Printer Friendly

Helicobacter pylori: foe, sometimes friend.

The Gastric Microbioia and Helicobacter Pylori

Until 1983, conventional medical wisdom decreed that low gastric pH and vigorous motility rendered the stomach nearly sterile. (1) While researchers had observed microorganisms, including curvilinear, gram-negative bacteria, adherent to gastric epithelial cells in the late 19th century, virtually all experts believed any microbes found in the stomach were transient, derived from swallowed secretions or ingested foods and liquids. (2) Traditional culture-based techniques showed low numbers (<[10.sup.3] CFU/ml.) of gastric microbes from the phyla Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria as well as yeasts. (3), (4) In 1983, Marshall and Warren first published their observation of a curved, gram-negative bacillus on the gastric epithelium in the setting of acute gastritis. (5) Subsequently this organism came to be known as Helicobacter pylori. Colonizing about 50010 of people worldwide, H. pylori was initially seen as an infectious agent causing gastritis and peptic ulcer disease. (6) Subsequent studies linked H. pylori with gastric carcinoma and lymphoma. (7), (8) Current research shows that H. pylori can be part of a complex, yet to be understood gastric microbiota. (9) When present, H. pylori dominates the gastric microbiome although the full implications of this dominance are currently unknown. Genetic studies suggest that H. pylori has been associated with humans as a gastric commensal microbe for at least 60,000 years, so it is likely that colonization confers some benefit and is pathogenic only in specific settings. (10) The current emphasis on eradication of H. pylori may be increasing the risk of esophageal carcinoma, allergies, asthma, and autoimmune disorders. (11)

Helicobacter Pylori Microbiology

H. pylori is a flagellated, highly mobile, gram-negative bacterium. (12) It is usually spiral shaped, but becomes coccoidal following antibiotic treatment or when invading the gastric mucosa. (13) A fastidious, microaerophilic bacterium, while highly adapted to the gastric environment, H. pylori is not acidophilic, surviving only brief exposures to a pH less than 4. It copes with low pH by producing large amounts of urease. By splitting urea into NH3 and CO2, H. pylori buffers protons and maintains a neutral periplasmic pH. (14) When H. pylori colonizes the stomach, the vast majority of the population resides in the mucus overlying the gastric mucosa. However, it often adheres to gastric epithelial cells and may even invade cells as a facultative intracellular microorganism. (15) The ability to invade stomach and intestinal epithelial and immune cells may contribute to H. pylori's virulence.

Helicobacter Pylori Epidemiology

There is considerable age, geographic, and socioeconomic variation in the prevalence of H. pylori colonization (12) In developing countries, where over 80% of people are positive for H. pylori, colonization typically occurs during the first 5 years of childhood and persists for life without treatment. In developed countries, the prevalence of H. pylori colonization is about 40% and is much lower in children than in adults. The incidence of new H. pylori cases in adults in industrialized countries is about 0.5% per year. In general, lower socioeconomic status is associated with higher rates of H. pylori colonization.

Helicobacter Pylori Pathogenicity

H. pylori colonization is invariably associated with an immune response characterized by infiltration of the gastric lamina propria by polymorpholeukocytes and pro-inflammatory phenotypic immune cells. (16) Almost always termed acute or chronic gastritis, this terminology may be misleading as the body normally mounts an inflammatory response to colonization of the mucosa and skin by microorganisms. The immune response to intestinal microbial colonization is never termed colitis or enteritis. Specific types of H. pylori-associated gastritis are associated with an increased risk of certain clinical outcomes. Nonatrophic, nodular, antral predominant gastritis is related to duodenal ulcer disease, and multifocal atrophic gastritis may lead to gastric cancer. (17), (18) Despite the high prevalence of H. pylori, only a minority of colonized people develop disease. The incidence of peptic ulcer disease among those harboring H. pylori is between 10% and 20%, of gastric adenocarcinoma 1% to 2%, and of gastric mucosal-associated lymphoid tissue (MALT) lymphoma < 1%. (1) Why certain individuals develop H. pylori-associated disease, while most do not, is not fully understood. No doubt it depends on the complex interplay between the virulence of the colonizing strain, host age at the time of infection, and host genetic and environmental susceptibilities. Among the better known H. pylori virulence factors are cytotoxin-associated gene A (cagA) and vacuolating toxin (vacA). (19) However, even people colonized with H. pylori positive for cagA and vacA are unlikely to develop clinical disease. The current hypothesis is that H. pylori-associated disease represents an inappropriately modulated immune response to gastric colon ization. (19)

Benefits of Helicobacter Pylori Colonization

It seems intuitive that an organism that has coevolved with humans since the origin of the species must confer some benefit by its commensal presence. (16) What benefits, if any, H. pylori colonization may bestow on its host are the subject of vigorous debate. (1), (20), (22) The dramatic treatment-mediated decline in H. pylori colonization rates has provided an opportunity to study what advantages H. pylori may have been offering all these millennia. Although the subject of dispute, there is epidemiological evidence that as the prevalence of H. pylori colonization has diminished, gastroesophageal reflux and its complications such as esophagitis, Barrett esophagus, and esophageal adenocarcinoma have become more widespread. (22), (23) Cross-sectional studies confirm an inverse relation between H. pylori prevalence and severity of GERD and a strong correlation of the absence of H. pylori with Barrett esophagus and esophageal carcinoma. (24-28) A hypothetical mechanism is that H. pylori colonization, particularly with [cagA.sup.+] strains, leads to pan- or corpus-predominant gastritis, which is associated with hypochlorhydria that may confer protection against esophageal reflux and its complications. Allergies and autoimmune diseases are another group of disorders that have increased over the past three decades while rates of H. pylori colonization have decreased. A recent meta-analysis of 14 studies found a significantly lower incidence of H. pylori colonization in people with asthma compared with controls. (29) The role of immunologic response to H. pylori and the risk of autoimmune disease is less clear and more controversial. Good evidence suggests that H. pylori colonization may increase the risk of immune thrombocytopenia. (30) There are also data supporting a protective role of high antibody titers to H. pylori and the risk of multiple sclerosis, systemic lupus erythematosus, and inflammatory bowel disease. (31) These possible associations are highly controversial and require further study. Possible mechanisms include the ability of H. pylori to elicit high regulatory T cell ([T.sub.regs]) responses, especially in childhood, which may suppress excessive Thi and/or Th2 responses. (32), (33) The disappearance of H. pylori has been hypothesized to contribute to the increasing incidence of obesity and metabolic syndrome. Weight gain is reliably observed following H. pylori eradication. (34) Absence of H. pylori is associated with high gastric and serum ghrelin and low gastric leptin, which could provide mechanisms for weight increases. (35), (36) However, any association between obesity and metabolic syndrome and the absence of H. pylori colonization remains unproven. (37) Among the many confounding factors that make understanding a possible relation between H. pylori status and obesity are that age of infection may be important, with childhood infection conferring protection, obesity itself may predispose to H. pylori infection, and H. pylori strain and distribution of gastritis may be critical variables.

Diagnostic Tests

No clear consensus exists on the best test to detect H. pylori colonization. (38) Available noninvasive tests include C-urea breath test (UBT), serology, polymerase chain reaction (PCR) of Helicobacter DNA, and detection of Helicobacter stool antigen (HpSA). (13), (38-41) Invasive tests are rapid urease test (RUT), histological examination, and culture of gastric mucosal biopsies. PCR and antigen detection can also be done on gastric contents or biopsies. (40) Culture and histological examination of biopsy specimens remain the "gold standard" for definitive diagnosis with sensitivities exceeding 95%. Many investigators and practitioners believe the UBT is the best noninvasive test with a sensitivity and specificity ranging from 80% to 100%. The RUT is a valuable rapid, cost-effective invasive test for H. pylori. Stool PCR has a sensitivity of around 70%, but is 100% specific. In contrast, studies show HpSA to have a very heterogeneous sensitivity ranging from 58% to 96% and specificities varying from 67% to 96%. This appears to be a problem of procuring consistently high quality polyclonal antibodies for antigen detection. Serologies are useful for epidemiological surveys and not recommended for clinical practice.

Whom to Treat?

In what is often termed the "test and treat" approach, clinicians have usually elected to treat H. pylori colonization when detected. The "test and treat" approach has been promoted by most consensus guidelines on management of H. pylori. (42) However, the indiscriminant treatment of H. pylori whenever detected may not be in the patient's best interest and more rational treatment guidelines are in order. (1), (20) There is broad consensus that patients with peptic ulcer disease, gastric MALT, and early gastric adenocarcinoma, and those with first degree relatives with a history of gastric cancer should be treated. Generally, there is a consensus that people with functional dyspepsia and H. pylori should be treated although the benefits are unclear and 12 people must be treated to see 1 person improve. (42) There is consensus that H. pylori should be tested for in the setting of immune thrombocytopenia, vitamin B12 deficiency, and iron deficiency anemia and treated if positive. (42) Clearly, a positive test for H. pylori should not prompt treatment unless the full clinical scenario justifies the potential risks and costs of therapy.

Conventional Treatment

While H. pylori is sensitive to a variety of antibiotics in the laboratory, each antibiotic generally fails clinically when used alone. Clarithromycin, the most effective drug, only has a 40% success rate when used alone. (43) Dual therapy, the combination of a proton pump inhibitor (PPI) with an antibiotic, usually amoxicillin, rapidly gave way to triple therapy, a combination of two antibiotics plus a PPI or bismuth salts. (44) Triple therapy has become the standard regimen for H. pylori eradication although current data show that the success rate is 70% or less in treated patients. (42) Quadruple therapies consisting of three antibiotics and a PPI or bismuth salts and "sequential treatment," which includes a five-day period with PPI-amoxicillin, followed by a five-day period with PPI-clarithromycin-metronidazole (or tinidazole), are now advocated. Poor success rates are usually attributed to H. pylori's microecological niche in the low pH gastric mucus layer as well as emergence of antibiotic resistance. (41) However, two additional factors are likely to contribute significantly to treatment failure--biofilm formation and intracellular replication of H. pylori.

Helicobacter Pylon Biofilm

Biofilm is a gathering of sessile bacteria and/or fungi encased by a self-generated hydrated exopolysaccharide, protein matrix attached to a surface. (45), (46) Life within biofilms is the preferred mode of existence for microbes within the body as well as in the environment. Among the numerous benefits of living within biofilm are protection from host immune responses and a high degree of antibiotic resistance. (45), (47) H. pylori has long been known to make biofilm. (48) H. pylori biofilms have been described in peptic acid disease; and in one endoscopic study, H. pylori biofilms covered an average of 97.3% of the gastric mucosa in urease positive patients. (49) H. pylori biofilm undoubtedly contributes to the low success rate of conventional therapy. The magnitude of biofilm's contribution to treatment failure is illustrated by a study of 21 patients with dyspepsia previously treated for H. pylori with a standard seven-day triple therapy, a PPI, clarithromycin, and amoxicillin. (50) Patients were biopsied three months after therapy. H. pylori were cultured in 7 out of 21 patients. However, through gene analysis (gimM), viable but not culturable H. pylori were detected in 19 out of 21 biopsies. In all of these subjects, the biofilm quorum-Sensing gene luxS was detected and metabolically quiescent coccoid and S-shaped H. pylori cells were clustered within biofilm. The study not only shows the importance of biofilm in limiting treatment success, but also suggests that treatment success rates based on standard negative tests may grossly overestimate eradication rates.

Helicobacter Pylori Invasion and Replication within Cells

H. pylori is usually thought to be a noninvasive pathogen residing within gastric mucus. However, numerous studies show that H. pylori can invade cells to reside in a cytoplasmic vacuole or replicate on the cell membrane or within the cell to form a microcolony. (51) H. pylori can multiply within macrophages, bone marrowderived dendritic cells, and gastric epithelial cells. H. pylori penetrates nonmetaplastic, metaplastic, and neoplastic gastric epithelium both intracellularly and interstitially. (52) Residing and replicating within gastric cells have significant implications for antimicrobial treatment as antimicrobials may fail to penetrate gastric cells. Furthermore, metabolically dormant coccoid cells residing in cytoplasmic vacuoles have very low susceptibilities to antibiotics.

Need for Complementary Adjunctive Therapies for Helicobacter Pylori

The poor standard therapy success rate mandates other interventions to increase eradication rates. (53) Conventional therapies are also expensive and associated with significant morbidities. Side effects commonly include diarrhea, nausea, vomiting, bloating, and abdominal discomfort. Less common but more serious is Clostridium difficile-associated disease. Complementary therapies not only improve treatment success rates, but reduce treatment adverse effects. Available therapies include probiotics, antibiofilm enzymes, lactoferrin, N-acetyl-L-cysteine, and quercetin.

Helicobacter Pylori and Probiotics

The preponderance of available evidence shows that probiotics can improve H. pylori treatment success rates and reduce side effects. (54-56) Among the mechanisms by which probiotics antagonize H. pylori are the production of lactic acid, acetic acid, bacteriocins and other antimicrobial compounds, stimulation of mucus production, inhibition of adhesion to gastric epithelial cells, and favorable modulation of host immune responses. (54), (55) The yeast probiotic Saccharomyces boulardii damages the cellular structure of H. pylori. (57) Probiotics in addition to standard triple and bismuth-based quadruple therapy effectively prevent antibiotic-associated side effects, decrease H. pylori density and gastritis, and reduce H. pylori reinfection rates. (55), (58) In a review of nine clinical trials of probiotic lactic acid bacteria administered along with standard therapy, probiotics significantly increased eradication rates (81% vs. 71%, p = 0.03). S. boulardii reduces the side-effects of the standard triple therapy and when used alone eradicated H. pylori in 12% of colonized children. (59), (60) However, the addition of S. boulardii to standard antibiotics does not significantly improve clearance rates.59.61

Helicobacter Pylori and Antibiofilm Enzymes

H. pylori resides within biofilm overlying and within gastric mucus. (49) Biofilm microorganisms are 10 to over 1000 times more resistant to antibiotics than their free-living kindred. (45) A biofilm matrix is primarily cornposed of exopolysacchrides. Cellulose, a polymer of [beta]-(1 [right arrow] 6) linked D-glucose sugars associated with plants, is a particularly ubiquitous component of biofilms made by gram-negative microorganisms. (62) A nutraceutical enzyme formulation has been developed that combines cellulase with other carbohydrases and proteases. This formulation has broad antibiofilm activities against an array of pathogenic biofilms including H. pylori. (63) It has been shown in the laboratory to have significant synergism against H. pylori with amoxicillin, tetracycline, and clarithromycin, but not with metronidazole. The observed synergistic effects suggest the enzyme formulation may be combined with standard triple therapy with clarithromycin and amoxicillin to accomplish more effective eradication of gastric H. pylori populations.

Helicobacter Pylori and Lactoferrin

Lactoferrin, a copious glycoprotein constituent of human external secretions, binds iron. (64) Lactoferrin has been shown to have antibiofilm properties. (65) It also has direct antimicrobial activities against H. pylori. (66) A meta-analysis of nine randomized trials comparing lactoferrin supplementation to placebo or no treatment during anti-H. pylori therapies found that lactoferrin significantly increased eradication rates to 87% compared with 74% as well as reducing side effects. (67) The addition of lactoferrin to standard as well as adjunctive complementary therapies for H. pylori has great potential to improve outcomes in patients requiring treatment for H. pylori colonization.

Helicobacter Pylori and N-Acetyl-L-Cysteine

N-Acetyl-L-cysteine, the N-acetyl derivative of L-cysteine, is the ratelimiting precursor for glutathione synthesis. Oral N-acetyl-L-cysteine has been used to disrupt H. pylori biofilm and mitigate H. pylori antibiotic resistance. In a small study involving 40 subjects who had failed at least four prior courses of standard therapies, N-acetyl-L-cysteine in addition to a culture-guided antibiotic program was associated with a cure rate of 65% versus a rate of 20% without N-acetyl-L-cysteine. (68) The addition of N-acetyl-L-cysteine has significant potential in the treatment of H. pylori, particularly in patients who have failed prior courses of therapy.

Helicobacter Pylori and Quercetin

Quercetin is a potent polyphenolic bioflavonoid water-soluble antioxidant found in many foods including kale, watercress, onions, apples, green tea, and black tea. (69) Quercetin has a variety of activities including antiallergic, anti-inflammatory properties and activation of cellular pathways that lead to the prevention of many pathological conditions such as cancer and cardiovascular and neurodegenerative disease. (70) Quercetin has significant in vitro anti-H. pylori effects that are pH independent. (71) In an animal study, quercetin reduced H. pylori gastric mucosa infection and decreased inflammatory response and lipid peroxidation. (72) This suggests that quercetin may have a useful role in moderating excessive inflammatory responses to H. pylori colonization and in increasing treatment success rates.


H. pylori has been a human gastric commensal microbe for the entire history of the species. It is clearly associated with significant disease, but only a minority of colonized people ever develop disease. H. pylori appears to confer health benefit, and declining colonization rates are associated with increases in esophageal diseases and allergies. The traditional "test and treat" strategy may be excessive, and more focused treatment indications are being preferred. Standard antimicrobial regimens have low and declining success rates. Adjunctive, complementary interventions such as probiotics, antibiofilm enzymes, lactoferrin, N-acetyl-L-cysteine, and quercetin offer the opportunities to improve H. pylori treatment success rates and reduce side effects.


(1.) Dorer MS. Talarico S. Salama NR. Helicobacter pylori's unconventional role in health and disease. PLoS Pathog. 2009; 5: e1000544.

(2.) Bizzozero G. Ueber die schlauchformigen Drusen des Magendannkanalsund die Beziehungen ihres Epithets zu clem Oberfachenepithel der Schleimhaut. Dritte mitteilung. Archly Mikroskopische Mat. 1893; 4182152.

(3.) Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31: 107-133.

(4.) Adamsson I, Nord CE, Lundquist P, Sjostedt S. Edlund C. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. I Antimicrob Chemother. 1999; 44: 629-460.

(5.) Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983; 1: 1273-1275.

(6.) Blaser MI. Helicobacter pylon and the pathogenesis of gastroduodenal inflammation.) Infect Dis. 1990; 161: 626633.

(7.) Parsonnet J, Friedman GO, Vandersteen DP, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl I Med. 1991; 325: 1127-1131.

(8.) Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991; 338: 1175-1176.

(9.) Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. I Med Microbial. 2009; 58 (Pt 4): 509-516.

(10.) Yamaoka Y. Helicobacter pylori typing as a tool for tracking human migration. Clin Microbial Infect. 2009; 15: 829-834.

(11.) Correa P. Piazuelo MB. Evolutionary history of the Helicobacter pylon genome: implications for gastric carcinogenesis. Gut Liver, 2012; 6: 21-28.

(12.) Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbial Rev I. 2006; 19: 449-490.

(13.) Taniguchi Y, Kimura K, Satoh K. et al. Helicobacter pylori detected deep in gastric glands: an ultrastructural quantitative study. Clin Gastroenterol. 1995; 21 Suppl 1: S169-S173.

(14.) Sachs G, Wen Li, Scott DR. Gastric infection by Helicobacter pylori. Curr Gastroenterol Rep. 2009; 11: 455-461.

(15.) Petersen AM, Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS lmmunol Med Microbiol. 2003; 36: 117-126.

(16.) Blaser Mi. Theodore E. Woodward Award: Global warming and the human stomach: microecology follows macroecology. Trans Am Clin Climatol Assoc. 2005; 116: 65-75.

(17.) Glickman Psi, Antonioli DA. Gastritis. Gastrointest Endosc Clin N Am. 2001; 11: 717-740, vii.

(18.) Corso G, Seruca R, Roviello F. Gastric cancer carcinogenesis and tumor progression. Ann Itat Chir. 2012; 83: 172-176.

(19.) Ernst PB, Gold BD. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbial. 2000; 54: 615640.

(20.) Hunt RH, Sumanac K, Huang JQ. Review article: should we kill or should we save Helicobacter pylori? Aliment Pharmacol Ther. 2001; 15 Suppl 1: 51-59.

(21.) Ahmed N, Tenguria 5, Nandanwar N. Helicobacter pylori--a seasoned pathogen by any other name. Gut Pathog. 2009; 1: 24.

(22.) El Serag HB, Sonnenberg A. Opposing time trends of peptic ulcer and reflux disease. Gut. 1998; 43: 327-333.

(23.) Brown Lm, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. I Nat! Cancer Inst. 2008; 100: 1184-1187.

(24.) Yamaji Y, Mitsushima T, lkuma H, et al. Inverse background of Helicobacter pylori antibody and pepsinogen in reflux oesophagitis compared with gastric cancer: analysis of 5732 Japanese subjects. Gut. 2001; 49: 335-340.

(25.) Ye W, Held M. Lagergren 1, et al. Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. I Nall Cancer Inst. 2004; 96: 388-396.

(26.) De Martel C, Llosa AE, Farr SM, et al. Helicobacter pylori infection and the risk of development of esophageal adenocarcinoma. I Infect Des. 2005; 191: 761-767.

(27.) Islami F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prey Res (Phila). 2008; 1: 329-338.

(28.) Winberg H, Lindblad M, Lagergren 1, Dahlstrand H. Risk factors and chemoprevention in Barrett's esophagus-an update. Scand Gastroenterol. 2012; 47: 397-406.

(29.) Zhou X, Wu J, Zhang G. Association between Helicobacter pylon and asthma: a meta-analysis. Eur I Gastroenterol Hepatol. Epub 2012 Dec 13.

(30.) Hasni SA. Role of Helicobacter pylon infection in autoimmune diseases. Curr Opin Rheumatol. 2012; 24: 429-434.

(31.) Ram M, Barzilai 0, Shapira V. et at. Helicobacter pylori serology in autoimmune diseases--fact or fiction? Clin Chem Lab Med. 2012; 0: 1-8.

(32.) Harris PR, Wright SW, Serrano C, et at. Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology. 2008; 134: 491-9.

(33.) Freire de Melo F, Rocha AM, Rocha GA, et at. A regulatory instead of an IL-17 T response predominates in Helicobacter pylon-associated gastritis in children. Microbes Infect. 2012; 14: 341-347.

(34.) Boffin D, Niv Y. Ghrelin, Helicobacter pylon and body mass: is there an association? Isr Med Assoc I. 2012; 14: 130-132.

(35.) Isomoto H, Nakazato M, Ueno H, et al. Low plasma ghrelin levels in patients with Helicobacter pylon-associated gastritis. Am I Med. 2004; 117: 429-432.

(36.) Nishi V. Isomoto H, Uotani S. et al. Enhanced production of leptin in gastric fundic mucosa with Helicobacter pylori infection. World I Castroenterol. 2005; 11: 695-699.

(37.) loan nou GN, Weiss NS, Kearney DJ. Is Helicobacter pylori seropositivity related to body mass index in the United States? Aliment Pharmacol Ther. 2005; 21: 765-772.

(38.) Red6en S, Petersson F, Tdmkrantz E, Levander H, Mardh E, Botch K. Reliability of diagnostic tests for Helicobacter pylori infection. Castroenterol Res Pract. 2011; 2011: 940650.

(39.) Kazemi S. Tavakkoli H, Habizadeh MR, Emami MH. Diagnostic values of Helicobacter pylori diagnostic tests: stool antigen test, urea breath test, rapid urease test, serology and histology. J Res Med 5ci. 2011; 16: 10971104.

(40.) Mishra 5, Singh V, Rao GR, et al. Detection of Helicobacter pylori in stool specimens: comparative evaluation of nested PCR and antigen detection. I Infect Dev Ciries. 2008; 2: 206-210.

(41.) Weiss J, Tsang TK, Meng X, et al. Detection of Helicobacter pylon gastritis by PCR: correlation with inflammation scores and immunohistochemical and CLOtest findings. Am I Clin Pat hol. 2008; 129: 89-96.

(42.) Malfertheiner P. Megraud F, O'Morain CA, et al. Management of Helicobacter pylori infection--the Maastricht IV/ Florence Consensus Report. Gut. 2012; 61: 646-664.

(43.) Peterson WL, Graham DY, Marshall B, et al. Clarithromycin as monotherapy for eradication of Helicobacter pylon: a randomized, double-blind trial. Am Castioenterol. 1993; 88: 1860-1864.

(44.) Malfertheiner P. MOgraud F, O'Morain C, et al. Current European concepts in the management of Helicobacter pylori infection--the Maastricht Consensus Report. The European Helicobacter Pylon Study Group (EHPSG). fur I Gagroenterol Hepatol. 1997; 9: 1-2.

(45.) Donlan RM, Costenon JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbial Rev. 2002; 15: 167-193.

(46.) lain A, Gupta V. Agrawal R, Khare P, Jain SK. Biofilms-a microbial life perspective: a critical review. Crit Rev Ther Drug Carrier Syst. 2007; 24: 393-441

(47.) Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbial Lett. 2004; 236: 163-173.

(48.) Stark RM, Gerwig Cl, Pitman RS, et at. Biofilm formation by Helicobacter pylori. Lett App! Microbial, 1999; 28: 121126.

(49.) Colicchia JM, Sugawa C, Tran VR, et at. Presence and density of Helicobacter pylori biofilms in human gastric mucosa in patients with peptic ulcer disease. J Gastrointest Surg. 2006; 10: 883-889.

(50.) Cellini L, Grande R, Di Campli E, et at. Dynamic colonization of Helicobacter pylori In human gastric mucosa. Scand I Gastroenterol. 2008; 43: 178-185.

(51.) Chu YT, Wang VH, Wu ff, Lei HY. Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun. 2010; 78: 4157-4165.

(52.) Necchi V. Candusso ME, Tava F, et at. Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology. 2007; 132: 1009-1023.

(53.) Malfertheiner P. Selgrad M, Bornschein J. Helicobacter pylon: clinical management. Curr Opin Gastroenterol. 2012; 28: 608-614.

(54.) Lesbros-Pantoflickova D. Corthesy-Theulaz I. Blum AL. Helicobacter pylori and probiotics. I Nutr. 2007; 137: 8125-818S.

(55.) Gotteland M, Brunser 0, Cruchet S. Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol Then. 2006; 23: 1077-86.

(56.) Felley C, michetti P. Probiotics and Helicobacter pylori. Best Pract Res Clin Gastroenterol. 2003; 17: 785-791.

(57.) Vandenplas V. Brunser 0, Szajewska H. Saccharomyces boulardii in childhood. Eur I Pediatr. 2009; 168: 253-265.

(58.) Lionettl E, Francavilla R, Castellazzi AM, et al. Probiotics and Helicobacter pylori infection in children. I Biol Regul Homeost Agents. 2012; 26 (1 Suppl): 569-576.

(59.) McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World I Castroenterol. 2010; 16: 2202-2222.

(60.) Gotteland M, Pollak L, Cruchet S. Brunser 0. Effect of regular ingestion of Saccharomyces boulardii plus Inulin or Lactobacillus acidophilus LB in children colonized by Helicobacter pylori. Acta Paediatr. 2005; 94: 1747-1751.

(61.) Hurduc V, Plesca D, Dragomir D, Sajin M, Vandenplas Y. A randomized, open trial evaluating the effect of Saccharomyces boulardii on the eradication rate of Helicobacter pylori infection in children. Acta Paediatr. 2009; 98: 127-131.

(62.) Lasa I. Towards the identification of the common features of bacterial binfilm development. Int Microbiol. 2006; 9: 21-28.

(63.) Olmstead S. Allan N. Omar A, Olson M. Evaluation of nutraceutical enzymes in the treatment of clinically significant gastrointestinal biofilms alone and in combination with relevant antibiotics. Poster presented at the 5th Annual American Society for Microbiology Biofilm Meetings; Nov. 2009.

(64.) Valenti P. Berluttl F, Conte MP, Longhi C, Seganti L. Lactoferrin functions: current status and perspectives. J Clin Castroentera 2004; 38 (6 Supp1): 5127-S129.

(65.) Singh PK, Parsek MR, Greenberg EP, Welsh MI. A component of innate immunity prevents bacterial biofilm development. Nature. 2002; 417: 552-555.

(66.) Di Mario F, Aragona G, Dal 13d N, et al. Use of bovine lactoferrin for Helicobacter pylori eradication. Dig Liver Dis. 2003; 35: 706-710.

(67.) Zou J, Dong J, Yu XF. Meta-analysis: the effect of supplementation with lactoferrin on eradication rates and adverse events during Helicobacter pylori eradication therapy. Helicobacter. 2009; 14: 119-127.

(68.) Cammarota G, Branca G, Ardito F, et at. Biofilm demolition and antibiotic treatment to eradicate resistant Helicobacter pylori: a clinical trial. Clin Castroenterol Hepatol. 2010; 8: 817-820.e3.

(69.) Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur I Pharmacol. 2008; 585: 325-337.

(70.) Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008; 11: 733-740.

(71.) Brown JC, Jiang X. Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. Appl Microbial. Epub 2013 Jan 7.

(72.) Gonzalez-Segovia R, Quintanar IL, Salinas E, Ceballos-Salazar R, Aviles-Jimenez F, Tones-Lopez J. Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylon in gastric mucosa of guinea pig, J Castroenterol. 2008; 43: 441-4-47.

Stephen Olmstead, MD, is chief science officer at ProThera Inc., where he directs clinical trials of ProThera and Klaire Labs nutraceutical products. His current research focus is the use of enzymes and chelating agents to disrupt pathogenic Cl biofilm. Dr. Olmstead graduated from the University of New Mexico with distinction in biology and chemistry. He attended the University of New Mexico School of Medicine and trained at Harvard Medical School, Massachusetts General Hospital. He is board certified in both internal medicine and cardiovascular diseases.

Kathleen Burns, MSN, RN, NP, senior technical associate at ProThera Inc., provides scientific technical support to ProThera and Klaire Labs health-care professional customers. She received her master's degree in nursing from Massachusetts General Hospital Institute of Health Professions, Boston, and is a board certified pediatric nurse practitioner.

Dennis E. Meiss, PhD, is a founder of ProThera Inc. and acts as president and CEO. He is the primary formulator of ProThera and Klaire Labs products and directs the company's management team. Dr. Meiss received his PhD in neurobiology from the University of Connecticut.

Janet Ralston, BS, is a founder of ProThera Inc. She serves as vice president of the company, where she directs marketing efforts and client service programs. She is a graduate of the University of California, Davis, Nutrition and Dietetics program.

by Stephen Olmstead, MD; Kathleen Burns, MSN, RN, NP; Dennis Meiss, PhD; and Janet Ralston, BS
COPYRIGHT 2013 The Townsend Letter Group
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Olmstead, Stephen; Burns, Kathleen; Meiss, Dennis; Ralston, Janet
Publication:Townsend Letter
Article Type:Report
Geographic Code:1USA
Date:Jun 1, 2013
Previous Article:War on cancer: 3BP and the metabolic approach to cancer: a visit with Peter Pedersen and Young Hee Ko.
Next Article:Using probiotics for prevention and treatment of eczema: research review.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters