Printer Friendly

Genetic diversity of Maghrebian Hottentotta (Scorpiones: Buthidae) scorpions based on CO1: new insights on the genus phylogeny and distribution.

INTRODUCTION

The scorpion genus Hottentotta Birula, 1908 is a widespread and diverse genus. Placed in the Buthidae C.L. Koch, 1837, the largest scorpion family, it comprises about 35 species that are found across Africa, the Arabian Peninsula and in Asia as far east as India (Kovarik 2007). The position of the genus Hottentotta relative to other buthids has not been firmly resolved. Taxonomic relations with the genus Mesobuthus Vachon, 1950 remain uncertain based on morphological data (Fet & Lowe 2000). To date the only study that tried to resolve the phylogeny of the Buthidae using DNA sequence data placed Hottentotta as the sister taxon to Buthacus Birula, 1908 (Fet et al. 2003). It should be noted, however, that the latter study only employed a short fragment of the rapidly evolving 16S rRNA gene to resolve the relatively deep splits in the family Buthidae.

The species diversity within the Hottentotta genus has been grouped in three lineages: the African, the Saharo-Sindian and the Indian. These lineages have been proposed based on morphological data alone (Birula 1914) and their relationships remain largely unresolved. The Maghreb representatives of this genus are placed in the Saharo-Sindian lineage, whose closest relatives can be found only in Egypt. The Maghreb Hottentotta have long been classified as a single species, Hottentotta franzwerneri (Birula, 1914) with two accepted subspecies with disjunct distributions: H. f. franzwerneri (Birula, 1914) and H. f. gentili (Pallary, 1924) (Fet & Lowe 2000). In 2007, Kovarik produced the most comprehensive revision to date of the genus Hottentotta. In this work the author elevated H. gentili (Pallary, 1924) to species status, stressing that the differences found in leg coloration, yellow in H. franzwerneri and black in H. gentili, were enough to make such a taxonomic change. Besides this clear morphological difference, the only other difference found between the two species was the presence of slight sexual dimorphism in the metasoma of H. franzwerneri, not observed in H. gentili. In his review of the genus, Kovarik (2007) also used colour characters to separate other groups of species.

Little is known about both species' ecology, although it is clear that H. gentili has a much wider distribution, approximately three times that of H. franzwerneri. As a result H. gentili can be found over a much larger altitudinal range, and thus in different climatic conditions, ranging from the partially snow-covered mountains of the High and Anti Atlas down to the Saharan plains. In comparison, H. franzwerneri is found on the lower Ksour Mountains of the Saharan Atlas Range and in the south-projecting plateaux, areas dominated by a Saharan climate. Both species, even if occurring in dry areas, are associated with more humid microhabitat conditions (Vachon 1952). This ecological requirement brings then into close contact with human settlements. Disregarded until recently as a potential threat, H. gentili was found as an important cause of scorpion envenomation in the Moroccan southwest, being responsible for several deaths in the region (Touloun et al. 2001). To our knowledge, no data regarding the specific toxicity or composition of H. franzwerneri venom have been published. Given their medical importance, understanding the distribution of the genus's diversity in the region is important, because the correct identification of scorpion species is essential to the treatment of envenomation (e.g., Touloun et al. 2001).

The Maghreb region is highly biogeographically diverse, and cryptic diversity has recently been uncovered in both the Maghreb vertebrates (e.g., Lima et al. 2009) and the scorpion fauna (Gantenbein & Largiader 2003). The aim of this study is therefore to assess genetic diversity of Hottentotta specimens from Morocco using cytochrome oxidase 1 (CO1) mtDNA sequences, the gene used in barcoding studies (e.g., Hebert et al. 2003). Our sequence data show a strikingly different picture of the Maghrebian Hottentotta taxa to that found using morphological data alone.

MATERIAL AND METHODS

Information and geographic location of the specimens, all captured in Morocco, are given in Table 1 and Fig. 1. All specimens were examined morphologically, and identified to species level following Vachon (1952) and Kovarik (2007). All specimens are deposited in the collection of CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Universidade do Porto, Vairao, Vila do Conde, Portugal.

For the genetic analyses, whole genomic DNA was extracted from preserved (ethanol 96 %) muscle tissue (leg or metasoma fragment) using a standard high-salt protocol (Sambrook et al. 1989). A fragment of the CO1 gene was amplified by polymerase chain reaction (PCR) using the primers LCO1490 and HCO2198 from Folmer et al. (1994).

The PCR conditions (25 [micro]l reactions) were as follows: each reaction contained 2.5 [micro]l 10x Invitrogen PCR Buffer, 0.5 [micro]l 10 mM of each primer, 1.5 [micro]l 50 mM Mg[Cl.sub.2], 0.5 [micro]l 10 mM dNTP's, 0.1 [micro]l Invitrogen Taq DNA Polymerase and approximately 100 ng per [micro]l DNA template. The cycle parameters were: initial denaturation at 94 [degrees]C for 3 min, denaturation at 94 [degrees]C (30 s), annealing at 52 [degrees]C (45 s) and extension at 72 [degrees]C (45 s) repeated for 35 cycles and a final extension at 72 [degrees]C for 5 min. Amplified DNA templates were enzymatically purified and sequenced using the ABI PRISM BigDye Terminator protocols. The sequencing primers were the same as those used in the PCRs. Sequences were read on an ABI-310.

[FIGURE 1 OMITTED]

Sequences of seven Buthidae taxa, Androctonus australis (L., 1758), A. mauritanicus (Pocock, 1902), Buthus sp., Centruroides vittatus (Say, 1821), Mesobuthus eupeus (C.L. Koch, 1839), Tityus nematochirus Mello-Leitao, 1940, Zabiusfuscus (Thorell, 1876) and one Scorpionidae taxon: Scorpio fuscus (Ehrenberg, 1829), were used as hierarchical out-groups.

Chromatograms were checked by eye using ChromasPro 1.41 (technelysium.com.au) and the sequences were subsequently aligned using ClustalW as implemented in MEGA 4 (Tamura et al. 2007) using the default settings. The resulting alignment was checked by eye, but was not found to require additional editing. Phylogeny reconstruction was performed using Maximum Likelihood (ML) and Bayesian Inference (BI) methods. The best fitting models of sequence evolution were determined by the AIC criterion in Modeltest 3.7 (Posada & Crandall 1998). ML tree searches were performed using PhyML, version 2.4.4 (Guindon & Gascuel 2003). Bootstrap branch support values were calculated with 1000 replicates. The BI analysis was conducted with MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001), using models estimated with Modeltest under the AIC criterion, with 5,000,000 generations, sampling trees every 10th generation (and calculating a consensus tree after omitting the first 12,500 trees). Log likelihood scores for the remaining trees were examined in Tracer 1.4 (http://beast.bio.ed.ac.uk/Tracer) and the appropriateness of the burnin-period was checked. Genetic variability was calculated with DnaSP v.5.10.01 (Librado & Rozas 2009), excluding sequences Sc434 and Sc435 due to a section of missing data (close to 200 bp) in both sequences.

In order to calculate the average genetic distances found between species recognized in genera of related Buthidae scorpions, CO1 sequences of Centruroides Marx, 1890 and Mesobuthus Vachon, 1950 were downloaded from GenBank and aligned, resulting in alignments of 39 and 19 sequences respectively. Genetic distances were calculated using MEGA 4 with Jukes-Cantor correction, using pairwise deletion of gaps and missing data, with several sequences per species when available. The alignments used are available from the authors upon request.

RESULTS

The alignment used in the phylogeny reconstruction consisted of 21 new DNA sequences from Hottentotta specimens collected in 14 locations covering most of southern Morocco. Additionally, seven outgroup sequences were used in the analysis (see Table 1). From the sequences produced, 16 haplotypes were resolved. The alignment had a length of63 9 base pairs, with 92 polymorphic sites of which 87 were parsimony informative. High levels of genetic variability were found in the analysed Hottentotta sequences (Hd=0.98, n = 0.065).

The recovered ML and BI trees did not differ in their topologies in any branch with moderate to high support (Bayesian posterior probability of over 0.83, see Fig. 2).

Four highly supported clades were retrieved within Hottentotta. Thirteen specimens from the core range of H. gentili grouped together in a single Central clade that grouped with little internal support. The clade consisting of two H. franzwerneri specimens nested strongly within H. gentili clades (Bayesian posterior probability of 1; Fig. 2). The sister group of the H. franzwerneri clade consists of two specimens collected in the Oued Ziz valley. Interestingly, these two specimens were not the closest geographically to the franzwerneri clade, this was specimen Sc795 (Fig. 1). Noticeably, the four specimens from southern Morocco grouped together in a basal clade in relation to the remaining Hottentotta specimens.

Our sampling effort significantly increased the known distribution of H. gentili to the eastern portion of Morocco.

DISCUSSION

Our study of Hottentotta scorpions found high levels of genetic diversity, retrieving 16 haplotypes in 21 specimens analysed, a result also reported by previous studies conducted on scorpions of the Maghreb and Iberian Peninsula, such as Buthus Leach, 1815 (Gantenbein & Largiader 2003; Sousa et al. 2010) and Scorpio L., 1758 (Froufe et al. 2008). More unexpected was the subdivision of two species into four well supported clades. More than half of all H. gentili specimens analysed grouped together in a clade containing specimens collected in the centre of the species' known range. Also noteworthy is the grouping of our H. franzwerneri specimens well within H. gentili clades (above 94 % bootstrap support). The inclusion of H. franzwerneri in the H. gentili clade may be explained by two different hypotheses. If H. gentili is a monophyletic species, then H. gentili mitochondrial introgression may have occurred, leaving a mark on the mitochondrial DNA of the H. franzwerneri specimens. On the other hand, if mitochondrial introgression has not confounded the resolution of the actual relationships of the clades of the Maghreb Hottentotta, the current taxonomy would need revision since this finding suggests that H. gentili as currently recognized may be a paraphyletic species. The existence of cryptic species that can only be uncovered using molecular characters seems to be a common pattern in scorpions (e.g., Gantenbein et al. 2000), due to a paucity of informative morphological characters in many taxa. This may lead to an over-evaluation of single morphological characters in delimiting species. In this case the use of colour alone to separate species within the Hottentotta genus must be re-evaluated in light of this new finding, as this was the only distinctive character used by Vachon (1952) and Kovafik (2007) to separate these taxa. Kovafik (2007) established H. gentili and H. franzwerneri as distinct species, but mentioned only the leg coloration and slight differences in sexual dimorphism of the metasoma and chela in H. franzwerneri. The latter differences were not found by Vachon (1952) although this author studied a similar number of adult specimens of both sexes of H. franzwerneri compared to Kovafik (2007). Both Vachon and Kovafik considered these species also geographically disjunct, with a minimum distance of around 200 km between their areas of distribution (Fig. 1). Nevertheless, the discover of H. gentili in the proximity of Bou Arfa (specimen Sc795) reduces the known distance between both species to around 70 km, and, more importantly, strongly suggests either that both species can be in contact in the present or that they have been in contact as recently as around 6,000 years ago, in the last wet phase in North Africa (deMenocal et al. 2000; Kuper & Kropelin 2006).

[FIGURE 2 OMITTED]

Ecologically H. gentili and, to a lesser extent, H. franzwerneri are found in a wide variety of habitats and altitudinal gradients, although as suggested by Vachon (1952) the Maghreb Hottentotta are not true desert species. Even if they can be found in the south of Morocco, they appear to exist only in those places that can provide enough soil humidity, which in the drier south can be restricted to oases and river valleys. This factor may explain the connectivity found between H. franzwerneri and the Ziz valley clade if we assume that rivers provide corridors for dispersal.

The finding of a clade in the Low Draa Valley was also unexpected. This basal clade is the most genetically divergent according to our CO1 data, and must have separated early from the main Maghreb Hottentotta clade. We hypothesize that a continuously flowing Draa River, rather than seasonally flowing as is currently the case (abrupt changes in North Africa river basins are documented, e.g., Osborne et al. 2008), may have formed a biogeographic barrier. Other scorpion species only known from the south of the Draa River drainage in Morocco, including Buthus bonito Lourenco & Geniez, 2005 and Microbuthus maroccanus Lourenco, 2002, show that the Draa River may act as a barrier for scorpions. Buthus rochati Lourenco, 2003 can also be included in this pattern, because this species is only known from a region adjacent to the north of the drainage basin. The locality of specimen Sc137 suggests that the distribution of the species may extend further south than was reported by Vachon (1952) and Kovafik (2007), as can be seen in Fig. 1.

However it is noteworthy that the closest relatives of the Maghreb Hottentotta can only be found in Egypt [H. minax (L. Koch, 1875), Saharo-Sindian lineage] or south of the Sahara desert [e.g. H. hottentotta (Fabricius, 1787), African lineage] (Vachon & Stockmann 1968). This distribution pattern is remarkably different from other scorpions that show similar habitat preferences. In comparison, Buthus species can be found across North Africa except for the true desert areas (Vachon 1952). This is a further indication that the Maghreb Hottentotta require higher humidity in microhabitat conditions when compared, for example, with Buthus species.

In order to compare the genetic distances we found between the different clades of Hottentotta, we calculated the Jukes-Cantor corrected genetic distance between species of two different buthid genera. Based on 19 Centruroides species for which CO1 sequences were available in GenBank, we found an average genetic distance between species of 11.2 %, with a standard deviation of 2.6 %. A similar analysis was made on CO1 sequence data available for five species of Mesobuthus, which showed an average genetic distance between species of 15 %, with a standard deviation of 2.4 %. These are similar to the distances found in our study (12.1 %; Table 2) between the lower Draa clade and the Central clade, further suggesting that this clade may merit species status.

In conclusion, four well-supported clades were found in the two species of Hottentotta from the Maghreb. These suggest the paraphyletic positioning of H. franzwerneri, although as our data derive from mtDNA alone, an ancient mitochondrial introgression event from H. gentili cannot be excluded. The existence of a putative cryptic species in the south of Morocco, possibly related with the lower Draa River is proposed. Additional fieldwork in the South of Morocco and adjacent areas of Algeria (a current conflict zone due to border issues between both countries), together with the analysis of nuclear genes, are necessary to clarify the taxonomic identity of H. franzwerneri and the existence of a cryptic species in the southern area of the Draa River.

ACKNOWLEDGEMENTS

This project was supported by grants from Fundacao para a Ciencia e Tecnologia POCTI/ BIA-BDE/74349/2006 (to DJH) and SFRH/BPD/48042/2008 (AvdM). The work was partly funded through an FCT I&D project (PTDC/BIA-BEC/104644/2008) to AvdM. Thanks to all our colleagues who participated during fieldwork.

REFERENCES

BIRULA, A.A. 1914. Ergebnisse einer von Prof. Franz Werner im Sommer 1910 mit Unterstutzung aus dem Legate Wedl ausgefuhrten zoologischen Forschungdreise nach Algerien. VI. Skorpione und Solifugen. Sitzungsberichteb derKaiserlich-Koniglichen Akademie der Wissenschaften 123 (1): 633-688.

DE MENOCAL, P., ORTIZ, J., GUILDERSON, T., ADKINS, J., SARNTHEIN, M., BAKER, L. & YARUSINSKY, M. 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19: 347-361.

FET, V. & LOWE, G. 2000. Family Buthidae C.L. Koch, 1837. In: Fet, V., Sissom, W.D., Lowe, G. & Braun walder, M.E., eds, Catalog of the Scorpions of the World (1758-1998). New York: The New York Entomological Society, pp. 54-286.

FET, V., GANTENBEIN, B., GROMOV, A.V., LOWE, G. & LOURENCO, W.R. 2003. The first molecular phylogeny of Buthidae (Scorpiones). Euscorpius 4: 1-10.

FOLMER, O., BLACK, M., HOEH, W., LUTZ, R. & VRIJENHOEK, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294-299.

FROUFE, E., SOUSA, P., ALVES, P.C. & HARRIS, D.J. 2008. Genetic diversity within Scorpio maurus from Morocco: preliminary evidence based on CO1 mitochondrial DNA sequences. Biologia 63 (6): 1157-1160.

GANTENBEIN, B. & LARGIADER, C.R. 2003. The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: a case study with the scorpion Buthus occitanus as model organism. Molecular Phylogenetics andEvolution 28: 119-130.

GANTENBEIN, B., KROPF, C., LARGIADER, C.R. & SCHOLL, A. 2000. Molecular and morphological evidence for the presence of a new buthid taxon (Scorpiones: Buthidae) on the island of Cyprus. Revue Suisse de Zoologie 107: 213-232.

GUINDON, S. & GASCUEL, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52 (5): 696-704.

HEBERT, P.D.N, CYWINSKA, A., BALL, S.L. & DEWAARD, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270: 313-321.

HUELSENBECK, J.R & RONQUIST, F. 2001. Mr. Bayes: Bayesian inference of the phylogeny. Bioinformatics 17: 754-755.

KOVARIK, F. 2007. A revision of the genus Hottentotta Birula, 1908, with descriptions of four new species (Scorpiones: Buthidae). Euscorpius 58: 1-107.

KUPER, R. & KROPELIN, S. 2006. Climate-controlled Holocene occupation in the Sahara: Motor of Africa's evolution. Science 313: 803.

LIBRADO, P. & ROZAS, J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.

LIMA, A., PINHO, C., LARBES, S., CARRETERO, M.A., BRITO, J.C. & HARRIS, D.J. 2009. Relationships of Podarcis wall lizards from Algeria based on mtDNA data. Amphibia-Reptilia 30: 483-492.

OSBORNE, A.H., VANCE, D., ROHLING, E.J., BARTON, N., ROGERSON, M. & FELLO, N. 2008. A humid corridor across the Sahara for the migration of early modern humans out of Africa 120,000 years ago. Proceedings of the National Academy of Sciences USA 105: 16444-16447.

POSADA, D. & CRANDALL, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.

SAMBROOK, J., FRITSCH, E.F. & MANIATIS, T. 1989. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Press.

SOUSA, P., FROUFE, E., ALVES, P.C. & HARRIS, D.J. 2010. Genetic diversity within scorpions of the genus Buthus from the Iberian Peninsula: mitochondrial DNA sequence data indicate additional distinct cryptic lineages. Journal of Arachnology 38 (2): 206-211.

TAMURA, K., DUDLEY, J., NEI, M. & KUMAR, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.

TOULOUN, O., SLIMANI, T. & BOUMEZZOUGH, A. 2001. Epidemiological survey of scorpion envenomation in southwestern Morocco. Journal of Venomous Animals and Toxins 7 (2): 199-218.

VACHON, M. 1952. Etudes sur les scorpions. Alger: Institut Pasteur d'Algerie. (published in 1948-1951 in Archives de l'Institut Pasteur d'Algerie, 1948, 26: 25-90, 162-208, 288-316, 441-481; 1949, 27: 66-100, 134-169, 281-288, 334-396; 1950, 28: 152-216, 383-413; 1951, 29: 46-104.)

VACHON, M. & STOCKMANN, R. 1968. Contribution a l'etude des scorpions africains appartenant au genre Buthotus Vachon 1949 et etude de la variabilite. Monitore Zoologico Italiano (N. S.) 2 (suppl.): 81-149.

Pedro Sousa (1), Elsa Froufe (2), D. James Harris (1), Paulo Celio Alves (1,3) and Arie van der Meijden (1)

(1) CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, P-4485-661 Vila do Conde, Portugal; prsousa@gmail.com

(2) CIIMAR, Centro Interdisciplinar de Investigacao Marinha e Ambiental, Rua dos Bragas, 289, P-4050-123 Porto, Portugal

(3) Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, P-4099-002 Porto, Portugal
TABLE 1

Localities of samples used, their position in Fig. 1, their respective
Clade in Fig. 2, and corresponding GenBank accession numbers.
Coordinates are in the WGS84 datum, in decimal degrees.

Clade        Field number        Taxon                Location

franz-          Sc842       H. franzwerneri    Figuig outskirts
werneri

franz-          Sc864       H. franzwerneri
werneri

Central         Sc041          H. gentili      3 km SSE of Tazidra,
                                               on road N8

Central         Sc139          H. gentili      3 km E of Tirhmi,
                                               on road R104

Central         Sc154          H. gentili      14 km NE of Assa,
                                               on road P1801

Central         Sc173          H. gentili      Oued Draa valley,
                                               on N9, 8 km ESE of Agdz

Central         Sc429          H. gentili      5 km WSW of Adrar
                                               Ounas

Central         Sc433          H. gentili      Oued Assaka valley,
                                               25 km SE of Sidi el
Central         Sc534          H. gentili      Hosain

Central         Sc434          H. gentili      Oued Draa valley, on
                                               road N9, 6 km N of
Central         Sc435          H. gentili      Agdz

Central         Sc449          H. gentili      2.5 km WNW of Jbel
                                               Habou el Khal

Central         Sc795          H. gentili      Jebel Bou Arfa, 6 km
                                               NW of Bouarfa

Central         Sc802          H. gentili      On road N10 to
                                               Bouanane, 19 km NE
Central         Sc803          H. gentili      of the town

Ziz valley      Sc452          H.gentili       Oued Ziz valley, on
                                               road N13, 3 km SE
Ziz valley      Sc804          H. gentili      of Oulad Aissa

Low Draa        Sc137          H. gentili      6 km ESE of Elkhalona,
valley                                         on R101 heading
                                               S from Tan-Tan

Low Draa        Sc142          H. gentili      On right margin of
valley                                         Oued Draa valley,
                                               2 km W of the
Low Draa        Sc143          H. gentili      intersection
valley                                         with road
                                               N1 heading N
Low Draa        Sc144          H. gentili      from Tan-Tan
valley
                Sc292         Androctonus      1 km NE of Mechra
                              mauritanicus     Benabbou, on road N9

                              Androctonus                --
                               australis

                Sc002          Buthus sp.      On road N13, 4 km N
                                               from Ain Defali

                  --         Centruroides                --
                                vittatus

                  --          Mesobuthus                 --
                                 eupeus

                Sc051           Scorpio                  --
                              fuliginosus

                  --            Tityus                   --
                              nematochirus

                  --         Zabius fuscus               --

Clade        Field number    Lat.      Long.     Country     GenBank
                                                            accession
                                                              number

franz-          Sc842       32.087    -1.241    Morocco     JF820094
werneri

franz-          Sc864                                       JF820095
werneri

Central         Sc041       30.990    -9.040    Morocco     JF820075

Central         Sc139       29.580    -9.396    Morocco     JF820077

Central         Sc154       28.686    -9.319    Morocco     JF820081

Central         Sc173       30.668    -6.380    Morocco     JF820082

Central         Sc429       30.,895   -8.805    Morocco     JF820083

Central         Sc433       29.068    -10.248   Morocco     JF820084

Central         Sc534                                       JF820089

Central         Sc434       30.746    -6.449    Morocco     JF820085

Central         Sc435                                       JF820086

Central         Sc449       32.133    -3.155    Morocco     JF820087

Central         Sc795       32.571    -2.015    Morocco     JF820090

Central         Sc802       32.114    -2.884    Morocco     JF820091

Central         Sc803                                       JF820092

Ziz valley      Sc452       31.744    -4.198    Morocco     JF820088

Ziz valley      Sc804                                       JF820093

Low Draa        Sc137       28.028    -11.357   Morocco     JF820076
valley

Low Draa        Sc142                                       JF820078
valley

Low Draa        Sc143       28.544    -10.957   Morocco     JF820079
valley

Low Draa        Sc144                                       JF820080
valley
                Sc292       32.661    -7.793    Morocco     JF820097

                              --        --         --       AF370829

                Sc002       34.630    -5.538    Morocco     JF820096

                  --          --        --      USA         EU381060

                  --          --        --      Iran        HM567390

                Sc051         --        --      Morocco     FJ198060

                  --          --        --      Venezuela   FJ525423

                  --          --        --      Argentina   FJ525421

TABLE 2

Net pairwise sequence divergence (Jukes-Cantor) between the four clades
found in Maghreb Hottentotta. Within brackets is the value for within
lineage divergence for the Central clade.

                  Central    Low Draa valley    Ziz valley

Central           (0.017)
Low Draa valley    0.121            --
Ziz valley         0.086          0.113             --
franzwerneri       0.098          0.116            0.049
COPYRIGHT 2011 The Council of Natal Museum
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Sousa, Pedro; Froufe, Elsa; Harris, D. James; Alves, Paulo Celio; van der Meijden, Arie
Publication:African Invertebrates
Article Type:Report
Geographic Code:60NOR
Date:Jun 1, 2011
Words:3858
Previous Article:New species and new records of jumping spiders (Araneae: Salticidae) from central South Africa.
Next Article:Further details of the morphology of the enigmatic African fly Mormotomyia hirsuta Austen (Diptera: Mormotomyiidae).
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters