Printer Friendly

High photocatalytic activity of [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles with core-shell structure.

1. Introduction

Nanoparticles could find their uses in many important industrial processes [1-3]. One of these could be the treatment of chemicals [4] and biological molecules [5] in wastewater. Specifically titania can catalyse the decomposition of a wide range of chemicals such as azo dyes [6, 7], aromatic compounds [8], and endocrine disruptors [9]. The properties of titania, which is well known for the high productivity of hydroxyl free radicals when exposed to ultraviolet light, low toxicity, and low cost [10, 11] make it a popular choice in wastewater treatment.

One of the main obstacles to the application of nanoparticles in industrial applications is the concern of the release and the fate of the nanoparticles in the environment. It is hence desirable to retain and recover the nanoparticles in such applications, particularly, in wastewater treatment. One approach would be to introduce superparamagnetic properties and hence to recover the nanoparticles using magnetic fields [6, 12, 13]. The magnetic composite photocatalyst can be magnetically agitated by an alternating magnetic field in a suspension system [14]. In this way, the superparamagnetism of nanoscale [Fe.sub.3][O.sub.4] particles makes it a suitable material.

The technical challenge here is coupling the [Fe.sub.3][O.sub.4] to Si[O.sub.2] with Ti[O.sub.2] exposed as the outer surface to provide the catalytic sites and [Fe.sub.3][O.sub.4] as the core for magnetic separation and recovery [15]. This has proved to be difficult due to the fact that the photocatalytic activity of the nanoparticles shows a decline when the magnetic cores experience photodissolution [16].

In this paper, a novel approach to synthesize three-layer core-shell nanoparticles is described. Between the [Fe.sub.3][O.sub.4] core and outside surface Ti[O.sub.2] layer, an Si[O.sub.2] layer is introduced to avoid the interaction between the two layers and inhibit photodissolution of the core. The inert Si[O.sub.2] acts as a barrier for both electrons and holes and blocks any photoexcitation effects from the iron oxide, and it prevents the iron oxide from scavenging excited carriers from the titania [13, 1719]. The resulting nanoparticles were characterized with TEM, XRD, differential light scattering, ultraviolet visible absorption spectroscopy, and VSM and the activity as a photo catalyst was tested by the decolouring of MO as an assay method. The particles showed significantly higher catalytic activity than that of the pure Ti[O.sub.2] particles under visible light irradiation.

2. Materials and Methods

2.1. Synthesis of Core-Shell Structure [Fe.sub.3][O.sub.4]-Si[O.sub.2]-TiO 2 Functional Particles

Materials. Ferric chloride, tetraethoxysilane (TEOS), tetrabutyl orthotitanate (TBOT), ethanol, hydrochloric acid, nitric acid, MO, and MB (AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). P25 is a mixture of anatase (80%) and rutile (20% Ti[O.sub.2]) which was purchased from Evonik Degussa (Germany).

Protocols. Ferric chloride and carbon were used as reactants in a ratio of 1:3 to obtain the [Fe.sub.3][O.sub.4] superparamagnetic particles after heating at 400[degrees]C for 3 hours under 0.2 torr vacuum conditions. A tube furnace (OTF-1200X-III) from KJ Group (Hefei, China) was used to keep the reactants at this temperature. After the solid product was milled using an agate mortar 700 nm [Fe.sub.3][O.sub.4] particles were obtained. The carbon acts as a reducing agent and protector in this reaction. A part of the [Fe.sub.3+] of ferric chloride is reduced to [Fe.sup.2+], and [Fe.sub.3][O.sub.4] is generated under low oxygen conditions in this way. An excessive amount of carbon produces a carbon coating around the [Fe.sub.3][O.sub.4] particles; the [Fe.sub.3][O.sub.4] particles can be protected from being oxidized to [Fe.sub.2][O.sub.3] in this way. TEOS, hydrochloric acid, ethanol, and deionized water were mixed in a ratio of 4.6: 0.5: 12.3: 1 to obtain an Si[O.sub.2] suspension. The solution was mixed with fast stirring and the water must be added last. Deionized water of 18.25 Mfl was purified through Ultrapure (UPR) System which was purchased from Ultrapure Water Visible Ltd. The 10 g of [Fe.sub.3] [O.sub.4] particles were put into the oven with the Si[O.sub.2] solution. After ultrasonication for half an hour, the Si[O.sub.2] solution was used to coat around the surface of the [Fe.sub.3][O.sub.4] particles. After further reaction for three hours at room temperature, the wet particles were calcined at 500[degrees]C for 2 hours so that the Si[O.sub.2] was encapsulated around the [Fe.sub.3][O.sub.4] particles. The [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles were obtained in this way. Then, the [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles were encapsulated with Ti[O.sub.2] through the following steps: the 10 g of particles were put into a beaker with 100 mL solation whose ratio of TBOT, nitric acid, alcohol, and deionized water was 30.3: 0.6: 12.5: 1 with continuous stirring. A multifunctional magnetic stirrer (MPL-CJ-88) was used to stir and heat the solution (Jintandadi Automation Factory, Zhejiang, China). The beaker of solution and 10 g of particles (the obtained Ti[O.sub.2] solution is about 150 mL) were ultrasonicated using ultrasonic bath (KQ-2500DE) from Ultrasonic Instrument Co., Ltd.), and then it was stirred for 30 min. The wet particles were heated at 500[degrees]C for 2h after reacting for three hours. After milling using an agate mortar the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles were finally obtained.

Characterization. The particles of [Fe.sub.3][O.sub.4], [Fe.sub.3][O.sub.4]-Si[O.sub.2], and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] were characterized by XRD and TEM. The components of the particles were measured by XRD advanced X-ray diffraction system (a Bruker D8) using Cu K radiation of wavelength 1.5406 [Angstrom]. The particle shapes and sizes were characterized by TEM measurements (JEOL JEM-1200EX). The working voltage is 120 kV. The particles were put into ethanol and sonicated for half an hour and several drops of the ethanol suspension were dropped onto a carboncoated copper electron microscope grid. The particles' size distribution was measured using a Malvern Mastersizer. The ultraviolet visible absorption spectra were measured with a UV-Vis-NIR Spectrophotometer 5000 (Varian). Magnetic properties were characterized on a Lake Shore 7307 Vibrating Sample Magnetometer.

Catalytic Activity Assay. In order to check the photocatalytic effects, 10mg/L MO or MB were mixed with 0.2 g of P25 particles or the synthesized [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles under ultraviolet and visible light, respectively. Before light irradiation, the MO or MB molecules must be absorbed by the core-shell particles completely. The MO or MB solution with the core-shell particles was put into a dark place for 48 hours before the photocatalysis. An ultraviolet light (TLK 40W/05, Philips) is used to irradiate the reactant. After centrifuging the particle suspension, the absorbance (A) of the solution treated for some time was measured. A high-speed desktop centrifuge (TGL-16K Zhuhai Black Horse Medical Equipment Co., Ltd.) was used to centrifuge the particles and the treated solution to avoid the particles affecting the absorbance of the solution. The absorbance of the solution degenerated with time and the decoloration rate was calculated via the following equation:

D = [[[A.sub.0] - [A.sub.t]]/[A.sub.0]] x 100% (1)

where D is decoloration rate and [A.sub.0] and [A.sub.t] represent the initial absorbance and the absorbance at particular time.

3. Results and Discussion

3.1. Characterization of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] Particles

3.1.1. Particles' Components. Figure 1 shows the XRD spectra ofthe [Fe.sub.3][O.sub.4] particles, [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles, and [Fe.sub.3][O.sub.4]-Si[O.sub.2] Ti[O.sub.2] particles. The XRD spectrum of the [Fe.sub.3][O.sub.4] particle sample is shown as curve (a). The phases of [Fe.sub.3][O.sub.4] and [alpha]-[Fe.sub.2][O.sub.3] exist in the sample, which is illustrated by curve (a). This suggests that the [Fe.sub.3][O.sub.4] particles sample is partly oxidized. Curve (b) shows the XRD spectrum of [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles. The characteristic peaks of [alpha]-[Fe.sub.2][O.sub.3] cannot be seen in curve (b) when comparing with curve (a). This suggests that the [Fe.sub.3][O.sub.4] particles are prevented from being oxidized by the Si[O.sub.2] surface coating. There is a broad envelope between 20[degrees] and 30[degrees], which is suggestive of the presence of amorphous silica in the sample.

The XRD spectrum of [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is shown as curve (c). The magnitude of the characteristic peaks suggests that the amount of the anatase phase of Ti[O.sub.2] is large. Meanwhile, the crystal form of the magnetite nucleusisstill [Fe.sub.3][O.sub.4]. Therefore, the particles are still probably superparamagnetic or ferromagnetic in nature. It is clear that the magnitudes of the [Fe.sub.3][O.sub.4] characteristic peaks decrease sequentially from curve (a) to curve (c). This is suggestive that the successive coatings around the [Fe.sub.3][O.sub.4] shield the cores from the X-rays and this behavior is consistent with our assumption that the [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles were encapsulated well by a Ti[O.sub.2] layer.

Particle Morphology. [Fe.sub.3][O.sub.4] particles, [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles, and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles were characterized by TEM. Figure 2 shows the TEM images of these three samples.

Figure 2(a) is the TEM image of the [Fe.sub.3][O.sub.4] particles. It is shown that cubic particles of about 700 nm dimension were obtained by our procedure. There is still some evidence of carbon around the particles. The carbon can protect [Fe.sub.3][O.sub.4] particles from oxidizing to [Fe.sub.2][O.sub.3]. This result shows that cubic shaped [Fe.sub.3][O.sub.4] particles were obtained through the high temperature reduction method. Figure 2(b) is the TEM image of [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles. It can be seen that there is a very thin layer around the dark contrast [Fe.sub.3][O.sub.4] particles which can be seen clearly in Figure 2 and this is probably the Si[O.sub.2] layer. It seems that the dispersion of the [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles is better than the [Fe.sub.3][O.sub.4] particles. The TEM image of [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is shown as Figure 2(c). It is clear that the [Fe.sub.3][O.sub.4]-Si[O.sub.2] particles were encapsulated by a Ti[O.sub.2] layer which is composed of many little spherical particles. The results show that the layer-by-layer [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles have been made successfully.

3.1.2. Size Distribution and Specific Area. Figure 3 shows the size distribution spectrum of the final [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles. The results demonstrate that the average size is around 700 nm with a very big spread of sizes. The photocatalysis efficiency of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is closely related to the specific area. The characterization result shows that the BET surface area of the composite [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is 55 [m.sup.2]/g [+ or -] 2% while the BET surface area of the P25 is 42 [m.sup.2]/g [+ or -] 2%. This suggests that, despite the large overall size, the titania formed a rough and high area surface distributed around the particles and this was confirmed in Figure 2(c). That is the reason why our particles have a relatively large specific area and this in turn is expected to lead to higher photocatalysis efficiency.

Magnetic Properties. The magnetization behavior shown in Figure 4 indicates that the saturation intensity of the [Fe.sub.3][O.sub.4] Si[O.sub.2]-Ti[O.sub.2] particles is 46.5 emu/g. The result illustrates that the saturation intensity of the particles is large when compared with the particles size. The retentive magnetism of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is 77 emu/g. The result shows that the saturation intensity of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles is large enough to enable the particles to be recovered magnetically. Meanwhile, the retentive magnetism of the particles is small enough, so that the particles can be dispersed without agglomeration. These samples appear to have a mixture of ferrimagnetic and superparamagnetic properties, with only a slight indication of hysteresis.

3.1.3. Absorption Spectra. Figure 5 shows the ultraviolet visible absorption spectra of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles and P25 pure Ti[O.sub.2] particles. The absorption spectrum of P25 has a strong peak between 200 and 400 nm, corresponding to the band edge absorption of light by titania. The absorption spectrum of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles has a broad absorption across the whole ofthe visible spectrum. Evidently the introduction of the [Fe.sub.3][O.sub.4] core makes the core-shell particles' absorption spectrum better match with the visible spectrum [13]. This is consistent with the fact that magnetite has a very small energy gap of around 0.1 eV. This result suggests that the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles obtained in this work might be suitable to have high photo catalysis efficiency in the visible part of the spectrum.

To summarize, the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles (~700 nm) with core-shell structure have a relatively uniform size distribution and have enough anatase Ti[O.sub.2] shell thickness and suitable magnetic properties to be used for this project to have a recoverable particle that can be used to photocatalyse the degradation of contaminating molecules. Moreover, the novel structure that the introduction of the [Fe.sub.3][O.sub.4] core provides makes the core-shell particles' absorption spectrum match better with the visible spectrum.

3.2. Photocatalytic Activity. Figure 6 shows the relationships between irradiation time and decoloration rate of the methyl orange solution treated by P25 particles, [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles and no particles under ultraviolet light. The decoloration rates of the MO solution are 71% and 90%, respectively, for the P25 particles, and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles after 180 minutes of UV light irritation, while the decoloration rate of the MO solution without any particles is 4%. The photocatalytic activity of the [Fe.sub.3] [O.sub.4]-Si[O.sub.2] -Ti[O.sub.2] functional particles is a little higher than that of P25 under ultraviolet light irradiation, which is illustrated by the curves in Figure 6. The decline after 90 min in the P25 degradation curve can be seen clearly while the activity of the core-shell particles is increasing gradually. This performance suggests that the catalytic persistence of these particles is better than that of P25.

The relationships between irradiation time and decoloration rate of the methyl orange solution treated by P25 particles, [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles, and no particles under visible light are shown in Figure 7. The decoloration rates of the MO solution are 25% and 93%, respectively, for the P25 particles and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles after 180 minutes of visible light irritation. The decoloration rates of the P25 particles under visible light irritation are always about 20% in this work, which is shown as Figure 7. The results of Figures 6 and 7 are consistent with the suggestion inferred from Figure 5 that the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles should have high photocatalysis activity under the longer wavelength light. Furthermore, the pure P25 Ti[O.sub.2] particles cannot easily be recovered after the experiments. Due to the magnetism of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles, at least 0.175 g particles can be recovered from the original 0.2 g that were used giving a recovery ratio of 87.5%. Comparing Figure 6 with Figure 7, the photocatalytic activity of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles under visible light irradiation is higher than that under ultraviolet light irradiation and this should have important consequences for future applications.

From left to right, Figure 8(a) is the picture of the samples, water, and methyl orange solution, MO solution with [Fe.sub.3][O.sub.4] Si[O.sub.2]-Ti[O.sub.2] particles, MO solution after treatment by [Fe.sub.3][O.sub.4]Si[O.sub.2]-Ti[O.sub.2] particles under ultraviolet light, and MO solution after treatment by [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles under visible light. The MO solutions after treatment by the [Fe.sub.3][O.sub.4]-Si[O.sub.2]Ti[O.sub.2] functional particles under ultraviolet and visible light are both almost as clear as water. Note how the sample in the middle of the picture shows how well the particles are dispersed in the MO aqueous solution. The apparent first-order kinetic equation used to fit experimental data is

In ([A.sub.0]/A) = [K.sub.app]t, (2)

where [K.sub.app] is apparent rate constant, A is the solution-phase absorbance of MO, and A 0 is the initial absorbance of the MO solution. The corresponding linear transforms in ln([A.sub.0]/A) as a function of irradiation time are given in Figure 8(b). From the figure, we can obtain the apparent rate constant for the degradation process by the particles irradiated by different light. The values are 0.0124 and 0.0120 min-1 for the degradation of the MO by these particles under UV light and visible light, respectively. The results show that the reaction rates are almost the same under UV light and visible light irradiation.

Under normal circumstances, the electrons of Ti[O.sub.2] cannot be excited under visible light, but composite particles of visible light absorbing phenomenon are found in the experiment and this internal mechanism is described in Figure 9. Figure 9 is the diagram of the energy band of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] core-shell nanoparticles, plotted by the relative layer thickness on the horizontal axis and the relative energy band gap on the vertical axis. The Ti[O.sub.2] band gap is about 3.2 eV, and Si[O.sub.2] band gap is about 8.9 eV while [Fe.sub.3][O.sub.4] band gap is only 0.1 eV. Thus, the electrons of the [Fe.sub.3][O.sub.4] can be easily excited by the visible light [20]. In order to verify the role of [Fe.sub.3] [O.sub.4], we performed the following experiment.

The ultraviolet visible absorption spectra of [Fe.sub.3][O.sub.4] and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles are shown as Figure 10(a). It is clear that the visible light activity of the [Fe.sub.3][O.sub.4]-Si[O.sub.2] -Ti[O.sub.2] particles is all because of their magnetic core. The relationships between irradiation time and decoloration rate of the methylene blue solution treated by P25 particles, [Fe.sub.3] [O.sub.4]-Si[O.sub.2] Ti[O.sub.2] particles, Si[O.sub.2] -Ti[O.sub.2] particles, and no particles under visible light are shown in Figure 10(b). The decoloration rates of the MB solution are 5.3%, 7.9%, and 88.1%, respectively for the P25 particles, Si[O.sub.2]-Ti[O.sub.2] particles, and [Fe.sub.3][O.sub.4]-Si[O.sub.2]Ti[O.sub.2] particles after 16 hours of visible light irradiation. The highest decoloration rate of the P25 particles under visible light irritation is 5.3% in this work, which demonstrates that the pure Ti[O.sub.2] particles cannot effectively catalyse the MB under visible light irradiation. The Si[O.sub.2] -Ti[O.sub.2] particles' highest decoloration rate under visible light irritation is 8.7% in this work. These results show that the introduction of the Si[O.sub.2] is not the reason why the core-shell [Fe.sub.3][O.sub.4]-Si[O.sub.2]Ti[O.sub.2] particles can photocatalyse the MB under visible light irradiation.

The results of Figures 6, 7, 8, and 10 are consistent with the suggestion inferred from Figure 5 that the [Fe.sub.3] [O.sub.4] -Si[O.sub.2] Ti[O.sub.2] functional particles should have high photocatalytic activity under the longer wavelength light. Furthermore, the pure P25 Ti[O.sub.2] particles cannot easily be recovered after the experiments. Because of the magnetic properties of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles, at least 0.35 g particles can be recovered from the original 0.4 g that were used giving a recovery ratio of 87.5%. Comparing Figure 6 with Figure 7, the photocatalytic activity of the [Fe.sub.3] [O.sub.4]-Si[O.sub.2] -TiO 2 functional particles under visible light irradiation is almost the same as that under ultraviolet light irradiation. This phenomenon is also demonstrated by the kinetic curves in Figure 8(b). This result should have important consequences for future applications. The results of Figures 7 and 10 illustrate the high photocatalytic activity of the [Fe.sub.3] [O.sub.4] -Si[O.sub.2] -Ti[O.sub.2] functional particles in degrading dyes molecules under visible light irradiation.

The key role [Fe.sub.3] [O.sub.4] cores play in the visible light photocatalysis of the [Fe.sub.3] [O.sub.4] -Si[O.sub.2] -Ti[O.sub.2] particles is demonstrated by Figure 10. The ultraviolet visible absorption spectra of [Fe.sub.3][O.sub.4] and [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles in Figure 10(a) illustrate that the magnetic core makes the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] particles active under visible light irradiation. In the Si[O.sub.2]-Ti[O.sub.2] experiment, this point is confirmed. Figure 10(b) demonstrates that the composite particles without magnetic core only obtain 7.9% degradation in visible light. So Figure 10 shows that the visible light absorption is extremely based on the magnetic core.

The specific degradation mechanism is that the MB is reduced by photoexcited electrons via a series of processes. In accordance with the new understanding, the composite structure is rather special, which is formed by three different semiconductors. Visible light passes through the Ti[O.sub.2] and Si[O.sub.2] layer and excites the electrons from the internal magnetite core [20]. Then the Si[O.sub.2] middle layer is formed after calcining precursor which is prepared by sol-gel method and the layer may crack somewhere or generate uneven film [21], leading to the thickness of Si[O.sub.2] layer partly reaching angstroms level. We know that the energy of incident visible light is 1.8 eV and the energy of excited electrons from [Fe.sub.3][O.sub.4] is 1.7 eV, while the barrier height of Si[O.sub.2] is 8.9 eV. When the conditions of energy and thickness are met, the electrons in [Fe.sub.3][O.sub.4] excited by the visible light can eventually tunnel through the Si[O.sub.2] layer with a large probability [22, 23]. Then the electrons drop into the conduction band of the titania and hence escape into the surrounding liquid. Further they interact with the lowest unoccupied molecular orbital (LUMO) of the MO and thus chemically reduce that molecule.

4. Conclusions

In this paper we have presented a novel method of synthesizing [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional nanoparticles with coreshell structure. The [Fe.sub.3][O.sub.4] cores were synthesized through a novel carbon reduction method. The recovery problem of titania-based photocatalytic particles can be solved by introducing these superparamagnetic/ferrimagnetic cores. An Si[O.sub.2] layer has been introduced successfully between the two layers, which makes the three-layer core-shell nanostructure more stable. The core-shell nanoparticles have been characterized by TEM, XRD, particle size measurement, ultraviolet visible absorption spectroscopy, and magnetic characterizations, respectively. All the results are consistent and show that the 700 nm [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles with a core-shell structure are photocatalysts and recoverable. The results for the decoloration of methyl orange show that the introduction of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles has a significant photocatalytic effect in breaking down the 10 mg/L MO by 90% and 93% under UV light and visible light over 180 minutes, while the P25 particles have very low activity under visible light irradiation. Moreover, the approximate core-shell functional particles can be recovered after use, and the primary recovery ratio is 87.5%. The mechanism of the visible light is dedicated in this paper, and the experiment results show that the magnetic core plays an irreplaceable role in the photocatalytic processes. The high photocatalytic activity of the [Fe.sub.3][O.sub.4]-Si[O.sub.2]-Ti[O.sub.2] functional particles under visible light makes them attractive for large scale industrial applications.

http://dx.doi.org/10.1155/2013/762423

Acknowledgments

This work is supported by the Natural Science Foundation (Grant no. 2011011013-2) and the International Co-operation Program of Science and Technology Agency (Grant no. 2010081024) of Shanxi province, China.

References

[1] H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, and K. P. De Jong, "Supported iron nanoparticles as catalysts for sustainable production of lower olefins," Science, vol. 335, no. 6070, pp. 835-838, 2012.

[2] M. A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Perez-Rivera, and K. Hristovski, "Titanium nanomaterial removal and release from wastewater treatment plants," Environmental Science and Technology, vol. 43, no. 17, pp. 6757-6763, 2009.

[3] J. V. Jokerst, C. Khademi, and S. S. Gambhir, "Intracellular aggregation of multimodal silica nanoparticles for ultrasoundguided stem cell implantation," Science Translational Medicine, vol. 5, Article ID 177ra35, 2013.

[4] M. Le Troedeca, A. Rachinia, and C. Peyratouta, "Influence of chemical treatments on adhesion properties of hemp fibres," Journal of Colloid and Interface Science, vol. 356, pp. 303-310, 2011.

[5] X. Zheng, Y. Chen, and R. Wu, "Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge," Environmental Science and Technology, vol. 45, no. 17, pp. 7284-7290, 2011.

[6] F. Chen, Y. Xie, J. Zhao, and G. Lu, "Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation," Chemosphere, vol. 44, no. 5, pp. 1159-1168, 2001.

[7] J. W. Lee, M. R. Othman, Y. Eom, T. G. Lee, W. S. Kim, and J. Kim, "The effects of sonification and Ti[O.sub.2] deposition on the micro-characteristics of the thermally treated Si[O.sub.2]/Ti[O.sub.2] spherical core-shell particles for photo-catalysis of methyl orange," Microporous and Mesoporous Materials, vol. 116, no. 13, pp. 561-568, 2008.

[8] X. Quan, X. Ruan, H. Zhao, S. Chen, and Y. Zhao, "Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a Ti[O.sub.2] nanotube film electrode," Environmental Pollution, vol. 147, no. 2, pp. 409-414, 2007

[9] B. K. Avasarala, S. R. Tirukkovalluri, and S. Bojjab, "Photocatalytic degradation of monocrotophos pesticide--an endocrine disruptor by magnesium doped titania," Journal of Hazardous Materials, vol. 186, no. 2-3, pp. 1234-1240, 2011.

[10] D. Wang, B. Yu, J. Hao, and W. Liu, "Evaporizing-deposition to synthesize micro- and nanoscale spherical anatase Ti[O.sub.2] film," Materials Letters, vol. 62, no. 12-13, pp. 2036-2038, 2008.

[11] S. Rana, R. S. Srivastava, M. M. Sorensson, and R. D. K. Misra, "Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase Ti[O.sub.2]-Ni[Fe.sub.2][O.sub.4] system," Materials Science and Engineering B, vol. 119, no. 2, pp. 144-151, 2005.

[12] Y. S. Chung, S. B. Park, and D.-W. Kang, "Magnetically separable titania-coated nickel ferrite photocatalyst," Materials Chemistry and Physics, vol. 86, no. 2-3, pp. 375-381, 2004.

[13] M. Ye, Q. Zhang, Y. Hu et al., "Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity," Chemistry A, vol. 16, pp. 6243-6250, 2010.

[14] W. L. Kostedt IV, J. Drwiega, D. W. Mazyck et al., "Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants," Environmental Science and Technology, vol. 39, no. 20, pp. 8052-8056, 2005.

[15] D. Beydoun, R. Amal, G. K.-C. Low, and S. McEvoy, "Novel photocatalyst: titania-coated magnetite. Activity and photodissolution," Journal of Physical Chemistry B, vol. 104, no. 18, pp. 4387-4396, 2000.

[16] D. Beydoun, R. Amal, G. Low, and S. McEvoy, "Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide," Journal of-Molecular Catalysis A, vol. 180, no. 1-2, pp. 193-200, 2002.

[17] N. Sounderya and Y. Zhang, "Use of core/shell structured nanoparticles for biomedical applications," Biomedical Engineering, vol. 1, pp. 34-42, 2008.

[18] J. M. Perez, L. Josephson, and R. Weissleder, "Use of magnetic nanoparticles as nanosensors to probe for molecular interactions," ChemBioChem, vol. 5, no. 3, pp. 261-264, 2004.

[19] R. Wang, X. Wang, X. Xi, R. Hu, and G. Jiang, "Preparation and photocatalytic activity of magnetic [Fe.sub.3][O.sub.4]/Si[O.sub.2]/Ti[O.sub.2] composites," Advances in Materials Science and Engineering, vol. 2012, Article ID 409379, 8 pages, 2012.

[20] P. Jian, Y. Xia, D. Li, and X. Wang, "Preparation, characterization and photocatalytic activity of doped Ti[O.sub.2] nanopowders," Chinese Journal of Catalysis, vol. 22, no. 2, pp. 163-164, 2001.

[21] X. Xu, F. Ji, Z. Fan, and L. He, "Degradation of glyphosate in soil photocatalyzed by [Fe.sub.3][O.sub.4]/Si[O.sub.2]/Ti[O.sub.2] under solar light," International Journal of Environmental Research and Public Health, vol. 8, no. 4, pp. 1258-1270, 2011.

[22] C. M. Whang, C. S. Yeo, and Y. H. Kim, "Preparation and characterization of sol-gel derived Si[O.sub.2]-Ti[O.sub.2]-PDMS composite films," Bulletin of the Korean Chemical Society, vol. 22, no. 12, pp. 1366-1370, 2001.

[23] M. Simon Sze and K. N. Kwok, Physics of Semiconductor Devices, John Wiely & Sons, 2007.

Chenyang Xue, (1) Qiang Zhang, (1) Junyang Li, (1) Xiujian Chou, (1) Wendong Zhang, (1) Hua Ye, (2) Zhanfeng Cui, (2) and Peter J. Dobson (2)

(1) Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China

(2) Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX12JD, UK Correspondence should be addressed to Chenyang Xue; xuechenyang@nuc.edu.cn

Received 16 October 2013; Accepted 3 November 2013

Academic Editor: Hui Xia
COPYRIGHT 2013 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Xue, Chenyang; Zhang, Qiang; Li, Junyang; Chou, Xiujian; Zhang, Wendong; Ye, Hua; Cui, Zhanfeng; Dob
Publication:Journal of Nanomaterials
Date:Jan 1, 2013
Words:5551
Previous Article:Preparation and in vitro and in vivo performance of magnesium ion substituted biphasic calcium phosphate spherical microscaffolds as human adipose...
Next Article:One-dimensional Ti[O.sub.2] nanostructures as photoanodes for dye-sensitized solar cells.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters