Printer Friendly

Global phenotypic characterization of effects of fluoroquinolone resistance selection on the metabolic activities and drug susceptibilities of clostridium perfringens strains.

1. Introduction

Clostridium perfringens, in addition to being the second most common cause of bacterial foodborne illness in the United States [1], may cause other illnesses, including nonfoodborne gastrointestinal illness, antibiotic-associated diarrhea, gas gangrene, septicemia, and enteric diseases in animals [2]. As a colonic bacterium, C. perfringens may come in contact with antimicrobial agents used for the treatment and prophylaxis of infections, and large concentrations of ciprofloxacin have been detected in fecal samples after administration of this drug [3]. Early fluoroquinolones were not effective against anaerobes [4]; C. perfringens strains resistant to these drugs were found in clinical isolates as early as 1992 and in food isolates more recently [5, 6]. Newer fluoroquinolones, however, are more effective and are among the drugs recommended for treatment of C. perfringens infections [7].

Fluoroquinolones are DNA-damaging agents; they also induce mutations in gyrase and topoisomerase genes. The mutations in gyrase, topoisomerase, and efflux pump may confer fluoroquinolone resistance on bacteria. Fluoroquinolones also trigger the SOS response and induce DNA repair genes. This may alter the expression of genes involved in the regulation of metabolic activities and lead to phenotypic changes in fluoroquinolone-resistant strains [8, 9]. Excessive use of fluoroquinolones in hospitals has been associated with the emergence of highly virulent strains of C. difficile [10]. An in vitro study showed that exposure of C. difficile to fluoroquinolones resulted in increased toxin production in one strain and decreased toxin production in another strain, indicating a strain-dependent response [11]. In vitro and in vivo studies have also shown that exposure to fluoroquinolones alters the susceptibility of bacterial strains to other antimicrobial agents [9, 12,13]. Isolation of an extended-spectrum [beta]-lactamase-resistant Escherichia coli sequence type ST131 with a distinctive virulence profile has been associated with fluoroquinolone resistance [12]. Studies of nosocomial infections in hospitalized patients show that use of levofloxacin or ciprofloxacin is associated with the isolation of methicillin-resistant Staphylococcus aureus strains [13]. Contradictory results have been published on the effect of fluoroquinolones on survival and virulence in E. coli [14-18].

An in vivo study has shown that acquisition of a high level of ciprofloxacin, moxifloxacin, or levofloxacin resistance increases the colonization rate of C. difficile strain BI17 in hamsters but that only moxifloxacin resistance increases the colonization rate of C. difficile strain BI1 [10]. We have shown that gatifloxacin resistance selection in different strains of C. perfringens affects production of short-chain fatty acids, reductive and hydrolytic enzymes, and toxin expression in different ways [19-21]. Fluoroquinolone resistance selection also affects bacterial fitness, and we have shown that resistance selection to different fluoroquinolones has various effects on the fitness of different strains of C. perfringens [22, 23]. To investigate the effect of resistance selection to fluoroquinolones with different structures on the metabolic activities of resistant mutants, we used Biolog phenotype microarrays, which detect cellular phenotypes by measuring bacterial growth under various conditions for global characterization of change [24].

2. Materials and Methods

2.1. Growth of Bacterial Strains. Wild [type.sup.W] Clostridium perfringens strains VPI, NCTR, ATCC 3626, and ATCC13124 and their respective norfloxacin-[resistant.sup.NR,] ciprofloxacin-[resistant.sup.CR], and gatifloxacin-[resistant.sup.GR] mutants were used in this study (Table 1). All of the mutants generated in vitro using large concentrations of fluoroquinolones had stable mutations in gyrase A genes and some also had mutations in topoisomerase genes [25]. Brain heart infusion (BHI) broth (Remel, Lenexa, KS), with vitamin K (1 [micro]g/mL) and hemin (5 [micro]g/mL, Sigma Chemical Co., St. Louis, MO) but without antibiotics, was used for growth of the bacteria [25]. Cell preparation, inoculation, and incubation for all assays were performed in a glove box with an anaerobic atmosphere of 85% [N.sub.2], 10% C[O.sub.2], and 5% [H.sub.2] at 37[degrees]C.

2.2. Phenotype Microarrays. A phenotypic microarray experiment was performed in 96-well microtiter plates, using PM 1-20 plates (Biolog, Inc., Hayward, CA) that contained different nutrients, chemicals, or inhibitory substances in each well, as described by Bochner [24]: PM 1-2, carbon source; PM 3, nitrogen source; PM 4, phosphorus and sulfur sources; PM 5, nutrient supplements; PM 6-8, peptides and nitrogen sources; PM 9, osmolytes; PM 10, pH values; PM 11-20, various chemicals, including antimicrobial agents. The manufacturer's instructions were followed and the assays were performed using their reagents. The wild types and mutants from BHI tubes (Table 1) were grown on blood agar plates. The bacterial colonies were suspended in Biolog broth. The Biolog turbidimeter was used to measure cell density and the cells were diluted to 40% transmittance. The cells then were further diluted, according to the Biolog instructions, for use in specific plates, and 100 [micro]L of diluted cells was used for inoculation of each well. The plates were incubated anaerobically for 24-48 h at 37[degrees]C. The effect of different conditions on cell growth was estimated by measuring the cell density ([A.sub.750]) in each well, using a spectrophotometer, and comparing the growth with wells containing nonsupplemented Biolog broth. Statistical analysis was performed by Student's t-test.

2.3. Comparison of the Effects of Dipeptides on Wild Types and Resistant Strains. Two dilutions of each of the dipeptides Gly-Met, Gly-Phe, and Gly-Leu (Sigma) were prepared in the Biolog proprietary concentration range used in the Biolog PM 6-8 plates, using the medium recommended by Biolog. 100 [micro]L of each dilution was added to duplicate wells of 96-well microtiter plates, along with 100 [micro]L of each of the cells, prepared according to the instructions of Biolog. The microtiter plates were incubated at 37[degrees]C for 24-48 h and the optical density ([A.sub.750]) was measured by spectrophotometer. Control wells contained media without dipeptides.

2.4. Sensitivity of Wild Types and Fluoroquinolone-Resistant Mutants to Antimicrobial Agents and Ethidium Bromide. Comparison of the antimicrobial susceptibilities of different strains was performed by the Etest (bioMerieux, Inc., Durham, NC) according to the Clinical and Laboratory Standards Institute (CLSI) guidelines and manufacturer's instructions. The minimum inhibitory concentration (MIC) was measured for each of the mutants and the wild type of each strain.

Sensitivity of strains to ethidium bromide was measured by the agar dilution method, according to CLSI guidelines, using BHI agar containing 0, 2, 4, 5, 6, 8, and 10 [micro]g/mL ethidium bromide. The plates were inoculated with 5 [micro]L of an overnight culture of each strain and were examined for growth following incubation.

2.5. Microarray Analysis. The microarray analysis of gatifloxacin-resistant mutants [13124.sup.GR] and [] and their respective wild type was performed as previously described [21]. Briefly, the exponential growth phase of cultures of strains grown in BHI was used for RNA extraction for microarray analysis. RNA-Bee reagents from TEThTEST, Inc. (Friendship, TX) and the RNeasy Mini Kit from QIAGEN, Inc. (Valencia, CA) were used to purify RNA according to the manufacturers' instructions. RNase free DNase 1 (Boehringer-Mannheim, Ingelheim, Germany) was used to remove contaminating DNA. The RNA was quantified using a Nanodrop ND-1000 spectrophotometer (NanoDropTechnology, Wilmington, DE). The probes for hybridization to RNA for microarray analysis were designed by Biodiscovery LLC (Ann Arbor, MI) (http:// For the comparison of wild type and gatifloxacin-resistant mutants of NCTR and 13124, the known sequences of C. perfringens strains 13 and 13124, respectively, from the GenBank were used to design probes [21]. The designs of these probes can be accessed at the following websites: for NCTR at and for 13124 at [21].

The hybridization and analysis of RNA of each strain to the array probes were performed by Biodiscovery LLC, using Fluor-labeled RNA [21]. At the completion of hybridization, the arrays were scanned in an Axon 4000B scanner (Molecular Devices, Sunnyvale, CA) using GenePixPro software (v The experiments were repeated with three sets of RNA for each strain. For comparing the expressions of the genes in the wild types and the mutant strains, the mean expression of each of the genes in the mutants was divided by the mean expression of the same gene in the wild type 21].

3. Results

3.1. Effect of Fluoroquinolone Resistance Selection on the Ability of Strains to Grow at Different pH Values and in Different Osmolytes. The growth of strains of C. perfringens in Biolog PM 1-20 plates reflected the effects of various substrates and conditions on the metabolic activities of wild type and resistant strains. The effect of fluoroquinolone resistance selection on pH tolerance, measured in Biolog PM 10 plates, showed that resistance to fluoroquinolones affected the pH ranges in which the strains could grow or survive. Gatifloxacin resistance selection reduced the pH range of growth by 0.5-2 units. The effect was more pronounced in the gatifloxacin-resistant mutant [NCTR.sup.GR], which could only grow or survive up to pH 8, unlike the wild type [NCTR.sup.W] and others, which grew at pH 10 (P < 0.05).

The growth on different concentrations of osmolytes in Biolog PM 9 showed differences in osmotic tolerance among the wild types. In general, resistance selection to different fluoroquinolones affected tolerance to NaCl, urea, sodium lactate, and sodium nitrite differently (Table 2). Tolerance to NaCl was reduced in the norfloxacin- and gatifloxacin-resistant mutants [13124.sup.NR] and [13124.sup.GR] but increased in the ciprofloxacin-resistant mutant [VPI.sup.CR] (P < 0.05). Other strains were not substantially affected (Table 2). Although ciprofloxacin-resistant strains [13124.sup.CR] grew better than wild types in the same concentrations of urea and [NCTR.sup.CR] grew better than its wild type on the same concentration of sodium lactate and sodium nitrite (P < 0.05), in general, fluoroquinolone resistance selection decreased the tolerance (P < 0.05). Microarray data showed that the nitrite transporter gene similar to CPE 1442 was downregulated 4.65-fold in the mutant [NCTR.sup.GR], which corresponded to the decreased tolerance of this mutant to sodium nitrite (see Supplementary Table S1 available online at

3.2. Effect of Fluoroquinolone Resistance Selection on Growth on Nutrients. Biolog PM 1 and PM 2 plates containing various substrates were used to detect the effect of resistance development on the utilization of carbon sources. In general, compounds that supported the growth of all four wild types also supported the growth of the resistant mutants to different extents, with some exceptions. Trehalose and sucrose did not support the growth of norfloxacin-resistant [13124.sup.NR] and gatifloxacin-resistant [13124.sup.GR]. Growth of [13124.sup.GR] also was reduced on maltose. Microarray data also showed that the CPFA785 and CPF-0541 genes, for the transport of sucrose and trehalose, respectively, into the cells, were down-regulated 15- and 31-fold in a gatifloxacin-resistant mutant, [13124.sup.GR], and putative maltose transporters were also downregulated to a lesser extent (Supplementary Tables S2 and S3). The wild type strains also differed in their ability to metabolize some carbon sources. The wild type and resistant mutants of 13124 could grow on sorbitol, glycerol, and D-fructose-6-phosphate, whereas other wild type strains did not. Interestingly, ciprofloxacin-resistant [3626.sup.CR] could grow on fructose and D-fructose 6-phosphate, but the wild type [3626.sup.W] and mutants [3626.sup.NR] and [3626.sup.GR] could not grow.

The chemicals used as sources of nitrogen, phosphorus, and sulfur in the Biolog PM 3-8 plates that supported the growth of wild types also supported the fluoroquinolone-resistant mutants to different extents, with the following exceptions. Incubation of strains in the wells containing several dipeptides, including those dipeptides containing Gly, Leu, and Met, resulted in a decrease in the OD of some of the strains, compared with the negative control, in which no additional compound was present. This indicates cell lysis. Three of the dipeptides, Gly-Phe, Leu-Gly, and Met-Gly, were used in a separate experiment to confirm the inhibitory effect of dipeptides on some of the strains (Figure 1). Gly-Phe and Met-Gly inhibited the growth of gatifloxacin-resistant [NCTR.sup.GR] at two different concentrations (P < 0.05). At the higher concentrations, Gly-Phe also inhibited the growth of the wild type [NCTR.sup.W], [NCTR.sup.NR], and [3626.sup.GR], but to a lesser extent (Figure 1). Wild type strain 3626W and mutant strains [3626.sup.NR] and [3626.sup.GR] could grow in the control media without any dipeptide, but [3626.sup.CR] could not grow. The requirements for growth of this mutant had changed and were different from those of [3626.sup.W], [3628.sup.NR], and [3628.sup.GR], so it could not grow in the media that supported the others (Figure 1).

3.3. Effect of Fluoroquinolone Resistance Selection on the Tolerance of Strains to Antimicrobials and Ethidium Bromide. Fluoroquinolone resistance selection, in general, did not substantially alter the sensitivity of different C. perfringens strains to most compounds included in Biolog PM 11-20. Results of Etests, however, showed variation in the effect of fluoroquinolone resistance selection on the susceptibilities of strains to seven antimicrobial agents (Table 3). Gentamicin and erythromycin susceptibilities increased in all resistant strains except the norfloxacin-resistant [VPI.sup.NR] and [NCTR.sup.NR]. Susceptibilities to other drugs also increased to different extents in some resistant strains in comparison to their respective wild types. Some resistant strains were less susceptible than their wild types to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole (Table 3). Strains [3626.sup.NR] and [3626.sup.GR] were less susceptible than their wild types to amoxicillin, chloramphenicol, and metronidazole and [3626.sup.GR], [NCTR.sup.NR], [NCTR.sup.GR], [VPI.sup.NR], [VPI.sup.CR], and [VPI.sup.GR] were less susceptible than the wild types to cefoxitin (Table 3). [VPI.sup.GR] was also less susceptible than its wild type to amoxicillin, ceftriaxone, and chloramphenicol.

Fluoroquinolone resistance selection also affected sensitivities of resistant strains to ethidium bromide (Table 3). Wild type C. perfringens [NCTR.sup.W] was the most sensitive strain (MIC = 2 [micro]g/mL) to ethidium bromide, followed by 13124W (MIC = 4 [micro]g/mL). The sensitivities of all resistant mutants of NCTR to ethidium bromide were substantially decreased, but sensitivities of norfloxacin- and gatifloxacin-resistant strains [13124.sup.NR] and [13124.sup.GR] to ethidium bromide increased. Norfloxacin and ciprofloxacin resistance selection also decreased the sensitivity of 3626 and VPI to ethidium bromide, but gatifloxacin-resistant [3626.sup.GR] became more sensitive to it.

4. Discussion

We have investigated the global changes in the metabolic activities associated with resistance development to three fluoroquinolones in four different strains of C. perfringens. Fluoroquinolone resistance selection affected the strains differently in their abilities to metabolize nutrients, grow at different pH values, and tolerate different osmolytes, antimicrobial agents, and other chemicals.

Ciprofloxacin and gatifloxacin resistance selection had opposite effects on the carbohydrate metabolism of strains [3626.sup.CR] and [13124.sup.GR]. Unlike the wild type, [3626.sup.CR] grew on fructose and fructose 6-phosphate. Strain [13124.sup.GR] could not grow on sucrose and trehalose and it showed reduced growth on maltose. Downregulation of genes involved in the sucrose and trehalose-specific phosphotransferase (PTS) systems CPF1785 and CPF_0541, the maltose ABC transporter CPF_2652, and a putative maltose transporter CPF_2654 in the gatifloxacin-resistant strain [13124.sup.GR] was observed, which may have resulted in the lack of growth of [13124.sup.GR] on sucrose and trehalose and the decreased growth on maltose (Supplementary Tables S2-S3).

Fluoroquinolone resistance selection also reduced the ability of [NCTR.sup.GR] to grow in alkaline pH; it decreased the osmotic tolerance of gatifloxacin-resistant strains [13124.sup.GR] more than others (Table 2).

Bacterial adaptation response to alkaline pH and tolerance to hyperosmolarity could be related to alteration in the expression of transporter genes, in membrane permeability, or in osmoprotective substances [26, 27]. Lack of growth of strain [NCTR.sup.GR] in alkaline pH could result from more than threefold downregulation of the membrane-spanning transporter protein similar to CPE0166 of C. perfringens strain 13 in this strain. Likewise, the membrane lipoprotein TmPC precursor gene similar to CPE1580 of C. perfringens strain 13 was downregulated 4.95- fold and the nitrite transporter gene similar to CPE1442 of C. perfringens strain 13 was downregulated 4.65-fold in strain [NCTR.sup.GR], which may have reduced the osmotolerance of this strain (Supplementary Table S1). Furthermore, several transporters and ten other putative membrane proteins were downregulated at least 1.5 times in strain [13124.sup.GR] (Supplementary Tables S2 and S3). Further investigation will be needed to elucidate the roles of these genes.

The metabolism of dipeptides was also affected differently in the resistant strains (Figure 1). The lack of growth of NCTRGR with Gly-Phe and Met-Gly (Figure 1) was not related to nutritional deficiency or pH change, since [NCTR.sup.GR] could grow in media not supplemented with these chemicals, whose addition did not change the pH. Some cyclic dipeptides have been shown to make cell membranes permeable, resulting in cell lysis, with effects that are strain-specific [28, 29]. The inhibitory effect of dipeptides could result from alteration in the transport mechanism, in membrane structure, or in dipeptidase production. Microarray results showed downregulation of a gene similar to CPE1928 of C. perfringens strain 13, a probable dipeptidase gene, in [NCTR.sup.GR]. Gatifloxacin resistance selection also affected survival of [3626.sup.GR] with Gly-Phe. Ciprofloxacin-resistant mutant 3626cr, which was the only strain that grew on fructose and fructose 6-phosphate, could not grow on the medium used to assay the effect of dipeptides either with or without these compounds, indicating that it had different growth requirements from the others.

The antimicrobial susceptibility assay showed that wild type strains differed in their level of susceptibility to different antimicrobial agents, and fluoroquinolone resistance affected the strains differently. Strain [13124.sup.W], which is a clinical gangrene isolate [2], was more resistant than others to some antimicrobial agents, especially to ceftriaxone and gentamicin. In most cases, the susceptibility of fluoroquinolone-resistant strains to other antimicrobial agents decreased, but a 2-4-fold increase in resistance was also observed, including [beta]-lactams. Microarray data indicated that the expression of some [beta]-lactamase genes in the resistant strains was downregulated, although upregulation of other [beta]-lactamase genes was observed. Previously it has been shown in Salmonella enterica that susceptibilities to unrelated antibiotics are influenced by mutations in gyrase genes [9]. Also, changes in cellular permeability, decreases in efflux of antimicrobial agents because of changes in membrane proteins, and downregulation of some transporters as shown in microarrays could have contributed to alterations in susceptibility (Supplementary Tables S1-S3). Our results reflect the epidemiological studies that have conflicting accounts of the relationships between use of fluoroquinolones and isolation of bacteria that are either more susceptible to or resistant to other antimicrobial agents [12,13,15,16,18].

Substantial and opposite effects of resistance selection to norfloxacin and gatifloxacin on the ability of 13124 and NCTR to grow on ethidium bromide were observed. Microarray results showed that the expression of a multidrug-efflux transporter gene similar to CPE1604 of C. perfringens strain 13 was upregulated 11.25 times in [NCTR.sup.GR], which could have contributed to the efflux of ethidium bromide, resulting in tolerance to higher concentrations (Supplementary Table S1). Considering the decrease in the antibiotic susceptibilities of strains to other drugs, most likely this gene was not involved in their efflux. We previously showed that a transport gene similar to CPE1506 of C. perfringens strain 13 cloned into strain VPI also contributed to the efflux of ethidium bromide in the recombinant VPI strain [30].

In conclusion, fluoroquinolone resistance selection resulted in changes in various metabolic activities in different strains of C. perfringens. These changes were influenced by both the structures of the bacterial genomes and the drugs that were used. It has been shown that both the structure of the fluoroquinolone and the bacterial genotype affect the colonization efficiency of C. difficile strains in hamsters [10]. Strain-specific effects may explain some of the apparently conflicting reports on the effects of clinical use of fluoroquinolones on virulence and antimicrobial susceptibility in other species of bacteria [12, 13, 15-18]. The interaction of different fluoroquinolones with C. perfringens and other pathogenic bacteria merits further investigation.

Conflict of Interests

The authors declare that there is no conflict of interests.


The authors thank Drs. John B. Sutherland and Young-Beom Ahn for reviewing the paper and Dr. Carl E. Cerniglia for his research support. The views presented in this paper do not necessarily reflect those of the U.S. Food and Drug Administration.


[1] E. Scallan, R. M. Hoekstra, F. J. Angulo et al., "Foodborne illness acquired in the United States--Major pathogens," Emerging Infectious Diseases, vol. 17, no. 1, pp. 7-15, 2011.

[2] G. S. A. Myers, D. A. Rasko, J. K. Cheung et al., "Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens" Genome Research, vol. 16, no. 8, pp. 1031-1040, 2006.

[3] M. Rashid, A. Weintraub, and C. E. Nord, "Comparative effects of the immediate and the extended release formulations of ciprofloxacin on normal human intestinal microflora," Journal of Chemotherapy, vol. 23, no. 3, pp. 145-149, 2011.

[4] D. W. Hecht and H. M. Wexler, "In vitro susceptibility of anaerobes to quinolones in the United States," Clinical Infectious Diseases, vol. 23, no. 1, pp. S2-S8, 1996.

[5] H. M. Wexler, E. Molitoris, and S. M. Finegold, "In vitro activities of three of the newer quinolones against anaerobic bacteria," Antimicrobial Agents and Chemotherapy, vol. 36, no. 1, pp. 239-243, 1992.

[6] K. A. Kouassi, A. T. Dadie, K. F. N'Guessan, K. M. Dje, and Y. G. Loukou, "Clostridium perfringens and Clostridium difficile in cooked beef sold in Cote d'Ivoire and their antimicrobial susceptibility," Anaerobe, vol. 28, pp. 90-94, 2014.

[7] I. Brook, H. M. Wexler, and E. J. C. Goldstein, "Antianaerobic antimicrobials: spectrum and susceptibility testing," Clinical Microbiology Reviews, vol. 26, no. 3, pp. 526-546, 2013.

[8] L. R. Mesak and J. Davies, "Phenotypic changes in ciprofloxacin-resistant Staphylococcus aureus," Research in Microbiology, vol. 160, no. 10, pp. 785-791, 2009.

[9] M. A. Webber, V. Ricci, R. Whitehead et al., "Clinically relevant mutant DNA gyrase alters supercoiling, changes the transcriptome, and confers multidrug resistance," mBio, vol. 4, no. 4, Article ID e00273-13, 2013.

[10] S. T. Phillips, K. Nagaro, S. P. Sambol, S. Johnson, and D. N. Gerding, "Susceptibility of hamsters to infection by historic and epidemic BI Clostridium difficile strains during daily administration of three fluoroquinolones," Anaerobe, vol. 17, no. 4, pp. 166-169, 2011.

[11] M. J. Aldape, A. E. Packham, D. W. Nute, A. E. Bryant, and D. L. Stevens, "Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile," Journal of Medical Microbiology, vol. 62, no. 5, pp. 741-747, 2013.

[12] J. R. Johnson, C. Urban, S. J. Weissman et al., "Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-betalactamase-producing E. coli from the United States, 2000 to 2009," Antimicrobial Agents and Chemotherapy, vol. 56, no. 5, pp. 2364-2370, 2012.

[13] S. G. Weber, H. S. Gold, D. C. Hooper, A. W. Karchmer, and Y. Carmeli, "Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients," Emerging Infectious Diseases, vol. 9, no. 11, pp. 1415-1422, 2003.

[14] S. J. Drews, S. M. Poutanen, T. Mazzulli et al., "Decreased prevalence of virulence factors among ciprofloxacin-resistant uropathogenic Escherichia coli isolates," Journal of Clinical Microbiology, vol. 43, no. 8, pp. 4218-4220, 2005.

[15] J.-S. Eom, B.-Y. Hwang, J.-W. Sohn et al., "Clinical and molecular epidemiology of quinolone-resistant Escherichia coli isolated from urinary tract infection," Microbial Drug Resistance, vol. 8, no. 3, pp. 227-234, 2002.

[16] S. Ferjani, M. Saidani, S. Ennigrou, M. Hsairi, and S. Ben Redjeb, "Virulence determinants, phylogenetic groups and fluoroquinolone resistance in Escherichia coli isolated from cystitis and pyelonephritis," Pathologie Biologie, vol. 60, no. 5, pp. 270274, 2012.

[17] A. M. Giuliodori, C. O. Gualerzi, S. Soto, J. Vila, and M. M. Tavio, "Review on bacterial stress topics," Annals of the New York Academy of Sciences, vol. 1113, pp. 95-104, 2007

[18] A. Marchese, E. Coppo, R. Barbieri et al., "Characterization of fluoroquinolone-resistant Escherichia coli causing septicemic colibacillosis in calves in Italy: emergence of a multiresistant O78 clonal group," Microbial Drug Resistance, vol. 18, no. 1, pp. 94-99, 2012.

[19] F Rafii, M. Park, A. E. Bryant, S. J. Johnson, and R. D. Wagner, "Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens," Antimicrobial Agents and Chemotherapy, vol. 52, no. 3, pp. 895-900, 2008.

[20] F. Rafii, M. Park, G. G. da Costa, and L. Camacho, "Comparison of the metabolic activities of four wild-type Clostridium perfringens strains with their gatifloxacin-selected resistant mutants," Archives of Microbiology, vol. 191, no. 12, pp. 895-902, 2009.

[21] S. Park, M. Park, and F. Rafii, "Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens," BMC Microbiology, vol. 13, article 50, 2013.

[22] M. Park, J. B. Sutherland, J. N. Kim, and F. Rafii, "Effect of fluoroquinolone resistance selection on the fitness of three strains of Clostridium perfringens," Microbial Drug Resistance, vol. 19, no. 6, pp. 421-427, 2013.

[23] E. Kugelberg, S. Lofmark, B. Wretlind, and D. I. Andersson, "Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa," Journal of Antimicrobial Chemotherapy, vol. 55, no. 1, pp. 22-30, 2005.

[24] B. R. Bochner, "Global phenotypic characterization of bacteria," FEMS Microbiology Reviews, vol. 33, no. 1, pp. 191-205, 2009.

[25] F. Rafii, M. Park, and J. S. Novak, "Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones," Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 488492, 2005.

[26] E. Padan, E. Bibi, M. Ito, and T. A. Krulwich, "Alkaline pH homeostasis in bacteria: new insights," Biochimica etBiophysica Acta, vol. 1717, no. 2, pp. 67-88, 2005.

[27] T Hoffmann, A. Wensing, M. Brosius, L. Steil, U. Volker, and E. Bremer, "Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools," Journal of Bacteriology, vol. 195, no. 3, pp. 510-522, 2013.

[28] C. Prasad, "Bioactive cyclic dipeptides," Peptides, vol. 16, no. 1, pp. 151-164, 1995.

[29] S. Nishanth Kumar, C. Dileep, C. Mohandas, B. Nambisan, and J. Ca, "Cyclo (D-Tyr-D-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode," Journal of Peptide Science, vol. 20, no. 3, pp. 173-185, 2014.

[30] F. Rafii, M. Park, and R. J. Carman, "Characterization of an ATP-binding cassette from Clostridium perfringens with homology to an ABC transporter from Clostridium hathewayi," Anaerobe, vol. 15, no. 4, pp. 116-121, 2009.

Miseon Park and Fatemeh Rafii

Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA

Correspondence should be addressed to Fatemeh Rafii;

Received 8 August 2014; Revised 7 November 2014; Accepted 10 November 2014;

Published 21 December 2014

Academic Editor: Joseph Falkinham

Table 1: Wild types and fluoroquinolone-resistant mutants of
C. perfringens used in this study with stable mutations in
gyrA and parC resulting in amino acid conversion.

C. perfringens   Wild    Norfloxacin-         Ciprofloxacin-
strain           type    [resistant.sup.NR]   [resistant.sup.CR]

VPI              --      D87Y gyrA,           D87Y gyrA, D87Y parC
                         V196F parC

NCTR             --      D87Y gyrA            D87Y gyrA

3626             --      G81C gyrA,           D87Y gyrA, D93Y parC
                         D87Y parC

13124            --      A119E                D87Y gyrA, S89I gyrA

C. perfringens
strain           Gatifloxacin-[resistant.sup.GR]

VPI              G81CgyrA, D93Y and D502YparC

NCTR             G81C and D87Y gyrA

3626             G81C and D87Y gyrA, D93Y and A131S parC

13124            G81C and D93Y gyrA, S89I parC

Table 2: Effect of fluoroquinolone resistance selection on the growth
of C. perfringens strains (shown by [OD.sub.750]) with different
concentrations of sodium chloride, urea, sodium lactate,
and sodium nitrite (a).

C. perfringens                                 Norfloxacin-
strain              Compound       Wild type     resistant

VPI                                   1%            1%
nctr             Sodium chloride      2%            2%
3626                                  2%            2%
13124                                6.5%          4% *

VPI                                   6%            6%
nctr                  Urea            6%            4%
3626                                  3%            4%
13124                                 7%            6%

VPI                                   1%            1%
nctr             Sodium lactate       2%            1%
3626                                  1%            2%
13124                                 6%           4% *

VPI                                  60 mM        40 mM *
nctr             Sodium nitrite      60 mM         40 mM
3626                                 20 mM         40 mM
13124                                60 mM         60 mM

C. perfringens   Ciprofloxacin-   Gatifloxacin-
strain             resistant        resistant

VPI                 4% * (b)           2%
nctr                   2%              1%
3626                   2%              2%
13124                  6%             2% *

VPI                    4%             4% *
nctr                   3%             2% *
3626                   4%              2%
13124              7% ** (c)          6% *

VPI                   2% *             2%
nctr                 2% **             2%
3626                   2%              2%
13124                 5% *            3% **

VPI                 40 mM *          60 mM
nctr                60 mM **         20 mM *
3626                40 mM            20 mM
13124               60 mM            40 mM *

(a) The percent (%) or mM value indicates the concentration in
which the strain would grow. (b) * Statistically significant
differences are marked by asterisks (P < 0.05).(c) ** Better
growth was observed for the mutant than for the wild type
(P < 0.05) at the concentrations marked by double asterisks.

Table 3: Comparison of the effect of fluoroquinolone resistance
selection on the MIC of various antimicrobial agents and ethidium
bromide. Ethidium bromide concentrations in the plates were
0, 2, 4, 5, 6, 8, and 10 [micro]g/mL.

                  MIC ([micro]g/mL), as shown by Etest for
                   antimicrobial agents or agar dilution
                            for ethidium bromide
C. perfringens
strains          Erythromycin   Amoxicillin   Ceftriaxone

  W                   2             0.1            1
  NR                 1.5         0.19 *(a)       0.016
  CR                 0.5            0.1           4 *
  GR                  1           0.25 *         0.016
  W                   2            0.25           64
  NR                 0.75          0.125          16
  CR                 1.5          0.75 *          32
  GR                  1             2 *           12
  W                   2            0.13            4
  NR                 0.75           0.2          0.016
  CR                  1             0.2            3
  GR                 0.75           0.1            1
  W                  1.5           0.25           16
  NR                  3            0.38           16
  CR                 1.5           1.5 *          16
  GR                 0.75          0.5 *         64 *

                  MIC ([micro]g/mL), as shown by Etest for
                   antimicrobial agents or agar dilution
                            for ethidium bromide
C. perfringens
strains          Gentamicin   Chloramphenicol   Cefoxitin

  W                 128              3              1
  NR                 48             8 *           0.25
  CR                 12              2              1
  GR                 64             6 *            2 *
  W                 512              8              4
  NR                 64              3             1.5
  CR                128              8              2
  GR                256              3              4
  W                 128              4            0.38
  NR                128              3           0.75 *
  CR                 48              4             0.5
  GR                 32              3             1 *
  W                 384              3            0.75
  NR                 64              4            1.5 *
  CR                256              3             3 *
  GR                256             6 *            2 *

                 MIC ([micro]g/mL), as shown by Etest for
                  antimicrobial agents or agar dilution
                           for ethidium bromide
C. perfringens
strains           Metronidazole     Ethidium bromide

  W                    1.5                 6
  NR                   3 *              10 **(b)
  CR                   1.5               10 **
  GR                   3 *                 5
  W                     3                  4
  NR                   1.5                 2
  CR                   4 *                 4
  GR                   1.5                 2
  W                    1.5                 2
  NR                  0.75               10 **
  CR                    1                10 **
  GR                   1.5               10 **
  W                     3                  6
  NR                    3                 8 **
  CR                    2                10 **
  GR                    3                 8 **

(a) The * indicates that fluoroquinolone resistance selection
resulted in a decrease in susceptibility; W, NR, CR, and GR
refer to wild type, norfloxacin-resistant, ciprofloxacin-resistant,
and gatifloxacin-resistant, respectively. (b)** Resistant strains
grew on the plates containing 10 [micro]g/mL of ethidium bromide,
so the MIC of the ethidium bromide was greater than
10 [micro]g/mL for these strains.
COPYRIGHT 2014 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Park, Miseon; Rafii, Fatemeh
Publication:International Journal of Microbiology
Article Type:Report
Date:Jan 1, 2014
Previous Article:Evaluation of phytase producing bacteria for their plant growth promoting activities.
Next Article:Examination of the anaerobic growth of campylobacter concisus strains.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters