Printer Friendly

Geometry of warped product submanifolds: a survey.

REFERENCES

[1] E. Abedi, G. Haghighatdoost, M. Ilmakchi and Z. Nazari: Contact 3-structure QR-warped product submanifold in Sasakian space form,Turkish J. Math., 37(2013), 195-201.

[2] I. Agricola: The Srni lectures on non-integrable geometries with torsion, Arch. Math. (Brno), 42(2006), suppl., 5-84.

[3] R. Al-Ghefari, F. R. Al-Solamy and M. H, Shahid: Contact CR-warped product submanifolds in generalized Sasakian space forms,Balkan J.Geom. Appl., 11(2006), No. 2, 1-10.

[4] N. S. Al-Luhaibi, F. R. Al-Solamy and V. A. Khan: CR-warped product submanifolds of nearly Kaehler manifolds, J. Korean Math. Soc., 46(2009), No. 5, 979-995.

[5] F. R. Al-Solamy: Contact CR-warped product submanifolds in almost C([alpha])-manifolds with constant [theta]-sectional curvature, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 52(2006), No. 2, 423-432.

[6] F. R. Al-Solamy and M. A. Khan: Semi-invariant warped product submanifolds of almost contact manifolds, J. Inequal. Appl., 2012, 2012:127, 12 pages.

[7] F.R. Al-Solamy and M. A. Khan: Semi-slant warped product submanifolds of a Kenmotsu manifold, Math. Prob. Engin. 2012, Article ID 708191, 10 pages.

[8] F. R. Al-Solamy and M. A. Khan: Warped product submanifolds of Riemannian product manifolds, Abstract Appl. Anal. 2012, Article ID 724898, 12 pages.

[9] F. R. Al-Solamy and V. A. Khan, Warped product semi-slant submanifolds of a Sasakian manifold, Serdica Math. J. 34 (2008), no. 3, 597-606.

[10] F. R. Al-Solamy and V. A. Khan: Non-existence of non-trivial generic warped product in Kaehler manifolds, Note Mat., 28(2008), No. 2, 63-68.

[11] K. Arslan, R. Ezentas, I. Mihai and C. Murathan: Contact CR-warped product submanifolds in Ken motsu space forms,J.KoreanMath.Soc.,42(2005), No. 5, 1101-1110.

[12] M. Atceken: Warped product semi-slant submanifolds in locally Riemannian product manifolds, Bull. Aust. Math. Soc., 77(2008), No. 2, 177-186.

[13] M. Atceken: A condition for warped product semi-invariant submanifolds to be Riemannian product semi-invariant submanifolds in locally Riemannian product manifolds,TurkishJ.Math.,32(2008), No. 3, 349-362.

[14] M. Atceken: Geometry of warped product semi-invariant submanifolds of a locally Riemannian product manifold, Serdica Math. J., 35(2009), No. 3, 273-286.

[15] M. Atceken: Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds, Math. Probl. Eng., 2009, Art. ID 621625, 16 pp.

[16] M. Atceken: Warped product semi-slant submanifolds in Kenmotsu manifolds,Turkish J. Math., 34(2010), No. 3, 425-432.

[17] M. Atcceken: Warped product semi-invariant submanifolds in almost paracontact metric manifolds, Math. Morav., 14(2010), 15-21.

[18] M. Atcceken: Contact CR-warped product submanifolds in cosymplectic space forms, Collect. Math., 62(2011), No. 1, 17-26.

[19] M. Atcceken: Warped product semi-invariant submanifolds in locally decomposable Riemannian manifolds, Hacet. J. Math. Stat., 40(2011), No. 3, 401-407.

[20] A. Bejancu: Geometry of CR-Submanifolds, D. Reidel Publ. Co., 1986.

[21] R. L. Bishop and B. O'Neill: Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1-49.

[22] D. E. Blair:Riemannian geometry ofcontact and symplectic manifolds, 2nd edition, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2010.

[23] J. Bolton, C. Rodriguez Montealegre and L. Vrancken: Characterizing warped-product Lagrangian immersions in complex projective space, Proc. Edinb. Math. Soc., 52(2009), No. 2, 273-286.

[24] V. Bonanzinga and K. Matsumoto: Warped product CR-submanifolds in locally conformal Kaehler manifolds, Period. Math. Hungar., 48(2004), No. 1-2, 207-221.

[25] V. Bonanzinga and K. Matsumoto: On doubly warped product CR-submanifolds in a locally conformal Kaehler manifold,Tensor(N.S.),69(2008), 76-82.

[26] J.-B. Butruille: Classification des varietes approximativement kahleriennes homogenes, Ann. Global Anal. Geom., 27(2005), No. 3, 201-225.

[27] B. Y. Chen: Geometry of Submanifolds, M. Dekker, New York, 1973.

[28] B. Y. Chen: Some CR-submanifolds of a Kaehler manifold. I, J. Differential Geometry, 16(1981), No. 2, 305-322.

[29] B. Y. Chen: Some CR-submanifolds of a Kaehler manifold. II, J. Differential Geometry, 16(1981), No. 3, 493-509.

[30] B. Y. Chen: Geometry of Submanifolds and Its Applications, Science University of Tokyo, 1981.

[31] B. Y. Chen: Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60(1993), No. 6, 568-578.

[32] B. Y. Chen: Jacobi's elliptic functions and Lagrangian immersions, Proc. Royal Soc. Edinburgh Sect. AMath., 126(1996), No. 4, 687-704.

[33] B. Y. Chen: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J., 49(1997), No. 2, 277-297.

[34] B. Y. Chen: Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math., 99(1997), 69-108.

[35] B. Y. Chen: Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math., 26(2000), No. 1, 105-127.

[36] B. Y. Chen: Twisted product CR-submanifolds in Kaehler manifolds, Tamsui Oxford J. Math. Sci., 16(2000), No. 2, 105-121.

[37] B. Y. Chen: Riemannian Submanifolds, Handbook of Differential Geometry, Vol. I (2000) (eds. F. Dillen and L. Verstraelen), North Holland Publ., pp. 187-418.

[38] B. Y. Chen: Complex extensors, warped products and Lagrangian immersions, Soochow J. Math., 26(2000), No. 1, 1-18.

[39] B. Y. Chen: Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math., 133(2001), No. 3, 177-195.

[40] B. Y. Chen: Geometry of warped product CR-submanifolds in Kaehler manifolds, II, Monatsh. Math., 134(2001), No. 2, 103-119.

[41] B. Y. Chen: Riemannian geometry of Lagrangian submanifolds,TaiwaneseJ.Math.,5(2001), No. 4, 681-723.

[42] B. Y. Chen: On isometric minimal immersions from warped products into real space forms, Proc. Edinburgh Math. Soc., 45(2002), No. 3, 579-587.

[43] B. Y. Chen: Geometry of warped products as Riemannian submanifolds and related problems, Soochow J. Math., 28(2002), No. 2, 125-156.

[44] B. Y. Chen: Real hypersurfaces in complex space forms which are warped products, Hokkaido Math. J., 31(2002), No. 2, 363-383.

[45] B. Y. Chen: Non-immersion theorems for warped products in complex hyperbolic spaces, Proc. Japan Acad.Ser.AMath.Sci.,78(2002), No. 6, 96-100.

[46] B. Y. Chen: Another general inequality for CR-warped products in complex space forms, Hokkaido Math. J., 32(2003), No. 2, 415-444.

[47] B. Y. Chen: A general optimal inequality for warped products in complex projective spaces and its applications, Proc. Japan Acad. Ser. A Math. Sci., 79(2003), No. 4, 89-94.

[48] B. Y. Chen: Warped products in real space forms, Rocky Mountain J. Math., 34(2004), No. 2, 551-563.

[49] B. Y. Chen: CR-warped products in complex projective spaces with compact holomorphic factor, Monatsh. Math., 141(2004), No. 3, 177-186.

[50] B. Y. Chen: A general optimal inequality for arbitrary Riemannian submanifolds, J. Inequal. Pure Appl. Math., 6(2005), No. 3, Article 77, 10 pp.

[51] B. Y. Chen: On warped product immersions,J.Geom.,82(2005), No. 1-2, 36-49.

[52] B. Y. Chen: Geometry of affine warped product hypersurfaces, Results Math., 48(2005), No. 1-2, 9-28.

[53] B. Y. Chen: Realization of Robertson-Walker space-times as affine hypersurfaces, J. Phys., A, 40(2007), No. 15, 4241-4250.

[54] B. Y. Chen:Pseudo-Riemannian geometry, S-invariants and applications, World Scientific, Hackensack, NJ, 2011.

[55] B. Y. Chen: An optimal inequality for CR-warped products in complex space forms involving CR S-invariant, Internat. J. Math., 23(2012), No. 3, 1250045, 17 pp.

[56] B. Y. Chen and F. Dillen: Warped product decompositions of real space forms and Hamiltonian stationary Lagrangian submanifolds, Nonlinear Anal., 69(2008), No. 10, 3462-3494.

[57] B. Y. Chen and F. Dillen: Optimal inequalities for multiply warped product submanifolds, Int. Electron. J. Geom., 1(2008), No. 1, 1-11; Erratum, ibid 4(2011), No. 1, 138.

[58] B. Y. Chen and W. E. Kuan: The Segre imbedding and its converse, Ann. Fac. Sci. Toulouse, Math., 7(1985), No. 1, 1-28.

[59] B. Y. Chen and S. Maeda: Real hypersurfaces in nonflat complex space forms are irreducible, Osaka J. Math., 40(2003), No. 1, 121-138.

[60] B. Y. Chen and M.-I. Munteanu: Geometry of PR-warped products in para-Kahler manifolds, Taiwanese J. Math., 16(2012), No. 4, 1293-1327.

[61] B. Y. Chen and K. Ogiue: On totally real submanifolds, Trans. Amer. Math. Soc., 193(1974), 257-266.

[62] B. Y. Chen and K. Ogiue: Two theorems on Kaehler manifolds, Michigan Math. J., 21(1974), No. 3, 225-229.

[63] B. Y. Chen and L. Vrancken: Lagrangian submanifolds satisfying a basic equality, Math. Proc. Camb. Phil. Soc., 120(1996), No. 2, 291-307.

[64] B. Y. Chen and S. W. Wei: Growth estimates for warping functions and their geometric applications, Glasg. Math. J., 51(2009), No. 3, 579-592.

[65] M. Dajczer and L. A. Florit: On Chen's basic equality, Illinois J. Math., 42(1998), No. 1, 97-106.

[66] M. Dajczer and R. Tojeiro: Isometric immersions in codimension two of warped products into space forms, Illinois J. Math., 48(2004), No. 3, 711-746.

[67] M. Dajczer and T. Vlachos: Isometric immersions of warped products, arXiv:1108.3905, 2012.

[68] F. Dillen, K. Nomizu and L. Verstraelen: Conjugate connections and Radons theorem in affine differential geometry, Monatsh. Math., 109(1990), No. 3, 221-235.

[69] F. Dillen and L. Vrancken: Calabi-type composition of affine spheres, Differential Geom. Appl., 4(1994), No. 4, 303-328.

[70] M. K. Dwivedi and J.-S. Kim: Chen-Tripathi inequality for warped product submanifolds of S-space forms, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 58(2012), No. 1, 195-208.

[71] N. Ejiri: Some compact hypersurfaces of constant scalar curvature in a sphere,J.Geom.,19(1982), No. 2, 197-199.

[72] T. Friedrich and R. Grunewald: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 3(1985), No. 3, 265-273.

[73] A. Gray: Nearly Kahler manifolds, J. Differential Geometry, 4(1970), No. 3, 283-309.

[74] M. Gromov: A topological technique for the construction of solutions of differential equations and inequalities, Intern. Congr. Math. (Nice 1970), 2(1971), 221-225.

[75] S. M. K. Haider, M. Thakur and Advin: Warped product skew CR-submanifolds of a cosymplectic manifold, Lobachevskii J. Math., 33(2012), No. 3, 262-273.

[76] I. Hasegawa and I. Mihai: Contact CR-warped product submanifolds in Sasakian manifolds, Geom. Dedicata, 102(2003), No. 1, 143-150.

[77] N. Jamal, K. A. Khan and V. A. Khan: Generic warped product submanifolds of locally conformal Kaahler manifolds, Acta Math. Sci. Ser. B Engl. Ed., 30(2010), No. 5, 1457-1468.

[78] K. A. Khan, S. Ali and N. Jamal: Generic warped product submanifolds in a Kaehler manifold, Filomat, 22(2008), No. 1, 139-144.

[79] K. A. Khan, V. A. Khan and S. Uddin: Warped product contact CR-submanifolds of trans-Sasakian manifolds, Filomat, 21(2007), No. 2, 55-62.

[80] K. A. Khan, V. A. Khan and S. Uddin: Warped product submanifolds of cosymplectic manifolds, Balkan J. Geom. Appl., 13(2008), No. 1, 55-65.

[81] M. A. Khan and K. S. Chahal: Warped product pseudo-slant submanifold of trans-Sasakian manifolds, Thai J. Math., 8(2010), No. 2, 263-273.

[82] M. A. Khan, S. Uddin and R. Sachdeva: Semi-invariant warped product submanifolds of cosymplectic manifolds, J. Inequal. Appl., 2012, 2012: 19, 12 pp.

[83] V. A. Khan and N. Jamal: CR-warped product submanifolds of locally conformal Kaehler manifolds, Toyama Math. J., 33(2010), 1-19

[84] V. A. Khan, N. Jamal and A. Al-Kathiri: A note on warped products submanifolds of nearly Kaehler manifolds, Toyama Math. J., 32(2009), 59-73.

[85] V. A. Khan and K. A. Khan: Contact CR-warped product submanifolds of Kenmotsu manifolds, Thai J. Math., 6(2008), No. 1, 139-145.

[86] V. A. Khan and K. A. Khan: Generic warped product submanifolds in nearly Kaehler manifolds, Beitrage Algebra Geom., 50(2009), No. 2, 337-352.

[87] V. A. Khan, K. A. Khan and S. Uddin: Warped product CR-submanifolds in nearly Kaehler manifolds, SUT J. Math., 43(2007), No. 2, 201-213.

[88] V. A. Khan, K. A. Khan and S. Uddin: Contact CR-warped product submanifolds of Kenmotsu manifolds, Thai J. Math., 6(2008), No. 2, 307-314.

[89] V. A. Khan, K. A. Khan and S. Uddin: CR-warped product submanifolds in a Kaehler manifold, Southeast Asian Bull. Math., 33(2009), No. 5, 865-874.

[90] V. A. Khan, K. A. Khan and S. Uddin: A note on warped product submanifolds of Kenmotsu manifolds, Math. Slovaca, 61(2011), No. 1, 79-92.

[91] Y. H. Kim and D. W. Yoon: Inequality for totally real warped products in locally conformal Kaehler space forms.,KyungpookMath.J.,44(2004), No. 4, 585-592.

[92] G. I. Kruchkovic: On semi-reducible Riemannian spaces (in Russian), Dokl. Akad. Nauk SSSR, 115(1957), 862-865.

[93] F. Malek and V. Nejadakbary: Warped product submanifold in generalized Sasakian space form, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 27(2011), No. 2, 325-338.

[94] K. Matsumoto and V. Bonanzinga: Doubly warped product CR-submanifolds in a locally conformal Kaehler space form II, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 53(2007), suppl. 1, 235-248.

[95] K. Matsumoto and I. Mihai: Warped product submanifolds in Sasakian space forms,SUTJ.Math., 38(2002), No. 2, 135-144.

[96] M. Meumertzheim, H. Reckziegel and M. Schaaf: Decomposition of twisted and warped product nets, Results Math., 36(1999), No. 3-4, 297-312.

[97] A. Mihai: Warped product submanifolds in complex space forms, Acta Sci. Math. (Szeged), 70(2004), No. 1-2, 419-427.

[98] A. Mihai: Warped product submanifolds in quaternion space forms, Rev. Roumaine Math. Pures Appl.. 50(2005), No. 3, 283-291.

[99] A. Mihai: Warped product submanifolds in quaternion space forms, Acta Univ. Apulensis Math. Inform., 10(2005), 31-38.

[100] A. Mihai: Warped product submanifolds in generalized complex space forms, Acta Math. Acad. Paedagog. Nyhzi. (N.S.), 21(2005), No. 1, 79-87.

[101] I. Mihai: Contact CR-warped product submanifolds in Sasakian space forms, Geom. Dedicata, 109(2004), No. 1, 165-173.

[102] H. Mirandola and F. Vitorio: Multiple warped product metrics into quadrics, arXiv:1210.1812v1, 2012.

[103] J. D. Moore: Isometric immersions of riemannian products, J. Diff. Geom., 5(1971), No. 1-2, 159-168.

[104] M.-I. Munteanu: Warped product contact CR-submanifolds of Sasakian space forms, Publ. Math. Debrecen, 66(2005), No. 1-2, 75-120.

[105] M.-I. Munteanu: A note on doubly warped product contact CR-submanifolds in trans-Sasakian manifolds, Acta Math. Hungar., 116(2007), No. 1-2, 121-126.

[106] M.-I. Munteanu: Doubly warped product CR-submanifolds in locally conformal Kaahler manifolds, Monatsh. Math., 150(2007), No. 4, 333-342.

[107] C. Murathan, K. Arslan, R. Ezentas and I. Mihai: Warped product submanifolds in Kenmotsu space forms, Taiwanese J. Math., 10(2006), No. 6, 1431-1441.

[108] A. Mustafa, S. Uddin, V. A. Khan and B. R. Wong: Contact CR-warped product submanifolds of nearly trans-Sasakian manifolds,Taiwan.J.Math.,17(2013) (in press).

[109] P.-A. Nagy: Nearly Kaahler geometry and Riemannian foliations, Asian J. Math., 6(2002), No. 3, 481-504.

[110] S. Nolker: Isometric immersions of warped products, Differential Geom. Appl., 6(1996), No. 1, 1-30.

[111] K. Nomizu and U. Pinkall: On the geometry of affine immersions, Math. Z., 195(1987), No. 2, 165-178.

[112] K. Nomizu and T. Sasaki: Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Tracts in Math., No. 111, Cambridge University Press, 1994.

[113] A. Olteanu: CR-doubly warped product submanifolds in Sasakian space forms Bull. Transilv. Univ. Brasov, Ser. III, 1(50)(2008), 269-277.

[114] A. Olteanu, CR-doubly warped product submanifolds in Sasakian space forms, Bull. Transilv. Univ. Brasov, Ser. III, 1(50)(2008), 269-277.

[115] A. Olteanu: Contact CR-doubly warped product submanifolds in Kenmotsu space forms, J. Inequal. Pure Appl. Math., 10(2009), No. 4, Article 119, 7 pp.

[116] A. Olteanu: Legendrian warped product submanifolds in generalized Sasakian space forms, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 25(2009), No. 1, 137-144.

[117] A. Olteanu: Multiply warped product submanifolds in Sasakian space forms, Int. Electron. J. Geom., 3(2010), No. 1, 1-10.

[118] A. Olteanu: A general inequality for doubly warped product submanifolds, Math. J. Okayama Univ., 52(2010), 133-142.

[119] B. O'Neill: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

[120] A. R. Palma: Pseudo-slant warped products in trans-Sasakian manifolds, Bull. Transilv. Univ. Brasov, Ser. B (N.S.), 14(49)(2007), suppl., 235-240.

[121] S. Y. Perktas, E. Kilic and S. Keles: Warped product submanifolds of Lorentzian paracosymplectic manifolds,Arab.J.Math.,1(2012), No. 3, 377-393.

[122] P. W. Rao: Totally real warped product submanifolds in generalized complex space forms, Int. J. Contemp. Math. Sciences, 5(2010), No. 52, 2577-2586.

[123] C. Rodriguez Montealegre and L. Vrancken: Warped product minimal Lagrangian immersions in complex projective space, Results Math., 56(2009), 405-420.

[124] B. Sahin: Warped product lightlike submanifolds, Sarajevo J. Math., 1(14)(2005), No. 2, 251-260.

[125] B. Sahin: Nonexistence of warped product semi-slant submanifolds of Kaehler manifolds, Geom. Dedicata, 117(2006), 195-202.

[126] B. Sahin: Warped product semi-invariant submanifolds of a locally product Riemannian manifold, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 49(97)(2006), No. 4, 383-394.

[127] B. Sahin: Warped product semi-slant submanifolds of a locally product Riemannian manifold, Studia Sci. Math. Hungar., 46(2009), No. 2, 169-184.

[128] B. Sahin: Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Polon. Math., 95(2009), No. 3, 207-226.

[129] B. Sahin: Skew CR-warped products of Kaehler manifolds, Math. Commun., 15(2010), No. 1, 189-204.

[130] B. Sahin and R. Guanes: CR-warped product submanifolds of nearly Kaehler manifolds, Beitraage Algebra Geom., 49(2008), No. 2, 383-397.

[131] T. Sasahara: On Chen invariant of CR-submanifolds in a complex hyperbolic space, Tsukuba J. Math., 26(2002), No. 1, 119-132.

[132] S. S. Shukla and P. K. Chaubey: On totally real warped products in locally conformal almost cosymplectic manifolds, Ultra Sci. Phys. Sci., 19(2007), No. 3, 617-622.

[133] S. S. Shukla and S. K. Tiwari: C-totally real warped product submanifolds in S-space forms, Aligarh Bull. Math., 27(2008), No. 2, 95-100.

[134] S. S. Shukla and S. K. Tiwari: Contact CR-warped product submanifolds in locally conformal almost cosymplectic manifolds, Bull. Calcutta Math. Soc., 102(2010), No. 2, 121-128.

[135] K. Singh, S. S. Bhatia: Warped product contact CR-submanifolds of globally framed f-manifolds with Lorentz metric, arXiv:1204.6125, 2012.

[136] S. K. Srivastava: On warped product submanifolds of Kenmotsu manifolds, arXiv:1206.4416, 2012.

[137] B. Suceava: The Chen invariants of warped products of hyperbolic planes and their applications to immersibility problems, Tsukuba J. Math., 25(2001), No. 2, 311-320.

[138] S. Sular and C. Ozgur: Doubly warped product submanifolds of ([kappa], [mu])-contact metric manifolds, Ann. Polon. Math., 100(2011), No. 3, 223-236.

[139] S. Sular and C. Ozgur: Contact CR-warped product submanifolds in generalized Sasakian space forms, Turk. J. Math., 36(2012), No. 3, 485-497.

[140] S. Tachibana: On almost-analytic vectors in certain almost-Hermitian manifolds, Tohoku Math. J., 11(1959), No. 2, 351-363.

[141] M. M. Tripathi: C-totally real warped product submanifolds,An.Sctiinct. Univ. Al. I. Cuza Iasci. Mat. (N.S.), 58(2012), No. 2, 417-436.

[142] S. Uddin: Warped product CR-submanifolds of LP-cosymplectic manifolds, Filomat, 24(2010), No. 1, 87-95.

[143] S. Uddin: Warped product CR-submanifolds in Lorentzian para Sasakian manifolds, Serdica Math. J., 36(2010), No. 3, 237-246.

[144] S. Uddin: CR-warped product submanifolds of Lorentzian manifolds,Math.Morav.,14(2010), No. 1, 129-136.

[145] S. Uddin: On doubly warped and doubly twisted product submanifolds, Int. Electron. J. Geom., 3(2010), No. 1, 35-39.

[146] S. Uddin and A. Y. M. Chi: Warped product pseudo-slant submanifolds of nearly Kaehler manifolds, An. Stiint. Univ. "Ovidius" Constancta, Ser. Mat., 19(2011), No. 3, 195-204.

[147] S. Uddin and A. Y. M. Chi: Warped product CR-submanifolds of cosymplectic manifolds, Ric. Mat., 60(2011), No. 1, 143-149.

[148] S. Uddin and K. A. Khan: Warped product semi-slant submanifolds of trans-Sasakian manifolds, Differ. Geom. Dyn. Syst., 12(2010), 260-270.

[149] S. Uddin and K. A. Khan: Warped product CR-submanifolds of cosymplectic manifolds, Ric. Mat., 60(2011), No. 1, 143-149.

[150] S. Uddin, V. A. Khan and H. H. Khan: Some results on warped product submanifolds of a Sasakian manifold,Int.J.Math.Math.Sci.,2010, Art. ID 743074, 9 pp.

[151] S. Uddin, V. A. Khan and K. A. Khan: A note on warped product submanifolds of cosymplectic manifolds, Filomat, 24(2010), No. 3, 95-102.

[152] S. Uddin, C. Ozel and K. A. Khan: Warped product CR-submanifolds of Lorentzian [beta]-Kenmotsu manifolds, Publi Inst. Math., 92(106)(2012), 157-163.

[153] S. Uddin, B. R. Wong and A. A. Mustafa: Warped product pseudo-slant submanifolds of a nearly cosymplectic manifold, Abstrac Appl. Anal., 2012, Article ID 420890, 13 pages.

[154] G.-E. Vilcu: On Chen invariants and inequalities in quaternionic geometry, J. Inequal. Appl., 2013, 2013:66.

[155] J. A. Wolf and A. Gray: Homogeneous spaces defined by Lie group automorphisms I,J. Diff. Geom., 2(1968), No. 1, 77-114.

[156] D. W. Yoon: Some inequalities for warped products in cosymplectic space forms, Differ. Geom. Dyn. Syst., 6(2004), 51-58.

[157] D. W. Yoon, K. S. Cho and S. G. Han: Some inequalities for warped products in locally conformal almost cosymplectic manifolds, Note Mat., 23(2004/05), No. 1, 51-60.

Received: December 10, 2012. Revised: April 10, 2013.

2010 Mathematics Subject Classification: 53C40, 53C42, 53C50.

Michigan State University

Department of Mathematics

619 Red Cedar Road, East Lansing, Michigan 48824-1027, U.S.A.

E-mail address: bychen@math.msu.edu
COPYRIGHT 2013 Fair Partners Team for the Promotion of Science
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Chen, Bang-yen
Publication:Journal of Advanced Mathematical Studies
Article Type:Report
Geographic Code:1USA
Date:Jul 1, 2013
Words:3481
Previous Article:Coupled fixed points in 0-complete ordered partial metric spaces.
Next Article:A unique tripled common fixed point theorem for four mappings in partial metric spaces.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters