety of G. graminea as a biocontrol agent of tropical soda apple.

Based on the specificity of G. graminea feeding and developing only on the target weed, we consider this beetle safe for field release against tropical soda apple. Therefore, a petition to release the Brazilian leaf-beetle G. graminea for the control of tropical soda apple in the southeastern United States was submitted to the USDAAPHIS-PPQ Technical Advisory Group (TAG) members on Sep 2008.

ACKNOWLEDGMENTS

We thank Howard Frank (University of Florida, Entomology and Nematology Department), and Julieta Brambila (United States Department of Agriculture, Animal and Plant Health Inspection Service) for reviewing the manuscript. We thank Zundir Buzzi (Universidade Federal do Parana, Curitiba, Brazil) for identification of Gratiana graminea. This research was funded by USDA-APHIS, and by the Florida Department of Agriculture and Consumer Services, Division of Plant Industry.

REFERENCES CITED

AKANDA, R. A., MULLAHEY, J. J., AND SHILLING, D. G. 1996. Growth and reproduction of tropical soda apple (Solanum viarum Dunal) in Florida, pp. 15-22 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

AKANDA, R. A., MULLAHEY, J. J., SHILLING, D. G. 1997. Tropical soda apple (Solanum viarum) and bahiagrass (Paspalum notatum) response to selected PPI, PRE, and POST herbicides, p. 35 In Abstracts of the Weed Science Society of America meeting, Orlando, Florida. WSSA Abstracts Vol. 37.

BREDOW, E., PEDROSA, J. H., MEDAL, J. C., CUDA, J. P. 2007. Open field host specificity tests in Brazil for risk assessment of Metriona elatior (Coleoptera: Chrysomelidae), a potential biological control agent of Solanum viarum (Solanaceae) in Florida. Florida Entomol. 90: 559-564.

BROWN, W. F., MULLAHEY, J. J., AND AKANDA, R. A. 1996. Survivability of tropical soda apple seed in the gastro-intestinal tract of cattle, pp. 35-39 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

BRYSON, C. T., BYRD, JR., J. D., AND WESTBROOKS, R. G. 1995. Tropical SodaAapple (Solanum viarum Dunal) in the United States. Mississippi Dept. Agric. and Commerce-Bureau of Plant Industry Circular. 2 pp.

BRYSON, C. T., AND BYRD, JR., J. D. 1996. Tropical soda apple in Mississippi, pp. 55-60 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

COILE, N. C. 1998. Notes on Florida's Endangered and Threatened Plants. Florida Dept. Agric. and Consumer Ser., Bureau of Entomol., Nematol., and Plant Pathol. Botany Section Contribution No. 38, 2nd edition. 119 pp.

COILE, N. C. 1993. Tropical Soda Apple, Solanum viarum Dunal: The Plant from Hell. Botany Circular No. 27. Florida Dept. Agric., and Consumer Serv., Division of Plant Industry.

DOWLER, C. C. 1996. Some potential management approaches to tropical soda apple in Georgia, pp. 41-54 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

GANDOLFO, D., MCKAY, F., MEDAL, J. C., AND CUDA, J. P. 2007. Open-field host specificity test of Gratiana boliviana (Chrysomelidae), a biocontrol agent of tropical soda apple in the USA. Florida Entomol. 90: 223-228.

HABECK, D. H., MEDAL, J. C., AND CUDA, J. P. 1996. Biological control of tropical soda apple, pp. 73-78 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

HILL, M. P., AND HULLEY, P. E. 1995. Biology and host range of Gratiana spadicea (Klug, 1829) (Coleoptera: Chrysomelidae: Cassidinae), a potential biological control agent for the weed Solanum sisymbrifolium Lamarck (Solanaceae) in South Africa. Biol. Control 5: 345-352.

HILL, M. P., AND HULLEY, P. E. 1996. Suitability of Metriona elatior (Klug) (Coleoptera: Chrysomelidae: Cassidinae) as a biological control agent for Solanum sisymbrifolium Lam. (Solanaceae). African Entomol. 4: 117-123.

MCGOVERN, R. J., POLSTON, J. E., DANYLUK, G. M., HEIBERT, E., ABOUZID, A. M., AND STANSLY, P. A. 1994a. Identification of a natural weed host of tomato mottle geminivirus in Florida. Plant Dis. 78: 1102-1106.

MCGOVERN, R. J., POLSTON, J. E., AND MULLAHEY, J. J. 1994b. Solanum viarum: weed reservoir of plant viruses in Florida. Intl. J. Pest Management 40: 270-273.

MCGOVERN, R. J., POLSTON, J. E., AND MULLAHEY, J. J. 1996. Tropical soda apple (Solanum viarum Dunal): Host of tomato, pepper, and tobacco viruses in Florida, pp. 31-34 In Proc. Tropical Soda Apple Symp. Bartow, Florida.University of Florida, IFAS.

MEDAL, J. C., CHARUDATTAN, R., MULLAHEY, J. J., AND PITELLI, R. A. 1996. An exploratory insect survey of tropical soda apple in Brazil and Paraguay. Florida Entomol. 79: 70-73.

MEDAL, J. C., AND CUDA, J. P. 2000. Biological control of some exotic weed by means of insects, pp. 75-82 In Proc. Caribbean Basin Administrative Group Workshop on Approaches to Mitigating the Effects of Exotic Pests on Trade and Agriculture in the Caribbean Region, 16-18 June 1999, Homestead, FL. University of Florida, Tropical Research Education Center, Homestead.

MEDAL, J. C., PITELLI, R. A., SANTANA, A., GANDOLFO, D., GRAVENA, R., AND HABECK, D. H. 1999a. Host specificity of Metriona elatior Klug (Coleoptera: Chrysomelidae) a potential biological control agent of tropical soda apple, Solanum viarum Dunal (Solanaceae), in the United States. BioControl 44: 421-436.

MEDAL, J. C., GANDOLFO, D., PITELLI, R. A., SANTANA, A., CUDA, J. P., AND SUDBRINK, D. 1999b. Progress and prospects for biological control of Solanum viarum in the USA, pp. 627-632 In Proc. X International Symp. Biol. Control of Weeds, 4-9. July 1999, Bozeman, MT. USDA-ARS/Montana State University, Bozeman.

MEDAL, J. C., SUDBRINK, D., GANDOLFO, D., OHASHI, S., AND CUDA, J. P. 2002. Gratiana boliviana, a potential biocontrol agent of Solanum viarum: Quarantine host-specificity testing in Florida and field surveys in South America. BioControl 47: 445-461.

MEDAL, J. C., GANDOLFO, D., AND CUDA, J. P. 2003. Biology of Gratiana boliviana, the First Biocontrol Agent Released to Control Tropical Soda Apple in the USA. University of Florida-IFAS Extension Circular ENY-826. 3pp.

MEDAL, J., OHASHI, D., GANDOLFO, D., MCKAY, F., AND CUDA, J. 2004. Risk assessment of Gratiana boliviana (Chrysomelidae), a potential biocontrol agent of tropical soda apple, Solanum viarum (Solanaceae) in the USA, pp. 292-296 In J. M. Cullen et al. (eds.). Proc. XI International Symposium Biol. Control of Weeds, April 27-May 2, 2003. Canberra, Australia.

MEDAL, J., OVERHOLT, W., STANSLY, P., RODA, A., OSBORNE, L., HIBBARD, K., GASKALLA, R., BURNS, E., CHONG, J., SELLERS, B., HIGHT, S., CUDA, J., VITORINO, M., BREDOW, E., PEDROSA-MACEDO, J., AND WIKLER, C. 2008. Establishment and initial impacts of Gratiana boliviana (Chrysomelidae) on Solanum viarum in Florida, pp. 591-596 In R. Sforza, M. C. Bon, H. C. Evans, P. E Hatcher, H. Z. Hinz, and B. G. Rector [eds.], Proc. XII Intl. Symp. Biol. Control of Weeds. La Grande Motte, France.

MISLEVY, P., MULLAHEY, J. J., AND COLVIN, D. L. 1996. Management practices for tropical soda apple control: Update, pp. 61-67 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

MISLEVY, P., MULLAHEY, J. J., AND MARTIN, F. G. 1997. Tropical soda apple (Solanum viarum) control as influenced by clipping frequency and herbicide rate, In Abstracts Weed Sci. Soc. of America Meeting, Orlando, Florida. WSSA Abstracts Vol. 37.

MULLAHEY, J. J., AND COLVIN, D. L. 1993. Tropical Soda Apple: A New Noxious Weed in Florida. Univ. of Florida, Florida Cooperative Extension Service, Fact Sheet WRS-7.

MULLAHEY, J. J., NEE, M., WUNDERLIN, R. P., AND DELANEY, K. R. 1993. Tropical soda apple (Solanum viarum): a new weed threat in subtropical regions. Weed Technol. 7: 783-786.

MULLAHEY, J. J., MISLEVY, P., BROWN, W. F., AND KLINE, W. N. 1996. Tropical Soda Apple, an Exotic Weed Threatening Agriculture and Natural Systems. Dow Elanco. Down to Earth Vol. 51. No.1. 8 pp.

MULLAHEY, J. J., AKANDA, R. A., AND SHERROD, B. 1997. Tropical soda apple (Solanum viarum) update from Florida, In Abstracts Weed Sci. Soc. of America Meeting, Orlando, Florida. WSSA Abstracts Vol. 37.

NESER, S., ZIMMERMANN, H. G., ERB, H. E., AND HOFFMANN, J. H. 1989. Progress and prospects for the biological control of two Solanum weeds in South Africa, pp. 371-381 In E. S. Delfose [ed.], Proc.VII Intl. Symp. Biol. Control of Weeds, Rome, Italy, Instituto Sperimentale per la Patologia Vegetale Ministerio dell Agriculture e delle Foreste, Rome.

OLCKERS, T., ZIMMERMANN, H. G., AND HOFFMANN, J. H. 1995. Interpreting ambiguous results of host-specificity tests in biological control of weeds: assessment of two Leptinotarsa species (Chrysomelidae) for the control of Solanum elaeagnifolium (Solanaceae) in South Africa. Biol. Control 5: 336344.

OLCKERS, T. 1996. Improved prospects for biological control of three Solanum weeds in South Africa, pp. 307312 In V. C. Moran and J. H. Hoffmann [eds.], Proc. IX Intl. Symp. Biological Control of Weeds, Stellenbosch, South Africa. University of Cape Town, South Africa.

OVERHOLT, W., MEDAL, J., HIBBARD, K., AND RODA, A. 2008. Biological Control of Tropical Soda Apple: A Success in the Making. The Florida Cattleman and Livestock Journal. July.

PATTERSON, D. T. 1996. Effects of temperature and photoperiod on tropical soda apple (Solanum viarum Dunal) and its potential range in the United States, pp. 29-30 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

PEREIRA, A., PITELLI, R. A., NEMOTO, L. R., MULLAHEY, J., J., AND CHARUDATTAN, R. 1997. Seed production by tropical soda apple (Solanum viarum Dunal) in Brazil, p. 29 In Abstracts Weed Sci. Soc. of America Meeting, Orlando, Florida. 1997. WSSA Abstracts Vol. 37.

STURGIS, A. K., AND COLVIN, D. L. 1996. Controlling tropical soda apple in pastures, p. 79 In Proc. Tropical Soda Apple Symp. Bartow, Florida. University of Florida, IFAS.

SUDBRINK, JR. D. L., SNODGRASS, G. L., BRYSON, C. T., MEDAL, J. C., CUDA, J. P., AND GANDOLFO, D. 1999. Arthropods associated with tropical soda apple, Solanum viarum in the Southeastern USA, p.154 In Program Abstracts, X Intl. Symp. Biol. Control of Weeds, 4-9 July 1999. Bozeman, MT. USDA-ARS/ Montana State University, Bozeman.

THOMAS, M., 2007. Impact of tropical soda apple on Florida's grazing land. The Florida Cattleman and Livestock Journal 71: 37-38.

U.S. FISH AND WILDLIFE SERVICE. 1997. Endangered and threatened wildlife and plants. U.S. Government Printing Office, 52 pp.

J. MEDAL (1), N. BUSTAMANTE (1), M. VITORINO (2), L. BEAL (2), W. OVERHOLT (1), R. DIAZ (1) and J. CUDA (1)

(1) University of Florida, Department of Entomology and Nematology, Gainesville, FL 32611

(2) Universidade Regional de Blumenau, Santa Catarina, Brazil
TABLE 1. HOST RANGE ADULT FEEDING AND OVIPOSITION TESTS WITH
GRATIANA GRAMINEA IN FLORIDA.

                       Common Names                      Fee-    Eggs
                       (* indicates     No.    No.       ding    Laid
                       native Solanum   of     of        Score   per
Plant Family Species   species)         Tests  Insects   (1)     Female

Category 1. Genetic
types of the target
weed species found
in North America

SOLANACEAE

Tribe Solaneae
Genus Solanum
Subgenus
Leptostemonum
Section Acantophora
Solanum viarum         Tropical
Dunal                  soda apple       9      600       4-5     58-124

Category 2. Species
in the same genus as
the target weed,
divided by subgenera
(if applicable)

Tribe Solaneae
Genus Solanum
Subgenus
Leptostemonum
Solanum capsicoides    Red soda
All.                   apple            3      220       1       0
Solanum mammosum L.    Nipplefruit      2      120       1       0
Section Lasiocarpum
Solanum quitoense
Lam.                   Naranjilla       2      120       0       0
Solanum pseudolulo
Heise                  Falso lulo       2      120       0       0
Solanum sessili-
florum Dunal           Nightshade       2      120       0       0
Section Micracantha
Solanum tampicense     Wetland
Dunal                  nightshade       5      220       1       0
Solanum jamaicense     Jamaican
Mill.                  nightshade       2      120       0       0
Section Melongena
Subsection
Lathyrocarpum
Solanum carolinense    Horse
L.                     nettle *         2      140       0       0
Solanum dimidiatum     Western
Raf.                   horsenettle *    2      140       0       0
Section Persicariae    Bahama
Solanum bahamense      nightshade       2      120       0       0
Solanum torvum Sw.     Turkeyberry      6      420       1-3     0
Solanum verbascifo-    Mullein
lium L.                nightshade *     2      140       0       0
Subgenus Solanum
Solanum americanum     American
Mill.                  nightshade *     2      140       0       0
Solanum diphyllum L.   Two-leaf         2      140       0       0
                       nightshade *
Solanum erianthum
Don.                   Potato tree*     2      140       0       0
Solanum jasminoides    White potato
Paxt.                  vine             2      140       0       0
Solanum mauritianum    Earleaf
Scop.                  nightshade       2      140       0       0
Solanum nigrescesns    Divine
Mart. & Gal            nightshade *     2      140       0       0
Solanum nigrum L.      Black            2      160       0       0
                       nightshade *
Solanum parishii       Parish
heller                 nightshade *     2      140       0       0
Solanum ptycanthum
Dunal                  Wonder berry *   2      140       0       0
Solanum seaforthia-    Brazilian
num Andr.              nightshade       2      140       0       0
Solanum tuberosum L.   Potato           6      420       0       0

Category 3. Species
in other genera in
the same family as
the target weed,
divided by subfamily
(if applicable)

Genus Acnistus
Acnistus australe
(Griseb.) Griseb.      Acnistus         2      140       0       0
Genus Capsicum
Capsicum annuum L.     Bell pepper      6      420       0       0
Capsicum frutescens
L.                     Chile            2      140       0       0
Genus Iochroma
Iochroma sp.           Iochroma         2      140       0       0
Genus Physalis
Physalis angulata L.   Cutleaf          2      140       0       0
                       Ground-Cherry
Physalis arenicola
Kearney                Cypresshead      2      140       0       0

Physalis crassifolia
Benth                  Ground-Cherry    2      140       0       0
Physalis gigantea L.   Ground-cherry    2      140       0       0
Physalis ixocarpa
Brot.                  Tomatillo        2      140       0       0
Physalis pubescens     Strawberry
L.                     tomato           2      120       0       0
Physalis walteri
Nutt.                  Ground-cherry    2      140       0       0
Tribe Daturae
Genus Brugmansia
Brugmansia sanguinea   Red              2      140       0       0
                       floripontio
(Ruiz & Pav.) Don
Genus Datura
Datura discolor
Bernh                  Angels'trumpet   2      140       0       0
Datura metel L.        Downy thorn      2      140       0       0
                       apple
Datura meteloides D.   Datura           2      140       0       0
Datura stramonium L.   Jimson weed      2      140       0       0
Tribe Lycieae
Genus Lycium
Lycium carolinianum    Christmas
Walt.                  berry            2      140       0       0
Lycium fremontii
Gray.                  Lycium           2      140       0       0
Genus Lycopersicon
Lycopersicon
esculentum Mill.       Tomato           6      420       0       0
Tribe: Nicandreae
Genus: Nicandra
Nicandra physaloides
(L.) Gaertn.           Apple of Peru    2      140       0       0
Tribe Nicotianae
Genus Nicotiana
Nicotiana tabacum L.   Tobacco          6      420       0       0
Nicotiana rustica L.   Wild tobacco     2      160       0       0
Nicotiana sylvestris
Speg. & Comes          Tobacco          2      140       0       0
Genus Nierembergia
Nierembergia
scoparia Sendtri       Cupflower        2      140       0       0
Genus Petunia
Petunia x hybrida      Garden-petunia   2      140       0       0
Tribe Salpiglossidae
Genus Salpiglossis
Salpiglossis sinuata
Ruiz & Pav             Painted tongue   2      140       0       0
Genus Schizanthus
Schizanthus spp.       Butterfly        2      140       0       0
                       flower
Tribe Solandeae
Genus Solandra
Solandra glandiflora
Swartz                 Chalice vine     2      140       0       0

Category 4.
Threatened and
endangered species
in the same family
as the target weed
divided by subgenus,
genus, and subfamily

Section Torva

Solanum donianum       Mullein
Walpers                nightshade *     4      300       0       0

Category 5. Species
in other families
in the same order
that have some
phylogenetic,
morphological, or
biochemical
similarities to
the target weed

BORAGINACEAE

Heliotrope sp.         Heliotrope       1       80       0       0
Myosotis alpestris
Schmidt                Forget-Me-Not    1       80       0       0

CONVOLVULACEAE

Convolvulus purpurea
L.                     Convolvulus      1       80       0       0
Ipomoea batata (L.)
Lam.                   Sweet-potato     2      160       0       0
Evolvulus
muttallianus           Evolvulus        1       80       0       0

EHRETIACEAE

Cordia sebestena L.    Geiger tree      1       80       0       0

NOLANACEAE

Nolana paradoxa        Chilean
Lindl.                 bellflower       1       80       0       0

POLEMONIACEAE

Cobaea scandens Cav.   Cobaea           1       80       0       0
Gilia tricolor Benth   Bird's-eyes      1       80       0       0
Phlox panuculata L.    Phlox            1       80       0       0

Category 6. Species
in other orders that
have some
morphological or
biochemical
similarities to the
target weed or
that share the same
habitat

ACERACEAE

Acer rubrum L.         Red maple        1       80       0       0

ACTINIDIACEAE

Actinidia deliciosa
Liang & Fergusson      Kiwi vine        1       80       0       0

ANACARDIACEAE

Anacardium
occidentale L.         Cashew           1       80       0       0
Mangifera indica L.    Mango            1       80       0       0
Pistacia vera L.       Cultivated       1       80       0       0
                       pistacho

APIACEAE

Daucus carota L.       Carrot           1       80       0       0

ASTERACEAE

Helianthus annuus L.   Annual           1       80       0       0
                       sunflower
Lactuca sativa L.      Lettuce          1       80       0       0

CAMPANULACEAE

Campanula
persicifolia L         Bell flower      1       80       0       0

CARICACEAE

Carica papaya L.       Papaya           1       80       0       0
chenopodiaceae
Beta vulgaris L.       Beet             1       80       0       0

CRUCIFERAE

Brassica oleracea      Broccoli/
L. var. botrytis       Cauliflower      2      160       0       0
Brassica oleracea
L. var. capitata       Cabbage          1       80       0       0
Raphanus sativus L.    Radish           1       80       0       0
cucurbitaceae
Citrullus lanatus
(Thumb)                Watermelon       1       80       0       0
Cucumis milo L.        Cantaloupe       1       80       0       0
Cucurbita pepo
(L.) Alef.             Pumpkin/Squash   1       80       0       0
Cucurbita sativus L.   Cucumber         1       80       0       0
ebenaceae
Diospyros virginiana   Persimmon        1       80       0       0

ERICACEAE

Vaccinium ashei        Rabbit-eye
Rende.                 blueberry        1       80       0       0
fabaceae
Arachis hypogaea L     Peanut           1       80       0       0
Glycine max (L.)
Merrill                Soybean          1       80       0       0
Phaseolus vulgaris
L.                     Pinto bean       1       80       0       0
Phaseolus lunatus L.   Snowpea          1       80       0       0
Pisum sativum L.       Cowpea           1       80       0       0
Vigna unguiculata
(L.) Walp.             Lima bean        1       80       0       0

LAURACEAE

Persea americana
Mill.                  Avocado          1       80       0       0
lobeliaceae
Lobelia cardinalis     Cardinal
L.                     flower           1       80       0       0

LOGANIACEAE

Buddleia davidii       Butterfly
Franch                 bush             1       80       0       0

MALVACEAE

Abelmoschus
esculentus (L.)        Okra             1       80       0       0
Gossypium hirsutum
L.                     Cotton           1       80       0       0
Hibiscus spp.          Rose mallow      1       80       0       0

MORACEAE

Fucus aurea Nutt       Fig              1       80       0       0

MUSACEAE

Musa acuminata
Colla.                 Banana           1       80       0       0

MYRTACEAE

Psidium guajaba L.     Tropical guava   1       80       0       0

PASSIFLORACEAE

Passiflora edulis
Sims                   Passion fruit    1       80       0       0

POACEAE

Oryza sativa L.        Rice             1       80       0       0
Saccharum officina-
rum L.                 sugarcane        1       80       0       0
Zea mays L.            Sweet corn       1       80       0       0

PUNICACEAE

Punica gramatum L.     Pomegranate      1       80       0       0

ROSACEAE

Malus pumilla Mill.    Apple            1       80       0       0
Prunus americana
Marsh.                 American plum    1       80       0       0
Rosa sp.               Miniature rose   1       80       0       0
Rubus betulifolius
Small                  Blackberry       1       80       0       0

RUTACEAE

Citrus sinensis
(L.) Osbeck            Sweet orange     1       80       0       0
Citrus limon (L.)
Burm.                  Lemon            1       80       0       0
Citrus paradise
Mcfady                 Grapefruit       1       80       0       0

SCROPHULARIACEAE

Antirrhinum majus      Common
L.                     snapdragon       1       80       0       0
Nemensia strumosa
Benth.                 Nemensia         1       80       0       0

Category 7. Any
plant on which
close relatives
of the biological
control agent
(within the same
genus) have been
found or recorded
to feed/ or
reproduce

SOLANACEAE

Section Melongena
Subsection
Lathyrocarpum
Solanum elaeagni-      Silverleaf
folium Cav.            nightshade *     4      300       0       0
Subsection Melongena
Solanum melongena L.   Eggplant         4      300       0-1     0-2
Subsection
Cryptocarpum
Solanum sisymbrii-     Sticky
folium Lam.            nightshade       2      120       0       0

Each test included 3-4 replications with 20 adults (10 males, 10
females) per replication. 10 = no feeding, 1 = probing (<5% of
leaf area), 2 = light feeding (5-20%), 3 = moderate feeding
(21-40%), 4 = heavy feeding (41-60%), 5 = intense (60% of leaf-area).

TABLE 2. HOST RANGE OF GRATIANA GRAMINEA FIRST INSTAR IN NO-CHOICE
FEEDING TESTS IN FLORIDA QUARANTINE.

                                 No.     No.       Feeding
Plant family                     of      of        Score     Mortality
Species           Common names   Tests   Insects   (1)       (%)

CONVOLVULACEAE

Ipomoea batatas   Sweetpotato    1       30        0         100

SOLANACEAE

Capsicum annuum   Bell pepper    2       70        0         100
Datura discolor   Angels'        1       30        0         100
                  trumpet
Datura            Jimson weed    1       30        0         100
stramonium
Lycium            Christamas     1       30        0         100
carolinianum      berry
Lycopersicon      Tomato         2       70        0         100
esculentum
Nierembergia      Cupflower      1       30        0         100
scoparia
Nicotiana         Tobacco        2       60        0         100
tabacum
Physalis          Cutleaf        1       40        0         100
angulata          Ground-
                  Cherry
Physalis          Strawberry     1       30        0         100
pubescens         tomato
Solanum           American       1       30        0         100
americanum        nightshade
Solanum           Red soda       2       70        2         100
capsicoides       apple
Solanum           Horsenettle    1       30        0         100
carolinense
Solanum           Watermelon     1       30        0         100
citrullifolium    nightshade
Solanum           Western        1       30        0         100
dimidiatum        horsnettle
Solanum           Mullein        2       70        0         100
donianum          nightshade
Solanum           Silverleaf     1       30        0         100
elaeagnifolium    nightshade
Solanum           Melonleaf      1       30        0         100
heterodoxum       nightshade
Solanum           Jamaican       1       30        0         100
jamaicense        nightshade
Solanum           White          1       30        0         100
jasminoides       potato vine
Solanum           Eggplant       2       70        1         100
melongena
Solanum           Divine         1       30        0         100
nigrescens        nightshade
Solanum           Wonder         1       30        0         100
ptycanthum        berry
Solanum           Rock-outcrop   1       30        0         100
pumillum          Solanum
Solanum           Naranjilla     1       30        0         100
quitoense
Solanum           Sunberry       1       30        0         100
retroflexum
Solanum scabrum   Garden         1       30        0         100
                  huckleberry
Solanum           Wetland        2       70        0         100
tampicense        nightshade
Solanum torvum    Turkeyberry    2       70        1         100
Solanum           Potato         2       70        0         100
tuberosum
Solanum viarum    Tropical       2       70        5         26
                  soda apple

Each test included 3-4 replications with 10 neonate larvae per
replication.

1= no feeding, = probing (<5% of leaf area), 2 = light feeding
(5-20%), = moderate feeding (21-40%), 4 = heavy feeding (41-60%),
5 = intense feeding (>60% of leaf area).

TABLE 3. HOST RANGE OF GRATIANA GRAMINEA ADULTS IN NO-CHOICE
FEEDING TESTS IN FLORIDA QUARANTINE.

                                  No.     No.       Feeding
Plant family                      of      of        Score     Eggs/
Species           Common names    Tests   Insects   (1)       female

CONVOLVULACEAE

Ipomoea batatas   Sweetpotato     1        40       0         0

SOLANACEAE

Capsicum annuum   Bell pepper     3       110       0         0
Capsicum          Chile           1        30       0         0
frutescens
Lycopersicon      Tomato          3       110       0         0
esculentum
Nicotiana         Tobacco         2        70       0         0
tabacum
Nierembergia      Cupflower       1        30       0         0
scoparia
Physalis          Ground-cherry   1        30       0         0
crassifolia
Solanum           American        1        40       0         0
americanum        nightshade
Solanum           Bahama          1        30       0         0
bahamense         nightshade
Solanum           Red soda        1        40       0         0
capcicoides       apple
Solanum           Horse nettle    1        40       0         0
carolinense
Solanum           Watermelon      1        30       0         0
citrullifolium    nightshade
Solanum           Western         1        40       0         0
dimidiatum        horsenettle
Solanum           Two-leaf        1        30       0         0
diphillum         nightshade
Solanum           Mullein         2        70       0         0
donianum          nightshade
Solanum           Silverleaf      2        70       1         0
elaeagnifolium    nightshade
Solanum           Melonleaf       1        30       0         0
heterodoxum       nightshade
Solanum           Jamaican        1        40       0         0
jamaicense        nightshade
Solanum           White potato    1        40       0         0
jasminoides       vine
Solanum           Nipplefruit     1        30       0-2       0
mammosum
Solanum           Eggplant
melongena
cv Black
Beauty
cv Classic                        4       140       0-1       0
cv Ichiban                        2        60       0         0
cv Italian-                       2        60       0         0
Nadia
cv Market                         2        60       0         0
cv Neon                           2        60       0-1       0
cv Orient                         1        60       0         0
charm
cv Orient                         2        60       0         0
express
cv Thai                           2        60       0         0
Solanum           Divine          1        30       0         0
nigrescens        nightshade
Solanum           Rock-outcrop    1        30       0         0
pumilum
Solanum           Wonder berry    1        30       0         0
ptycanthum
Solanum           Sunberry        1        30       0         0
retroflexum
Solanum           Garden          1        30       0         0
scabrum           huckleberry
Solanum           Brazilian       1        30       0         0
seaforthianum     nightshade
Solanum           Wetland         2        70       1         0
tampicense        nightshade
Solanum           Turkeyberry     2        70       2         0
torvum
Solanum           Potato          3        80       0         0
tuberosum
Solanum           Tropical        4       140       5         47-61
viarum            soda apple

Each test included 3-4 replications with 10 adults (5 females,
5 males) per replication.

10 = no feeding, 1 = probing (<5% of leaf area), 2 = light
feeding (5-20%), 3 = moderate feeding (21-40%), 4 = heavy feeding
(41-60%), 5 = intense feeding (>60% of leaf area).
COPYRIGHT 2010 Florida Entomological Society
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Author:Medal, J.; Bustamante, N.; Vitorino, M.; Beal, L.; Overholt, W.; Diaz, R.; Cuda, J.
Publication:Florida Entomologist
Article Type:Report
Geographic Code:1USA
Date:Jun 1, 2010
Words:6340
Previous Article:Potential for population growth of the small hive beetle Aethina tumida (Coleoptera: Nitidulidae) on diets of pollen dough and oranges.
Next Article:Description of the larvae of Tapinoma melanocephalum (Hymenoptera: Formicidae).
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters