Printer Friendly

Holocene buried organic sediments in Estonia/Holotseensed mattunud organogeensed setted Eestis.

INTRODUCTION

Buried organic sediments along ancient seacoasts offer a good possibility for dating transgressions and regressions of the Baltic Sea. Regressive phases brought about isolation of coastal lakes and lagoons, which due to land uplift became shallow, paludified, and during the following transgression were coated by waterlaid deposits. In buried conditions patches of peat and gyttja were sealed and preserved up to the present, offering material for radiocarbon dating. As such peat and gyttja lenses were formed during a relatively short time and later compressed by overlying minerogenic deposits, their thickness is commonly less than 50 cm, rarely exceeding 100 cm.

Hausen (1913) and Thomson (1933) reported the first evidence on the occurrence of buried organic deposits of Holocene age in Estonia. Hausen (1913) mentioned soil below the Ancylus sand and gravel at Piirsalu, Thomson (1933, 1937) described buried peat on the banks of the Parnu and Narva rivers. Kents (1939) presented material on 37 sites with different beach formations and in 174 occasions adjusted their elevation. He proposed an idea of two transgressions of the Litorina Sea and their diachroneity in Estonia. In the 1960s, Helgi Kessel (Photos 1, 2) studied the Baltic Sea coastlines with biostratigraphic methods (pollen, diatom, and molluscs) and combined those with radiocarbon and archaeological approaches to justify the different stages of the Baltic Sea and their ecology on a firmer ground. In 1960, ten localities of Holocene buried organic sites were known: Rilgimae (Thomson 1933), Paardu (Laasi 1937), Kallavere, Melahtme, Voidu, Jarise, Mustajoe (later renamed as Sikaselja), Piirsalu, Laitse, and Vakalepa (Kessel 1960; a database of Holocene buried organic sediments. In addition to all sites described by her, we have included in it several recently discovered sites. Up to now, this material was scattered in different publications and manuscripts. To fulfil this task, we collected and examined critically all the material available.

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

[FIGURE 1 OMITTED]

MATERIAL AND METHODS

To date, buried organic deposits of Holocene age are known from 85 sites. Of those, 45 are connected with the Ancylus Lake beach formations, 31 with the Litorina Sea, and 9 are younger and of various age. The compiled database of the Holocene buried organic deposits is presented in Appendixes 1-3. It includes radiocarbon-dated and undated sites, their coordinates, elevation, calibrated and uncalibrated [sup.14]C dates, dated material, and references. All AMS [sup.14]C dates were provided by the Angstrom Laboratory, Uppsala University and are marked by the laboratory code Ua. Conventional radiocarbon dates were obtained at the [sup.14]C laboratory of the University of Tartu (TA, Ta) and at the Institute of Geology, Tallinn (Tln). Radiocarbon dates were calibrated to calendar years using the Calib5.0 program at 16 confidence level (Stuiver & Reimer 1993; Reimer et al. 2004). In the appendixes, the sites where pollen analyses have been carried out are marked with an asterisk. The location of the sites listed in Appendixes 1 and 2 is shown in Fig. 1. The reliability of the location and altitude of sites was checked using different sources of literature and topographic maps. Most elevations of sites were taken from the maps and are, therefore, marked with ca in the appendixes. Topographic maps indicate that some sites, reported as instrumentally measured, must have measurement errors, for example, Lope (Appendix 1) must lie about 2-3 m higher than reported. The database clearly shows that the elevation data are the most problematic and some extra work is required to improve the compiled database.

The shoreline displacement database of the Ancylus Lake and Litorina Sea was used to create water-level surfaces of the Ancylus Lake and Litorina Sea (Saarse et al. 2003a). The surfaces were compiled using a point kriging inter polation with linear trend approach (for details see Saarse et al. 2003a). The same approach was used to reconstruct the surfaces of buried organic sediments for two time intervals: 9500-8500 and 8400-7000 [sup.14]C yr BP. First, all the data falling into this interval were used to reconstruct water-level surfaces. Then the data visually not matching with sites nearby were eliminated and new water-level surfaces were compiled. After data elimination the time intervals narrowed to 9300-8600 and 8000-7000 [sup.14]C yr BP. The top surfaces of the buried organic sediments were then compared with the water-level surfaces of the Ancylus Lake and Litorina Sea, respectively (Figs 2, 3).

[FIGURE 2 OMITTED]

[FIGURE 3 OMITTED]

RESULTS AND DISCUSSION

Dating problems

Radiocarbon ages of the organic deposits formed during Yoldia regression and Ancylus transgression (73 dates) vary significantly: from 8440 [+ or -] 70 (TA-263) to 9980 [+ or -] 120 (Tln-2349) at Joelahtme (Appendix 1). The [sup.14]C dates (50 dates) obtained for Ancylus regression and Litorina transgression deposits range from 5520 [+ or -] 100 (Tln-178) at Oara to 8400 [+ or -] 190 (Mo-222) at Karla (Appendix 2). Post-Litorina buried organic beds have been found at nine sites. Their radiocarbon dates fluctuate between 180 [+ or -] 60 (Tln-2441) and 3780 [+ or -] 50 (Tln-2504; Appendix 3). These young beds are mostly covered by aeolian sand. The variability of radiocarbon dates is caused by different factors. Firstly, in some places pre-Ancylus buried organic sediments contain deposits of both Yoldia regression and Ancylus transgression. In principal, the same is valid for the buried pre-Litorina beds, which can include the deposits of Ancylus regression and Litorina transgression. Secondly, radio-carbon dates depend on the material analysed (wood, seeds, bulk organic matter, insoluble or soluble fraction), its preservation and availability to weathering, contamination with older carbon or younger rootlets, hard water and reservoir effect, as well as the dating method used (Olsson 1986; Veski 1998; Wohlfarth et al. 1998; Olsson & Kaup 2002).

Buried organic deposits from several sites, such as Melahtme, Olemiste, Tapu, Kodu, and Rannametsa (Fig. 1; Appendixes 1, 2), have been newly examined and dated. Commonly, new conventional radiocarbon dates are older than those obtained earlier. At Joelahtme the buried fen peat was earlier dated to 8700-8400 yr BP (Kessel & Punning 1974). New dates obtained in 1997 indicate a considerably older age (Appendix 1), which is consistent with pollen stratigraphy (Veski 1998, p. 44). The same is valid for the Tapu organic deposits where the new [sup.14]C date (9325 [+ or -] 65, Tln-2185; Veski 1998) showed an older age than the earlier ones (8995 [+ or -] 125, TA-78 and 8460 [+ or -] 180, TA-75; Appendix 1). One and maybe the most important reason is the conservation of samples and the time span between collection and dating. For example, wood from the buried peat at Sindi (Appendix 2) was collected already in 1959 (Liiva et al. 1966), but analysed several years later and the age appeared to be 6710 [+ or -] 110 (TA-55). Comparison of conventional and AMS [sup.14]C dates showed that in several cases AMS dates from seeds yielded younger ages than conventional radiocarbon dates from bulk peat, gyttja or wood. A good example is Lake Ermistu (Appendix 1), where woody fen peat at a depth of 520-530 cm was dated by the conventional [sup.14]C method to 9515 [+ or -] 120 (Tln-1378) and seeds from the midpoint of the same interval (525 cm) were dated to 8870 [+ or -] 85 (Ua-13031; Veski 1998).

Geological setting

The coastal formations of the Ancylus Lake are located at a height of 45 m a.s.l. on the Island of Hiiumaa, 13 m in Narva, and 5 m in SW Estonia near the Estonian-Latvian border (Fig. 2). The Litorina Sea shorelines occur at lower elevation. The highest Litorina limit has been registered at 25 m a.s.l. also on the Island of Hiiumaa, 21-22 m a.s.l. in NW Estonia (Thomson 1936; Kessel & Raukas 1979), 9-10 m in Narva, and 5 m in SW Estonia (Fig. 3). Buried organic deposits are commonly located close to the Ancylus Lake and Litorina Sea transgression coastline, under beach ridges and spits where the sedimentation was rapid (Photo 1). Remarkable thickness (up to 1.3 m) and spatial distribution of these deposits have been traced on the lower reaches of the Parnu River, where more than 20 buried organic sequences are exposed on the river bank and its tributaries within a 40 [km.sup.2] area (Veski et al. 2005). Here the height of pre-Ancylus and Ancylus buried organic beds ranges between 3 and 16 m a.s.l. (Kessel 1963; Veski et al. 2005). In the Oara, Sindi, and Paikuse sequences two consecutive buried organic strata represent pre-Litorina and pre-Ancylus beds, respectively. At Pulli and Sindi-Lodja organic deposits are connected with the archaeological settlement sites.

Kessel (1968) divided the buried organic sediments in Estonia into two groups: (1) peat and gyttja, which deposited in terrestrial conditions and (2) reed peat and clayey gyttja, which accumulated in lagoons or bays. Peat and gyttja are enriched with green algae, insect remains, seeds, and other macroremains. Deposits of lagoons and bays are rich in mineral matter and contain few diatoms. The diatomite in Leekovo mire and Torvala is an exception, consisting almost entirely of diatomic frustules (Thomson 1937).

Buried peat was formed in two different ways. Firstly, due to rise in ground-water table, paludification, and overgrowing of relict lakes and lagoons isolated during the regression phases of the Baltic Sea. Such conditions seem to have existed at Ermistu, Sindi, Lemmeoja, and Pitkasoo where peat accumulation started before the Ancylus transgression, in the hollows and relict lakes on the Yoldia Sea terrace. Their pre-Ancylus age is confirmed by the pollen composition and radiocarbon dates. The basal part of buried peat is dated to 9850 [+ or -] 165 (Ua-13036) in Lake Ermistu, 9820 [+ or -] 130 (Tln-130) in Lemmeoja, and 9800 [+ or -] 80 (Ua-2285) in Pitkasoo (Appendix 1). Secondly, peat could have accumulated in the hollows and depressions due to water-level rise in the transgression phase. This seems to be the case at Kodu where the swampy birch wood was drowned due to the rise in groundwater table. A question arises of how to differentiate the buried peat formed during the Yoldia Sea regression from that of the Ancylus Lake transgression if they occur in the same sequence. Commonly, the limit is placed along the lithological boundary between peat (regressional facies) and gyttja (transgressional facies), but if there is no clear lithological boundary, the limit between the Yoldia regressional and Ancylus transgressional bed is tentatively placed at 9500 yr BP (10 800 cal BP).

The complete sedimentation cycle formed during the Ancylus transgression (from the beginning up to the culmination) can be followed in a few coastal lake sequences (Maardu, Ulemiste, Mustjarv, and Ermistu) and in some buried sequences (Polluotsa, Lope, and Kodu), which register the transgression event quite clearly. At Polluotsa the basal sand is covered by woody peat, herbaceous-Hypnum peat, gyttja, lagoonal clay, and gravelly sand (Ploom et al. 1996). Woody peat accumulated in the conditions of groundwater table rise, and the Betula wood from it has been dated to 9350 [+ or -] 70 (Tln-2023). A similar transgressive sequence has been found at Kodu, which starts with clay overlain by peat (9340 [+ or -] 45, Tln-1993), gyttja, silty sand, and sand (Raukas et al. 1999). The Lope sequence, where till beds are overlain by Phragmites peat, alternating lagoonal silt and sand, and covered by gravel, also refers to the transgressive nature of sediments (Raukas et al. 1995a). The age of the buried peat in the Lope sequence has been dated to 9215 [+ or -] 70 (Tln-1631) and 9260 [+ or -] 70 (Tln-1632) (Appendix 1). In the Oara, Pulli, Sindi, and Paikuse sequences peat and gyttja are covered by alternating peaty and sandy layers, the origin of which has been interpreted differently (Raukas et al. 1999; Veski et al. 2005). At Skede Mose (Oland) such alternating sandy and gyttja layers have been interpreted as beds formed during the transgression maximum (Konigsson 1968).

The Ancylus Lake culmination has been discussed and re-estimated recurrently. In the 1960s and 1970s it was suggested to have occurred between 8400 and 8200 yr BP (Kessel & Punning 1969a; Kessel & Raukas 1979), in the 1980s at about 8700 yr BP (Raukas et al. 1988), in the 1990s at 9000-9200 yr BP (Raukas et al. 1995b) or 9200-9300 yr BP (Saarse et al. 1997). The last mentioned ages are comparable to that suggested by Finnish and Swedish researchers (Berglund 1964; Eronen & Haila 1982; Svensson 1989; Bjorck 1995; Berglund et al. 2005).

The reconstructed shore displacement curves suggest that the Ancylus Lake regressed rather rapidly (Kessel & Raukas 1979; Bjorck 1995; Saarse et al. 1997; Berglund et al. 2005; Veski et al. 2005). The magnitude of the Ancylus Lake regression in Estonia varies from 30 m on the Island of Hiiumaa, judging by the low position of the Ancylus fauna (Raukas et al. 1996), to 11 or more metres in the vicinity of Parnu (Veski et al. 2005), depending on the land uplift measure.

The development of the Litorina Sea was more complicated than that of the Ancylus Lake and opinions on the number of transgressions and timing of culmination vary considerably. Some authors have distinguished several transgressions in the history of the Litorina Sea (Kessel 1963; Kessel & Raukas 1979; Sandgren et al. 2004; Berglund et al. 2005). Others have defined only one major transgression (Eronen 1974; Hyvarinen 1980; Kaland 1984; Hyvarinen et al. 1992; Seppa et al. 2000; Miettinen 2002). H. Kessel and A. Raukas later also supported the idea of one Litorina transgression (Kessel & Raukas 1984; Hyvarinen et al. 1988). Lepland et al. (1996) studied the Narva area and tentatively distinguished there three transgression phases. It was explained with the circumstance that Leekovo lagoon had a limited connection with the sea and, therefore, could have been influenced by the water-level changes in the Narva River. In the Parnu district, which lies on the same isobase as Narva, one Litorina transgression was recognized (Veski et al. 2005). Comparison of the shore displacement curves with the position of the settlement sites also supports the idea of one main transgression (Jussila & Kriiska 2004; Veski et al. 2005).

The transitional stage between the Ancylus Lake and Litorina Sea is the Mastogloia Sea, or the Early Littorina Sea (Berglund et al. 2005), or Initial Litorina Sea (Andr6n et al. 2000). Two periods have been distinguished in the history of the Early Littorina Sea: at 9800-9400 cal BP (8700-8300 yr BP) and 9400-8500 cal BP (8300-7700 yr BP), the last being known as the Mastogloia stage (Berglund 1964; Hyvarinen 1984, 1988). The first period established in Blekinge is characterized by diatoms, which show saline water inflow, but considerably earlier than previously assumed (Eronen et al. 1990). Deposits of the second period contain mainly freshwater diatoms. Beds of the first period are not known in Estonia, at least not of such an early age. The deposits of the Mastogloia period, recognized as a transitional diatom-stratigraphic unit, have been found at Tuudi, Lumiste (Kessel & Pork 1974), Rannametsa (Hyvarinen et al. 1992), and Koivasoo (Kents 1939; Saarse et al. 2000). The ages of the Tuudi (7860 [+ or -] 70, Tln-33; 8550-8850 cal BP), Rannametsa (8080 [+ or -] 110, Hel-2207A, 8770-9200 cal BP; 8060 [+ or -] 110, Hel-2207B, 8730-9130 cal BP), and Koivasoo beds (8190 [+ or -] 90, TA-530; 9030-9260 cal BP) coincide with the time span of 9400-8500 cal BP suggested by Berglund et al. (2005). According to Kessel (1975), the Mastogloia stage in Estonia occurred later, at about 7600-7200 yr BP (8400-8100 cal BP).

It is hard to determine the start of the Litorina transgression on the basis of buried strata, because organic beds are poor in or completely lacking diatoms and molluscs, in contrast to the covering minerogenic beds, which comprise typical Litorina Sea taxa, e.g. Campylodiscus echeneis, Navicula peregrina, Diploneis interrupta. The beginning of the brackish Litorina transgression has been registered at about 8500 cal BP in southern Sweden (Berglund et al. 2005), and 8400 cal BP in the east of the Gulf of Finland (Miettinen 2002). A clearly brackish-water mollusc fauna of the Litorina Sea appeared in western Estonia about 7200 yr BP or 7950-8150 cal BP (Kessel 1975).

The highest shoreline of the Litorina Sea in Estonia (25 m a.s.l. on the Island of Hiiumaa) is dated to 7500 yr BP (Konigsson et al. 1998; 8150 cal BP), whereas in the Narva area (10 m a.s.l.; Ramsay 1929) it is dated to ca 6600 yr BP (7500 cal BP; Lepland et al. 1996). In the Parnu area, which lies approximately on the same isobase as Narva (Fig. 3), the Litorina transgression culminated ca 6500 yr BP or 7300-7400 cal BP (Veski et al. 2005). It means that in the areas of slower land uplift the transgression maximum occurred later than in the areas with more rapid uplift (Miettinen 2002) and that the highest Litorina level is diachronous (Hyvarinen et al. 1988).

The Litorina buried beds like those of Ancylus age are also represented by lagoonal clayey silt, gyttja or peat (Appendix 2). At Oara the pre-Litorina buried deposits are mostly composed of 135 cm thick Phragmites peat, underlain and covered by lagoonal clayey gyttja. The upper part of the gyttja was dated to 6100 [+ or -] 50 (TA-193). At Sindi, Paikuse, and Sindi-Lodja, the Litorina beds occur together with the Ancylus beds, forming the upper organic set (Kessel 1961; Veski et al. 2005). In several places (Kolga, Rannametsa, and Vesiku) the surfaces of buried beds have been subject to wave action and erosion. The traces of abrasion are visually observable.

Pollen stratigraphy

Pollen analyses show that the deposits formed during the Yoldia Sea regression (before 9500 yr BP) are characterized by different pollen assemblages. Therefore it is hard to define their chronological position by palaeobotanical records only. Buried peat at Oara is dominated by Betula pollen, followed by Pinks (Kessel & Punning 1969b). Pollen of Betula nana and Salix is continuously present, Alnus, Corylus, Ulmus, and Picea occur sporadically. The proportion of herbs is high on account of Poaceae and Cyperaceae. Typical arctic flora elements, such as Hippophaj rhamnoides and Dryas octopetala, have been identified (Kessel & Punning 1969b). In contrast to Oara, bottom peat in Pitkasoo and Lake Ermistu is enriched with Pinks pollen (Konigsson et al. 1998; Veski 1998). The quantity of other tree pollen is negligible, even Betula pollen does not exceed 10%.

Sediments deposited during the Ancylus transgression were examined palynologically at Jalgimae, Polluotsa, Tapu, Ermistu, Kodu, Lope, Kopu, Sindi, Paikuse, Voidu, Lemmeoja, Melahtme, and Pelisoo (Fig. la). They are characterized by the dominance of Pinks pollen, whose frequency fluctuates from 60 to 90%. The amount of Betula is commonly between 10 and 30%. Salix, Juniperus, Populus, Alnus, Corylus, and Ulmus are present sporadically or with low values. Among herbs, Poaceae and Cyperaceae are dominating. In lakes with continuous sedimentation, such as Ulemiste, Maardu, Mustjarv, and Ermistu, Betula pollen surpasses in frequency Pinks pollen (Saarse et al. 1997; Veski 1998) and the pollen assemblage is more similar to that of Preboreal age. The high Pinks percentages and sometimes considerably younger than expected [sup.14]C age were the main reasons why in the 1960s and 1970s the Ancylus transgression was correlated with the Boreal chronozone (Kessel & Punning 1969a; Kessel & Raukas 1979).

Pollen assemblages of the Mastogloia beds (Lumiste, Tuudi) show the following frequencies: Pinks and Betula 30-50%, Alnus 13-22%, QM (Ulmus, Tilia, and Quercus) 4-10%, Corylus 5-12%. The pollen of Picea is low, less than 2% (Kessel & Pork 1974). Among other species in both lagoonal beds Campylodiscus clypeus, C. echeneis, and Mastogloia smithii have been identified (Kessel & Pork 1974).

The pollen composition of the Litorina beds varies considerably from site to site. The pollen assemblages in buried sediments on the lower reaches of the Parnu River are dominated by Betula, Pinks, and Alnus with herbs composed mainly of Poaceae and Cyperaceae (Thomson 1933; Kessel 1963; Veski et al. 2005). In several pollen diagrams (Vesiku, Karla, Seliste) at first Pinks pollen dominates (60-80%). It decreases upwards, directly corresponding to increase in Betula, Corylus, and QM. The Keila-Joa diagram displays equal pollen percentages (up to 30%) for Betula and Alnus, 3% for Picea, and 5% for QM. Pollen assemblages at Kolga differ by a high proportion of Betula (30-60%), at Seliste and Torvala by the prevalence of Alnus and Betula (up to 50%; Kessel 1963; Kessel & Punning 1969a). In the Kolga diagram QM reaches 10%, Picea 1-2%, and Corylus up to 20%. All this shows that pollen assemblages differ substantially with sites and reflect the local vegetation composition, and determination of sediment position in the chronological scale can fail.

Modelling results

The isobases of the modelled water-level surfaces of the Ancylus Lake and Litorina Sea are presented in Figs 2a and 3a. The modelled Ancylus Lake shoreline shows that the isobases are almost straight lines, with some minor exceptions (Fig. 2a). The Ancylus Lake water-level surface is plane, tilted from northwest to southeast. It refers to even and regular uplift of Estonia at that time, without noticeable connection between isobases, bedrock geology, and tectonics. The simulated sea surface of the Litorina transgression shows a more complicated pattern (Fig. 3a). It appears that some Litorina isobases are not straight lines: in NE Estonia the 15 m isobase has a greater inclination in an easterly direction than previously suggested (Kessel & Raukas 1979, 1984). Spacing between the Litorina isobases varies regionally, probably as a result of different land uplift and a non-contemporaneous Litorina transgression. In general, the modelling results (Figs 2a, 3a) are similar to those obtained earlier using trend-surface analysis (Miidel 1995).

Comparison of the Ancylus Lake water level with the isobases of the buried organic matter of Ancylus age (9500-8500 yr BP) shows discrepancies in the Parnu area, especially at two localities--Sindi-Lodja and Paikuse (Appendix 1; Fig. 2). The organic matter of Ancylus age at Sindi-Lodja (9170 [+ or -] 200, Ta-2784) and Paikuse (9575 [+ or -] 90, TA-2547) lies about 4-5 m lower than at the sites nearby. Both these sites are located on the riverbank where varved clays underlie the studied deposits and landslides are quite common, thus one can suspect that these deposits are not in situ position. Furthermore, it is not reasonable to rule out other possibilities, e.g., erosion at the beginning of the Ancylus transgression during which the upper part of organic layers could have been removed, or erroneous elevation of the buried organic beds, as several sections were not levelled. Simulation of isobases without Paikuse and Sindi-Lodja sites improved the modelling results significantly (Fig. 2b). In general, the buried organic matter lies slightly (about 1-2 m) below the modelled level of the Ancylus Lake, which indicates that it deposited before the Ancylus transgression. In SW Estonia organic matter lies about 4 m below the modelled level of the Ancylus Lake (Fig. 2b). The reason for such a phenomenon is not clear and more detailed studies are required.

Comparison of the water level of the Litorina Sea with the isobases of the buried organic matter (time span 8400-7000 yr BP) shows discrepancies in the same area around Parnu Bay (Fig. 3a). Here landslides at Sindi-Lodja and erosion at Kolga and Malda (Fig. 1b) could have affected the geological setting of the buried bed. The low elevation of the Rannametsa buried bed (Appendix 2) does not match with the elevation of the other sites nearby. Simulation without Sindi-Lodja and Rannametsa sites, but also Karla which is much older (8400 [+ or -] 190, Mo-222; Appendix 2), improved slightly the results, but the discrepancy around Parnu still remains (Fig. 3b). In general, the buried organic matter is almost at the same elevation with the modelled level of the Litorina Sea above the 15 m isobase, but some metres lower below that isobase, which is hard to justify.

CONCLUSIONS

* The database of Holocene buried organic sediments of Estonia, including 85 sites, was compiled. The transgressional and regressional phases of the Baltic Sea created suitable conditions for the deposition of peat and gyttja, which during the transgressions were coated by minerogenous deposits of the Ancylus Lake and Litorina Sea. Such sites are now known in 76 localities. The post-Litorina buried peat (nine sites) is mostly covered by aeolian sand, not by marine one.

* Radiocarbon dates received on buried peat and gyttja differ considerably depending on the bedding conditions and material and methods used. In several cases, the [sup.14]C ages obtained recently are older than earlier ones, possibly due to methodological reasons or mistakes at sample collection and preservation.

* Buried organic deposits of Ancylus age are mostly characterized by the dominance of Pinus pollen. This was the main reason why earlier the Ancylus transgression was connected with the Boreal chronozone, explaining also its 1000 years younger age compared to the results from Scandinavia.

* Comparison of shore displacement curves and the ancient settlement position does not support the opinion about the multiple Litorina transgression. We favour the idea that the Litorina transgression culminated at different times, first in the areas of rapid uplift.

* According to studies carried out in Estonia, the Ancylus transgression developed between 9500 and 9000 yr BP (10 800-10 100 cal BP), while the Litorina Sea culminated between 7500 and 6600 yr BP (8100-7400 cal BP).

* Simulation of buried organic matter beds and shoreline isobases shows discrepancies, especially in the surroundings of Parnu Bay. This can mainly be explained by landslides.

* Detailed bio- and chronostratigraphic analyses are needed to register more precisely the beginning and end of transgressions, especially the character of the Litorina transgression.
Appendix 1. Database of pre-Ancylus and Ancylus buried organic
sediments. Asterisks mark the sites where pollen analysis has
been carried out

No. Site Coordinates

 1 Sininomme 59[degrees]26' 28[degrees]7'

 2 Kolga (Juminda) 59[degrees]30' 25[degrees]37'

 3 Muuksi (Uuri) * 59[degrees]29'30" 25[degrees]34'20"

 4 Kahala * 59[degrees]29'30" 25[degrees]32'

 5 Joelahtme * 59[degrees]27'20" 25[degrees]8'40"

 6 Kallavere * 59[degrees]29' 25[degrees]1'
 7 Kroodi 59[degrees]27'10" 24[degrees]59'30"

 8 Lake Maardu * 59[degrees]26'40" 24[degrees]59'50"

 9 Iru 59[degrees]27'20" 24[degrees]53'50"

10 Merivalja * 59[degrees]29'45" 24[degrees]51'40"

11 Lake Ulemiste * 59[degrees]24' 24[degrees]46'

12 Jalgimae * 59[degrees]19' 24[degrees]38'

13 Allikakula 59[degrees]10' 24[degrees]27'
 (Laitse)

14 Polluotsa * 59[degrees]12'10" 24[degrees]5'50"

15 Valgejarv * 59[degrees]6'30" 24[degrees]7'30"

16 Mustjarv * 59[degrees]4'40" 24[degrees]6'30"

17 Piirsalu * 59[degrees]4' 24[degrees]2'

18 Palivere 58[degrees]58'0" 23[degrees]53'50"

19 Kullamaa 58[degrees]53' 24[degrees]4'
 (Kurisoo)

20 Ohtla 58[degrees]52' 23[degrees]54'

21 Tapu * 58[degrees]45'15" 24[degrees]26'55"

22 Altkula 58[degrees]42' 24[degrees]30'
 (near Tapu)

23 Vakalepa * 58[degrees]36'30" 24[degrees]17

24 Tagapere * 58[degrees]28'20" 24[degrees]16'50"

25 Oara * 58[degrees]28'20" 2401720

26 Kastna * 58[degrees]21'25" 23[degrees]55'35"

27 Lake Ennistu * 58[degrees]22'0" 9850 [+ or -] 165
 23[degrees]59'0"
 9745 [+ or -] 85
 9635 [+ or -] 100
 9595 [+ or -] 130
 9565 [+ or -] 75
 9515 [+ or -] 120
 9345 [+ or -] 90
 9275 [+ or -] 185
 9205 [+ or -] 185
 9075 [+ or -] 95
 8870 [+ or -] 85
28 Kopu * 58[degrees]18'10" 9060 [+ or -] 70
 24[degrees]9'

29 Lope * 58[degrees]26'21" 9260 [+ or -] 70
 24[degrees]34'19"

 9215 [+ or -] 70
30 Pressi 58[degrees]27' 9135 [+ or -] 70
 24[degrees]36'30"

31 Kodu * 58[degrees]26'5" 9340 [+ or -] 45
 24[degrees]37'25"

 8480 [+ or -] 90
32 Urge 58[degrees]25'30" 9125 [+ or -] 85
 24[degrees]39'

33 Pulli * 58[degrees]25'10" 9620 [+ or -] 120
 24[degrees]40'30"

 9600 [+ or -] 120
 9385 [+ or -] 105
 9350 [+ or -] 60
 9290 [+ or -] 120
 9285 [+ or -] 120
 9145 [+ or -] 115
 9095 [+ or -] 90
34 Sindi * 58[degrees]22'40" 9575 [+ or -] 115
 24[degrees]36'40"

 9300 [+ or -] 75

35 Paikuse * 58[degrees]22'48" 24[degrees]36'50"

36 Sindi-Lodja * 58[degrees]22' 24[degrees]35'40"

37 Sikaselja * 58[degrees]20'40" 24[degrees]38'40"

38 Voidu * 58[degrees]8' 24[degrees]34'

39 Lemmeoja* 57[degrees]58'0" 24[degrees]24'35"

40 Pelisoo * 58[degrees]26'40" 22[degrees]23'

41 Torise 58[degrees]27'30" 22[degrees]26'30"

42 Kasesoo 58[degrees]24' 22[degrees]19'

43 Pitkasoo * 58[degrees]16'22" 22[degrees]13'25"

44 Jarvesoo * 58[degrees]15'20" 22[degrees]9'

45 Siplase * 57[degrees]59' 22[degrees]16'

No. [sup.14]C age, Lab. No. Calibrated age,
 yr BP yr BP

 1 9700 [+ or -] 75 Ua-3193 10 870-11 220
 9480 [+ or -] 80 Ua-3192 10 590-11 070
 9380 [+ or -] 70 Ua-3191 10 510-10 690
 9190 [+ or -] 70 Ua-3190 10 250-10 420

 2 Not dated

 3 9230 [+ or -] 80 Tln-202 10 280-10 440

 4 8595 [+ or -] 75 TA-59 9 500-9 630

 5 9980 [+ or -] 120 Tln-2349 11 250-11 700
 9640 [+ or -] 100 Tln-2371 10 790-11 180
 9330 [+ or -] 90 Tln-2370 10 420-10 675
 8745 [+ or -] 75 TA-262 9 600-9 830

 8440 [+ or -] 70 TA-263 9415-9530

 6 Not dated

 7 Not dated

 8 9490 [+ or -] 110 Ua-2390 10 645-11070

 9 Not dated

10 Not dated

11 9480 [+ or -] 95 Tln-1859 10 590-11 070
 9300 [+ or -] 80 Tln-1856 10 380-10 590
 9145 [+ or -] 75 Tln-1861 10 230-10 400

12 Not dated

13 Not dated

14 9350 [+ or -] 70 Tln-2023 10 500-10 680

15 Not dated

16 9590 [+ or -] 120 Tln-2042 10 760-11 120
 9080 [+ or -] 70 Ua-11689 10 180-10 300

17 Not dated

18 8640 [+ or -] 70 Tln-65 9 540-9 670

19 Not dated

20 8560 [+ or -] 110 TA-195 9 460-9 680

21 9325 [+ or -] 65 Tln-2185 10 430-10 650
 8995 [+ or -] 125 TA-78 9 910-10260

22 8460 [+ or -] 180 TA-75 9 240-9 630

23 Not dated

24 9140 [+ or -] 90 Tln-2222 10 220-10 470
 9140 [+ or -] 90 Ua-12445 10 220-10 470
 9010 [+ or -] 125 Tln-2219 9 910-10 270

25 9765 [+ or -] 130 TA-133 10 800-11330

26 8960 [+ or -] 45 Tln-1826 9 950-10 220

 8780 [+ or -] 50 Tln-1824 9 700-9 900

27 Ua-13036 10 910-11700 12.35-12.40
 Tln-1137 10 880-11250 12.4-12.5
 Tln-1380 10 790-11 180 12.3-12.4
 Ua-13034 10 760-11 140 12.55-12.6
 Tln-1323 10 750-11080 12.75-12.85
 Tln-1378 10 610-10 880 12.5-12.6
 Ua-13035 10 420-10 690 12.45-12.5
 Ua-11245 10 240-10 700 12.60
 Ua-11244 10 190-10 660 12.86
 Ua-13032 10 160-10 400 12.45
 Ua-13031 9 800-10 170 12.55
28 Ua-11652 10 160-10 280 12.67

29 Tln-1632 10 300-10 550 8.6-8.78
 Tln-1631 10 270-10 490 8.6-8.78

30 Tln-1991 10 230-10 390 ca 11.5

31 Tln-1993 10 500-10 650 ca 13
 Tln-66 9 420-9 550 ca 13

32 Tln-1691 10 220-10 400 ca 11

33 Hel-2206B 10 790-11 170 ca 8.82-8.92
 TA-245 10 770-11 130 ca 9
 Ua-13351 10 420-10 760 8.95
 TA-949 10 500-10 660 ca 9
 Hel-2206A 10 290-10 650 ca 8.8-9
 TA-284 10 280-10 640 ca 9.3
 Ua-13353 10 220-10 490 9.27
 Ua-13352 10 190-10 400 9

34 TA-176 10 750-11 100 ca 10.8
 TA-175 10 300-10 590 ca 10.2

35 9575 [+ or -] 90 TA-2547 10 760-11090

 9350 [+ or -] 75 Ua-11691 10 440-10 680

 9340 [+ or -] 130 Ua-12446 10 300-10 710

36 9170 [+ or -] 200 Ta-2784 9 970-10 680

37 Not dated

38 9100 [+ or -] 125 TA-77 10 160-10 490

39 9820 [+ or -] 130 Tln-130 10 890-11470
 9440 [+ or -] 100 Hel-2208A 10 520-11060
 9430 [+ or -] 100 Hel-2208B 10 510-11060

 9240 [+ or -] 85 TA-122 10 290-10 510

 9100 [+ or -] 85 TA-123 10 190-10 390

40 9575 [+ or -] 180 Ua-13044 10 690-11 180
 9140 [+ or -] 70 Ua-11692 10 230-10 400

41 9210 [+ or -] 60 TA-1455 10 270-10 480

42 Not dated

43 9800 [+ or -] 80 Ua-2285 11 140-11310

44 Not dated

45 Not dated

No. Dated Organic
 sample layer
 altitude, altitude,
 m a.s.l. m a.s.l.

 1 ca 1.3
 ca 2.5
 ca 1.5
 ca 2.5

 2 ca 30

 3 28.24 28.24-28.34

 4 30.8-30.9 30.55-30.9

 5 28.5-28.55 28.4-28.55
 28.4-28.45 28.4-28.55
 28.4528 28.4-28.55
 ca 30-30.1

 ca 30-30.1
 6 ca 33

 7

 8 25.75

 9 ca 32

10 29.4-29.45

11 25.7125
 25.8-25.9
 26.326

12

13

14 ca 31

15 ca 28.8

16 31.4-31.5
 31.42 31.38-31.45

17 ca 32

18 ca 32

19

20

21 21.11 20.96-21.11
 ca 21

22 ca 20.5

23 ca 20

24 5.46-5.5 5.29-5.5
 5.5 5.29-5.5
 5.29-5.33 5.29-5.5

25 ca 6.35-6.45

26 16.37-16.43 16.37-16.43

 16.37-16.43 16.37-16.43

27 12.3-12.6 Woody fen peat
 12.3-12.6 Woody fen peat
 12.3-12.6 Woody fen peat
 12.3-12.6 Woody fen peat
 12.3-12.6 Calcareous gyttja
 12.3-12.6 Woody fen peat
 12.3-12.6 Woody fen peat
 12.3-12.6 Seeds
 12.3-12.6 Seeds
 12.3-12.6 Seeds
 12.3-12.6 Seeds

28 12.59-12.66 Wood

29 11? Wood
 12? Peat

30 Peat

31 Organic matter
 Woody peat

32 Peat

33 8.82-9 Cultural layer
 8.82-9 Wood
 Charcoal
 Soil
 8.82-9 Cultural layer
 Charcoal
 Seeds
 Elk bone

34 ca 10.1-10.8 Wood
 ca 10.1-10.8 Peat

35 5.15-5.25 5.13-5.24

 5.23 5.13-5.24

 5.05 5.13-5.24

36 4.45?

37

38

39 ca 3 ca 2.6
 ca 3 ca 2.6
 ca 3 ca 2.6

 ca 3 ca 2.6

 ca 3 ca 2.57

40 29.05 28.72-28.8
 28.71 28.7228

41 29.8-30

42

43 21.20

44

45

No. Dated material Reference

 1 Wood Lepland et al. 1996
 Wood Lepland et al. 1996
 Wood Lepland et al. 1996
 Wood Lepland et al. 1996

 2 Organic matter Kessel & Linkrus 1979;
 Linkrus 1988

 3 Wood Kessel & Linkrus 1979

 4 Peat Kessel 1966; Ilves et al. 1974

 5 Peat Heinsalu 2000
 Peat Heinsalu 2000
 Peat Heinsalu 2000
 Peat Kessel & Raukas 1967;
 Ilves et al. 1974
 Peat Ilves et al. 1974

 6 Gyttja Kessel 1962

 7 Organic matter Veber 1950; Kessel 1962

 8 Wood Veski 1998

 9 Clay gyttja Kiinnapuu 1957;
 Kessel 1962
10 Peat Kessel 1961;
 Saarse, pers. comm.

11 Peaty gyttja Saarse et al. 1997
 Peaty gyttja Saarse et al. 1997
 Peaty gyttja Saarse et al. 1997

12 Peat Thomson 1933

13 Organic matter Lookene 1950

14 Wood Ploom et al. 1996

15 Peat Mannil 1964; Veski 1998

16 Gyttja Veski 1998
 Wood Veski 1998

17 Sandy peat Hausen 1913;
 Kessel 1962,1966
18 Woody peat Kessel 1966; Kessel &
 Punning 1974

19 Organic matter Kessel 1962

20 Woody peat Kessel & Punning 1969a

21 Seeds, bark Veski 1998
 Woody peat Kessel & Punning 1969a

22 Woody peat Kessel & Punning 1969a

23 Peat Kessel 1962, 1963

24 Woody fen peat Veski 1998
 Seeds Veski 1998
 Woody fen peat Veski 1998

25 Fen peat Kessel & Punning 1969b;
 Raukas et al. 1999

26 Wood Veski 1998; Lepland,
 pers. comm.

 Fen peat Veski 1998; Lepland,
 pers. comm.

27 Veski 1998
 Raukas et al. 1988
 Veski 1998
 Veski 1998
 Kessel 1966; Veski 1998
 Veski 1998
 Veski 1998
 Veski 1998
 Veski 1998
 Veski 1998
 Veski 1998

28 Veski 1998

29 Raukas et al. 1995a, 1999
 Raukas et al. 1995a, 1999

30 Raukas et al. 1999

31 Raukas et al. 1999
 Kessel & Punning 1974

32 Raukas et al. 1995b, 1999

33 Haila & Raukas 1992
 lives et al. 1974
 Poska & Veski 1999
 Jaanits & Jaanits 1978
 Haila & Raukas 1992
 Ilves et al. 1974
 Poska & Veski 1999
 Poska & Veski 1999

34 lives et al. 1974
 Ilves et al. 1974

35 Woody peat Veski 1998; Heinsalu et al.
 1999
 Wood Veski 1998; Heinsalu et al.
 1999
 Seeds Veski 1998; Heinsalu et al.
 1999

36 Peat/Cultural Veski et al. 2005
 layer?

37 Peat Kessel 1962

38 Peat Kessel 1968; Kessel &
 Punning 1969b

39 Woody peat Punning et al. 1977
 Peat Haila & Raukas 1992
 Humic fraction Haila & Raukas 1992
 from peat
 Peat Kessel 1962; Kessel &
 Punning 1969b
 Wood Kessel 1962; Kessel &
 Punning 1969b

40 Pollen concentrate Veski 1998
 Wood Veski 1998

41 Woody peat/soil? Raukas et al. 1988;
 Liiva, pers. comm.

42 Peat Mannil 1963

43 Wood K6nigsson et al. 1998

44 Peat Mannil 1963, 1964

45 Peat Mannil 1963,1964

Appendix 2. Database of pre-Litorina and Litorina buried organic
sediments. Asterisks mark the sites where pollen analysis has been
carried out

No. Site Coordinates

46 Torvala * 59[degrees]26'5" 28[degrees]8'10"

47 Leekovo * 59[degrees]25'20" 28[degrees]5'

48 Uuri 59[degrees]29'30" 25[degrees]34'
 (Maarikoja)

49 Madajaxve 59[degrees]32'30" 25[degrees]34'

50 Kroodi 59[degrees]28' 24[degrees]59'

51 Vahikilla * 59[degrees]23' 24[degrees]27'

52 Niitvalja * 59[degrees]19'5" 24[degrees]16'20"

53 Keila-Joa * 59[degrees]24' 24[degrees]18'

54 Kuijoe 59[degrees]6' 24[degrees]

55 Vaike-Lahtru 58[degrees]55' 23[degrees]53'

56 Vigala 58[degrees]47' 24[degrees]15'

57 Kirbla * 58[degrees]43'25" 23[degrees]57'30"

58 Tuudi * 58[degrees]38'42" 23[degrees]47'5"

59 Jarise 58[degrees]40' 23[degrees]41'

60 Kolga * 58[degrees]23'7" 23[degrees]50'35"

 58[degrees]23'15" 23[degrees]50'

61 Seliste * 58[degrees]17' 24[degrees]5'20"

62 Joopre * 58[degrees]29' 24[degrees]21'

63 Oara * 58[degrees]28'24" 24[degrees]19'

64 Malda 58[degrees]26'47" 24[degrees]18'32"

65 Audru 58[degrees]24' 24[degrees]21'30"

66 Sindi * 58[degrees]22'40" 24[degrees]36'40"

 58[degrees]23'5" 24[degrees]37'30"
 58[degrees]22'40" 24[degrees]36'40"
67 Paikuse * 58[degrees]22'50" 24[degrees]37'

68 Sindi-Lodja * 58[degrees]22' 24[degrees]35'40"

69 Vaskraama 58[degrees]18' 24[degrees]40'15"

70 Rannametsa * 58[degrees]7'39" 24[degrees]30'34"

71 Joeinpa * 58[degrees]21' 22[degrees]17'

72 Karla * 58[degrees]20'30" 22[degrees]17'

73 Kihelkonna * 58[degrees]21' 22[degrees]2'

74 Vesiku * 58[degrees]18'50" 22[degrees]3'5"

75 Reo 58[degrees]18'20" 22[degrees]39'0"

76 Lumiste * 58[degrees]39'45" 23[degrees]10'45"

No. [sup.14]C age, Lab. No. Calibrated
 yr BP age,
 yr BP

46 7370 [+ or -] 210 Le-12 8000-8380

47 7755 [+ or -] 90 Tln-1705 8430-8600

48 7240 [+ or -] 90 Tln-201 7980-8160

 6820 [+ or -] 70 Tln-200 7590-7700

49 Not dated

50 7730 [+ or -] 80 Tln-2668 8430-8580

51 Not dated

52 7580 [+ or -] 70 Tln-261 8330-8450

53 7120 [+ or -] 270 Mo-223 7680-8180

54 Not dated

55 Not dated

56 7375 [+ or -] 70 TA-157 8060-8320

57 6860 [+ or -] 60 TA-248 7620-7750

58 7860 [+ or -] 70 Tln-33 8550-8850

59 6960 [+ or -] 70 TA-198 7700-7910

60 7555 [+ or -] 40 Tln-1822 8350-8400

 7505 [+ or -] 165 TA-165 8070-8510
 7390 [+ or -] 40 Tln-1825 8170-8300

 6900 [+ or -] 65 Ua-12443 7670-7820

61 5950 [+ or -] 60 TA-183 6680-6880

62 Not dated

63 7275 [+ or -] 80 Tln-179 8020-8170

 6100 [+ or -] 50 TA-193 6890-7150
 5520 [+ or -] 100 Tln-178 6210-6410
64 7560 [+ or -] 65 Tln-2220 8320-8430

65 Not dated

66 7215 [+ or -] 90 Tln-133 7960-8160

 6710 [+ or -] 110 TA-55 7490-7660
 4975 [+ or -] 100 Tln-134 5600-5880
67 7120 [+ or -] 120 Ua-12447 7790-8040

 7030 [+ or -] 120 Ta-2548 7740-7960

68 8250 [+ or -] 150 Ta-2787 9030-9410
 8210 [+ or -] 80 Ta-2786 9030-9280
 8190 [+ or -] 80 Ta-2789 9030-9250
 8070 [+ or -] 70 Ua-17013 8780-9120
 8035 [+ or -] 80 Ta-2788 8770-9050
 7980 [+ or -] 100 Ta-2736 8660-9000
 7870 [+ or -] 80 Ta-2774 8420-8720
 7780 [+ or -] 120 Ta-2737 8550-8950
 7630 [+ or -] 120 Ta-2783 8340-8580
 7300 [+ or -] 150 Ta-2785 7970-8300
69 7580 [+ or -] 170 TA-140 8200-8540

 6975 [+ or -] 110 TA-141 7700-7930

 6870 [+ or -] 110 TA-139 7610-7830

70 8080 [+ or -] 110 Hel-2207A 8770-9200
 8060 [+ or -] 110 Hel-2207B 8730-9130
 7860 [+ or -] 190 TA-54 8480-8980

 7725 [+ or -] 65 Tln-1994 8430-8550
 7610 [+ or -] 100 Hel-2207 8340-8540

71 Not dated

72 8400 [+ or -] 190 Mo-222 9100-9550

 7820 [+ or -] 80 TA-182 8460-8750

 7085 [+ or -] 80 TA-181 7840-8000

73 Not dated

74 7960 [+ or -] 80 TA-179 8720-8980
 6350 [+ or -] 80 TA-178 7180-7410

75 7350 [+ or -] 70 Tln-254 8040-8290
 7165 [+ or -] 70 Tln-253 7880-8040
76 Not dated

No. Dated Organic
 sample layer
 altitude, altitude,
 m a.s.l. m a.s.l.

46 ca 4.7-6.5

47

48 16.76-17.31

 16.76-17.31

49

50 ca 20

51 ca 21

52

53 ca 22-23

54

55

56 ca 15

57 ca 15.4

58

59 ca 18

60 ca 6.7-6.8

 ca 6.7-6.9
 ca 6.7-6.10

 ca 7.9-8.4

61 ca 8.5

62

63

64 8.23-8.28 8.12-8.28

65

66 ca 7

67 6.85 6.68-6.85

 6.73-6.83 6.68-6.82

68 3.2-3.25
 3.2-3.3
 3.30
 1.80
 4.65
 4.65
 3.30
 3.30
 3.33
 4.70
69 ca 6.5-7.5

 ca 6.5-7.5

 ca 6.5-7.5

70 ca 2-2.5
 ca 2-2.5
 ca 2-2.5

 ca 2-2.5
 ca 2-2.5

71

72 ca 16.27-16.4

 ca 16.27-16.3 ca 16.25-16.6

 ca 16.57-16.6 ca 16.25-16.7

73

74 14.8-14.83 14.77-15.16
 15.13-15.16 14.77-15.16

75

76 ca 15-16

No. Dated material Reference

46 Peat Kessel 1963, 1975

47 Peat Lepland et al. 1996

48 Wood Kessel & Linkrus 1979

 Phragmites-Carex Kessel & Linkrus 1979
 peat

49 Organic matter Kessel & Linkrus 1979

50 Peat Orviku 1936; Saarse
 et al. 2003b

51 Macroremains in Kessel 1962, 1963
 loam

52 Gyttja Kessel 1962, 1975;
 Punning et at. 1980

53 Gyttja Kessel 1962, 1963;
 Ilves et al. 1974

54 Organic matter Kessel 1962

55 Organic matter Kessel 1962

56 Woody peat Ilves et al. 1974

57 Wood Kessel 1962, 1975

58 Clay gyttja Ilves et al. 1974

59 Peat Kessel & Punning 1969a

60 Fen peat Veski 1998; Lepland,
 pers. comm.
 Phragmites peat Kessel & Punning 1969a
 Wood Veski 1998; Lepland,
 pers. comm.
 Seeds Veski 1998

61 Peat Kessel & Punning 1969a

62 Gyttja and peat Paas 1960; Kessel 1962

63 Gyttja Kessel 1975; Punning et
 al. 1977
 Gyttja Kessel & Punning 1969a
 Phragmites peat Punning et al. 1977
64 Woody fen peat Veski 1998

65 Peat Kriiska, pers. comm.

66 Peat Kessel 1975; Punning et
 al. 1977
 Wood Kessel & Punning 1969a
 Peat Punning et al. 1977
67 Seeds Veski 1998; Heinsalu et
 al. 1999
 Organic matter Veski 1998; Heinsalu
 et al. 1999
68 Peat Veski et al. 2005
 Wood Veski et al. 2005
 Wood Veski et al. 2005
 Charcoal Veski et al. 2005
 Wood Veski et al. 2005
 Wood Veski et al. 2005
 Wood Veski et al. 2005
 Wood Veski et al. 2005
 Peat Veski et al. 2005
 Wood Veski et al. 2005
69 Peat Kessel 1962; Kessel &
 Punning 1969a

 Gyttja Kessel 1962; Kessel &
 Punning 1969a
 Peat Kessel 1962; Kessel &
 Punning 1969a
70 Peat Hyvarinen et al. 1992
 Wood Hyvarinen et al. 1992
 Wood Kessel 1962; Kessel &
 Punning 1969a
 Wood Raukas et al. 1999
 Humic fraction Hyvarinen et al. 1992
 from peat
71 Peat Mannil 1964; Ilves et al.
 1974
72 Peaty gyttja Kessel 1962; Kessel &
 Punning 1969a
 Peat Kessel 1962,1975; Kessel
 & Punning 1969a
 Peat Kessel 1962,1975; Kessel
 & Punning 1969a
73 Fen peat Mannil 1964

74 Peat Ilves et al. 1969
 Gyttja Kessel 1962; Kessel &
 Punning 1969a
75 Woody peat Punning et al. 1980
 Gyttja Punning et al. 1980
76 Clay gyttja Kessel & Pork 1974

Appendix 3. List of post-Litorina buried organic sites. Asterisks mark
the sites where pollen analysis has been carried out

No. Site Coordinates

77 Maardu 59[degrees]27'5" 24[degrees]59'
78 Viadukti tee 59[degrees]25'2" 24[degrees]45'35"

79 Ulemiste 59[degrees]25' 24[degrees]47'
80 Jervevana viadukt 59[degrees]24'10" 24[degrees]43'45"
81 Mustamee- 59[degrees]24'5" 24[degrees]41'50"
 Lepistiku

82 Tusari 59[degrees]11'10" 23[degrees]39'
83 Kaali 58[degrees]22' 22[degrees]40'
84 Lehtma 59[degrees]4'20" 22[degrees]41'
85 Ikla * 57[degrees]53' 24[degrees]21'30"

No. [sup.14]C age, Lab. No. Calibrated age,
 yr BP yr BP

77 630 [+ or -] 45 Tln-2732 560-660
78 2795 [+ or -] 50 Tln-2568 2810-2960
 375 [+ or -] 45 Tln-2567 330-500
79 Not dated
80 Not dated
81 3780 [+ or -] 50 Tln-2504 4090-4240

 2790 [+ or -] 60 Tln-2719 2800-2960

 180 [+ or -] 60 Tln-2441 5-300

82 Not dated
83 3390 [+ or -] 35 Tln-1359 3590-3690
84 Not dated
85 Not dated

No. Dated Organic
 sample layer
 altitude, altitude,
 m a.s.l. m a.s.l.

77
78 2.2-2.25
 1.5-1.53
79
80
81

82
83
84
85 ca 12

No. Dated Reference
 material

77 Peat Veski, pers. comm.
78 Peat Saarse, pers. comm.
 Peat Saarse, pers. comm.
79 Peat Kiinnapuu 1968
80 Peat Kiinnapuu 1968
81 Peat Kiinnapuu 1968;
 Saarse et al. 2001
 Peat Kiinnapuu 1968;
 Saarse et al. 2001
 Peat Kiinnapuu 1968;
 Saarse et al. 2001
82 Kessel & Raukas 1967
83 Peat Saarse et al. 1991
84 Peat Kessel 1962
85 Peat Kessel 1963


ACKNOWLEDGEMENTS

This research was dedicated to the 80th birthday of our late colleague Helgi Kessel. We are indebted to H. Kukk for linguistic help. Special thanks go to S. Veski and referees A. Raukas and M. Eronen for valuable suggestions and comments. The study was supported by the Estonian target financing project HM0332710s06 and Estonian Science Foundation (grant 6736).

Received 13 February 2006, in revised form 18 May 2006

REFERENCES

Andren, E., Andren, T. & Sohlenius, G. 2000. The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas, 29, 233-250.

Berglund, B. E. 1964. The post-glacial shore displacement in eastern Blekinge, southeastern Sweden. Sver. Geol. Unders., C599, 1-47.

Berglund, B. E., Sandgren, P., Barnekow, L., Hannon, G., Jiang, H., Skog, G. & Yu, S.-Y. 2005. Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat. Int., 130, 111-139.

Bjorck, S. 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat. Int., 27, 19-40.

Eronen, M. 1974. The History of the Litorina Sea and associated Holocene Events. Soc. Sci. Fennicae, Comment. Phys.-Math., 44, 79-195.

Eronen, M. & Haila, H. 1982. Shoreline displacement near Helsinki, Southern Finland, during the Ancylus Lake stage. Ann. Acad. Sci. Fenn. AIII, Geol.-Geogr., 134, 111-129.

Eronen, M., Ristaniemi, O. & Lange, D. 1990. Analysis of a sediment core from the Mecklenburg Bay, with a discussion on the early Holocene history of the southern Baltic Sea. Geol. Foren. Stockholm Forhandl., 112, 1-8.

Haila, H. & Raukas, A. 1992. Ancylus Lake. In Geology of the Gulf of Finland (Raukas, A. & Hyvarinen, H., eds), pp. 283-296. Institute of Geology, Estonian Academy of Sciences, Academy of Finland, Helsinki University; Tallinn (in Russian).

Hausen, H. 1913. Uber die Entwicklung der Oberflachenformen in den russischen Ostseelandern. Fennia, 34, 1-142.

Heinsalu, A. 2000. Diatom stratigraphy and palaeoenvironment of the Yoldia Sea in northern Estonia. Proc. Estonian Acad. Sci. Geol., 49, 218-243.

Heinsalu, A., Veski, S. & Moora, T. 1999. Bio- and chronostratigraphy of the early Holocene site of double-storied buried organic matter at Paikuse, southwestern Estonia. Proc. Estonian Acad Sci. Geol., 48, 48-66.

Hyvarinen, H. 1980. Relative sea-level changes near Helsinki, southern Finland, during early Litorina times. Bull. Geol. Soc. Finland, 52, 207-219.

Hyvarinen, H. 1984. The Mastogloia stage in the Baltic Sea history. Diatom evidence from southern Finland. Bull. Geol. Soc. Finland, 56,99-115.

Hyvarinen, H. 1988. Definition of the Baltic stages. In Problems of the Baltic Sea History (Donner, J. & Raukas, A. eds), Ann. Acad. Sci. Fenn. AIII, Geol. -Geogr., 148, 7-11.

Hyvarinen, H., Donner, J., Kessel, H. & Raukas, A. 1988. The Litorina Sea and Limnea Sea in the northern and central Baltic. In Problems of the Baltic Sea History (Donner, J. & Raukas, A., eds), Ann. Acad. Sci. Fenn. AX, Geol.-Geogr., 148, 25-35.

Hyvarinen, H., Raukas, A. & Kessel, H. 1992. Mastogloia and Litorina Seas. In Geology of the Gulf of Finland (Raukas, A. & Hyvarinen, H., eds), pp. 296-303. Estonian Academy of Sciences, Institute of Geology, Academy of Finland, Helsinki University; Tallinn (in Russian).

Ilves, E., Liiva, A. & Punning, J.-M. 1974. Radiocarbon Dating in the Quaternary Geology and Archaeology of Estonia (Serebrjannyj, L., ed.). Institute of Zoology and Botany, Institute of Geology, Academy of Sciences of the Estonian SSR; Tallinn (in Russian).

Ilves, E., Punning, J.-M. & Liiva, A. 1969. Verzeichnis der im Institut fur Zoologie und Botanik der Akademie der Wissenschaften der Estnischen SSR Mittels der Radiokohlenstoff-methode Datierten Proben IV. Eesti NSV Tead. Akad. Toim. Biol., 18, 417-426.

Jaanits, L. & Jaanits, K. 1978. Ausgrabungen der fruhmesolithischen Siedlung von Pulli. Eesti NSV TA Toim. Uhiskonnateadused, 27, 56-63.

Jussila, T. & Kriiska, A. 2004. Shore displacement chronology of the Estonian Stone Age. Estonian J. Archaeology, 8, 3-32.

Kaland, P.-E. 1984. Holocene shore displacement and shoreline in Hordaland, western Norway. Boreas, 13, 203-242.

Kents, P. 1939. Postglatsiaalsed Laanemere rannajoone vonkumised Eestis illustreeritud Kopu poolsaarel. Tallinn (unpublished report in Estonian State Archives).

Kessel, H. 1960. Holozane Kustenbildungen der Ostsee auf dem Territorium der Estnischen SSR. Eesti NSY TA Geol. Inst. Uurimused, V, 279-303 (in Russian).

Kessel, H. 1961. Balti mere arenemisest Eesti NSV territooriumil Holotseenis. Eesti NSV TA Geol. Inst. Uurimused, VII, 167-185.

Kessel, H. 1962. Balti mere setete alla mattunud organogeensete jarve- ja soosetete stratigraafiast Eestis. ENSV TA Geoloogia Instituut, Tallinn (unpublished report in Estonian State Archives).

Kessel, H. 1963. On the age of Holocene transgressions of the Baltic Sea in Estonia by palynological analysis. Baltica, 1, 101-115 (in Russian).

Kessel, H. 1966. Joldiamere pinnavormid ja setted Eesti NSV-s. ENSV TA Geoloogia Instituut, Tallinn (unpublished report in Estonian State Archives).

Kessel, H. 1968. Mattunud soo- ja jarvesetetest. Eesti Loodus, 1, 12-16.

Kessel, H. 1975. Laanemere geoloogiline areng hilisglatsiaalis ja holotseenis Eesti territooriumil. ENSV TA Geoloogia Instituut, Tallinn (unpublished report in State Archives).

Kessel, H. & Linkrus, E. 1979. Ancient coastal lakes and coastal formations in the western part of Lahemaa. In Eesti NSV saarkorgustike ja jarvenogude kujunemine (Raukas, A., ed.), pp. 104-117. Valgus, Tallinn.

Kessel, H. & Pork, M. 1974. On the age of some coastal lakes of the Baltic Sea and the character of the diatom flora in west Estonia. Hydrobiological Studies, V1, 26-50. Institute of Zoology and Botany, Academy of Sciences of the Estonian SSR, Tallinn (in Russian).

Kessel, H. & Punning, J.-M. 1969a. Ober das Absolute Alter der holozanen transgressionen der Ostsee in Estland. Eesti NSV Tead. Akad. Toim. Keemia Geol., 18, 140-153 (in Russian).

Kessel, H. & Punning, J.-M. 1969b. Ober die Verbreitung and Stratigraphie der Sedimente des Joldiameers in Estland. Eesti NSV Tead Akad. Toim. Keemia Geol., 18, 154-163 (in Russian).

Kessel, H. & Punning, J.-M. 1974. About the age of the Ancylus stage in Estonia (radiometric datings). Eesti NSV Tead. Akad. Toim. Keemia Geol., 23, 59-64 (in Russian).

Kessel, H. & Raukas, A. 1967. The Deposits of the Ancylus Lake and Litorina Sea in Estonia. Valgus, Tallinn (in Russian).

Kessel, H. & Raukas, A. 1979. The Quaternary history of the Baltic, Estonia. In The Quaternary History of the Baltic (Gudelis, V. & Konigsson, L.-K., eds), Acta Univ. Ups. Annum Quingentesimum Celebrantis, 1, 127-146.

Kessel, H. & Raukas, A. 1984. Correlation of the Baltic ancient coastal formations in Estonia and Sweden. Eesti NSV Tead. Akad. Toim. Geol., 33, 146-157.

Konigsson, L.-K. 1968. The Ancylus transgression in the Skede Mose area, Oland. GFF, 90, 5-36.

Konigsson, L.-K., Saarse, L. & Possnert, G. 1998. The Pitkasoo Bog - an Ancylus lagoon from Saaremaa Island, Estonia. Proc. Estonian Acad Sci. Geol., 47, 86-107.

Kiinnapuu, S. 1957. Pirita joe alamjooksu genees. Eesti Geograafia Seltsi aastaraamat 1957, pp. 74-87. Eesti Teaduste Akadeemia, Tallinn.

Kiinnapuu, S. 1968. Esialgseid andmeid liivaga kaetud turbalasundite kohta Tallinnas. Eesti Geograafia Seltsi aastaraamat 1966, pp. 89-105. Valgus, Tallinn.

Laasi, A. 1937. Pinnaehitus. In Laanemaa geoloogia (Opik, A. & Laasi, A., eds), TU Geol. Inst. Toim., 51, 1-29.

Lepland, A., Hang, T., Kihno, K., Sakson, M., Sandgren, P. & Lepland, A. 1996. Holocene sea-level changes and environmental history in the Narva area, north-eastern Estonia. In Coastal Estonia. Recent Advances in Environmental and Cultural History (Hackens, T., Hicks, S., Lang, V., Miller, U. & Saarse, L., eds), pp. 313-358. Rixensart, Belgium.

Liiva, A., Ilves, E. & Punning, J.-M. 1966. Data of the geo-biochemical laboratory of Institute Zoology and Botany Academy of Sciences Estonian SSR In Upper Pleistocene. Stratigraphy and Absolute Geochronology, pp. 259264. Nauka, Moscow (in Russian).

Linkrus, E. 1988. Suurekorve reservaat. Pinnaehitus ja maastikuline struktuur. In Lahemaa uurimused III. Rahvuspargi looduse inventeerimine (Etverk, L, ed.), pp. 16-31. Valgus, Tallinn.

Lookene, E. 1950. Laitse ja Marjamaa vahelise ala kvaternaarigeoloogia. Tartu Riiklik Olikool, Tartu (unpublished diploma project in Estonian State Archives).

Mannil, R. 1963. The fresh-water time deposits of Saaremaa, their malacofauna and age. Eesti NSV TA Geol. Inst. Uurimused, XII, 145-161 (in Russian).

Mannil, R. 1964. Jarvelubjalasundite levik ja stratigraafia Eestis. ENSV TA Geoloogia Instituut, Tallinn (unpublished PhD thesis in the Institute of Geology TTU).

Miettinen, A. 2002. Relative sea level changes in the eastern part of the Gulf of Finland during the last 8000 years. Ann. Acad. Sci. Fenn. Geol.-Geogr., 162, 1-102.

Miidel, A. 1995. An attempt to apply trend-surface analysis to the study of raised shorelines of the Baltic Sea in Estonia. Proc. Estonian Acad. Sci. Geol., 44, 97-110.

Olsson, I. U. 1986. Radiocarbon dating. In Handbook of Holocene Palaeoecology and Palaeohydrology (Berglund, B. E., ed.), pp. 273-292. Wiley & Sons, Chichester.

Olsson, I. U. & Kaup, E. 2002. On sources of errors by dating lake sediments, especially indicated by the varying radiocarbon activity of some recent water plants from Estonia. In European Society for Isotope Research, VI Isotope Workshop, pp. 74-75. Institute of Geology at Tallinn Technical University, Tallinn.

Orviku, K. 1936. Litoriina randvalli geoloogiast Kroodi oru kohal. Eesti Loodus, 2, 61-03.

Paas, A. 1960. Mullastikulisi markmeid Audru jogikonna saviliivade alt. Eesti Loodus, 1, 42-46.

Ploom, K., Kihno, K. & Rajamae, R. 1996. Polluotsa--a new site of buried organic material in NW Estonia. (With some implications to the history of the Baltic Sea). In Geological History of the Baltic Sea. Abstract Volume of Field Symposium, pp. 61-62. Vilnius.

Poska, A. & Veski, S. 1999. Man and environment at 9500 BP. A palynological study of an Early-Mesolithic settlement site in South-West Estonia. In Proceedings of the Fifth European Palaeobotanical and Palynological Conference (Stuchlik, L., ed.), Acta Palaeobot., supplement 2, 603-007.

Punning, J.-M., Rajamae, R., Ehrenpreis, M. & Sarv, L. 1977. Tallinn radiocarbon dates IV. Radiocarbon, 19, 111-117.

Punning, J.-M., Rajamae, R, Joers, K. & Putnik, H. 1980. Tallinn radiocarbon dates VI. Radiocarbon, 22, 91-98.

Ramsay, W. 1929. Niveauverschiebungen, eisgestaute Seen and Rezession des Inlandeises in Estland. Fennia, 52, 1-48.

Raukas, A., Kessel, H., Rajamae, R. & Heinsalu, A. 1988. On the development of the Ancylus Lake in the central Baltic. In Geology and History of the Baltic Sea and Formation of Mineral Resources (Raukas, A. & Tavast, E., eds), pp. 73-76. Institute of Geology, Academy of Sciences of the ESSR; Tallinn (in Russian).

Raukas, A., Kimmel, K. & Rajamae, R. 1995a. A new site of buried peat at Lope, SW Estonia. Proc. Estonian Acad Sci. Geol., 44, 133-137.

Raukas, A., Moora, T. & Karukapp, R 1995b. Laanemere arengust ja inimasustusest Parnu iimbruses. In Liivimaa geoloogia (Meidla, T., Joeleht, A., Kahn, V. & Kirs, J., eds), pp. 119-123. Tartu.

Raukas, A., Tavast, E. & Molodkov, A. 1996. Partsi--a new promising area for the investigation of Late Boreal and Early Atlantic water level changes of the Baltic Sea. Proc. Estonian Acad. Sci. Geol., 45, 92-101.

Raukas, A., Moora, T. & Karukapp, R. 1999. The development of the Baltic Sea and Stone Age settlement in the Parnu area of southwestern Estonia. In Environmental and Cultural History of the Eastern Baltic Region (Miller, U., Hackens, T., Lang, V., Raukas, A. & Hicks, S., eds), pp. 15-34. Rixensart, Belgium.

Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, F. G., Manning, S. W., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J. & Weyhemneyer, C. E. 2004. IntCal04. Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon, 46, 1029-1058.

Saarse, L., Rajamae, R, Heinsalu, A. & Vassiljev, J. 1991. The biostratigraphy of sediments deposited in the Lake Kaali meteorite impact structure, Saaremaa Island, Estonia. Bull. Geol. Soc. Finland, 63,129-139.

Saarse, L., Heinsalu, A., Poska, A., Veski, S., Rajamae, R., Kihno, K. & Martma, T. 1997. Early Holocene shore displacement of the Baltic Sea east of Tallinn (N Estonia). Baltica, 10, 13-24.

Saarse, L., Heinsalu, A., Karhu, J., Vassiljev, J. & Veski, S. 2000. Holocene shoreline displacement and palaeogeography of the Kopu Peninsula, Hiiumaa, Estonia. Baltica, 13, 15-23.

Saarse, L., Veski, S. & Miidel, A. 2001. Lepistiku buried peat, Tallinn, Estonia. Proc. Estonian Acad. Sci. Geol., 50,128-134.

Saarse, L., Vassiljev, J. & Miidel, A. 2003a. Simulation of the Baltic Sea shorelines in Estonia and neighbouring areas. J. Coastal Res., 19, 261-268.

Saarse, L., Miidel, A. & Vassiljev, J. 2003b. The role of K. Orviku in the studies of the Litorina transgression in Estonia. In International Symposium on Human Impact and Geological Heritage. Excursion Guide and Abstracts (Raukas, A. & Kukk, H., eds), pp. 115-117. Tallinn.

Sandgren, P., Subetto, D. A., Berglund, B. E., Davydova, N. N. & Savelieva, L. A. 2004. Mid-Holocene Littorina Sea transgressions based on stratigraphic studies in coastal lakes of NW Russia. GFF, 126, 363-380.

Seppa, H., Tikkanen, M. & Shemeika, P. 2000. Late-Holocene shore displacement of the Finnish south coast: diatom, litho- and chemostratigraphic evidence from three isolation basins. Boreas, 29, 219-231.

Stuiver, M., & Reimer, P. J. 1993. Extended [sup.14]C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215-230.

Svensson, N.-O. 1989. Late Weichselian and Early Holocene shore displacement in the central Baltic, based on stratigraphical and morphological records from eastern Smaland and Gotland, Sweden. LUNDQUA Thesis, 25.

Thomson, P. W. 1933. Ein von Ancylusstrandbildungen bedecktes Torflager bei Jelgimagi. Beitr. Kunde Est-, Liv- and Kurlands, 18, 176-177.

Thomson, P. W. 1936. Esialgne teade Vaana Litoriinalouka kohta. Eesti Loodus, 4, 161-162.

Thomson, P. W. 1937. Narva diatomiit. Eesti Loodus, 5, 214-216.

Veber, K. 1950. Maardu iimbruse geoloogiast. Tartu (unpublished diploma project at the Institute of Geology, University of Tartu).

Veski, S. 1998. Vegetation history, human impact and palaeogeography of West Estonia. Pollen analytical studies of lake and bog sediments. STRIAE, 38.

Veski, S., Heinsalu, A., Massen, V., Kriiska, A., Lougas, L., Poska, A. & Saluaar, U. 2005. Early Holocene coastal settlements and palaeoenvironment on the shore of the Baltic Sea at Parnu, southwestern Estonia. Quat. Int., 130, 75-85.

Wohlfarth, B., Possnert, G. & Skog, G. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. J. Quat. Sci., 13, 137-145.

Leili Saarse, Juri Vassiljev, Avo Miidel, and Eve Niinemets

Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; saarse@gi.ee, vassilje@gi.ee, miidel@gi.ee, even@ut.ee
COPYRIGHT 2006 Estonian Academy Publishers
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Saarse, Leili; Vassiljev, Juri; Miidel, Avo; Niinemets, Eve
Publication:Proceedings of the Estonian Academy of Sciences: Geology
Date:Dec 1, 2006
Words:9764
Previous Article:Diagenetic influences on iron-bearing minerals in Devonian carbonate and siliciclastic rocks of Estonia / Diageneetiliste muutuste moju...
Next Article:Effect of the GRACE satellite mission on gravity field studies in Fennoscandia and the Baltic Sea region/GRACE-satelliitide moju raskusjouvalja...

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters