Printer Friendly

Gene that controls number of brain cells identified.

London, Oct 5 (ANI): Scientists from University of North Carolina have identified a gene that controls the number of cells composing brain.

Called GSK-3, the gene has been found to strike a balance between two key processes - proliferation, in which the cells multiply to provide plenty of starting materials, and differentiation, in which those materials evolve into functioning neurons.

If the stem cells proliferate too much, they could grow out of control and produce a tumour. If they proliferate too little, there may not be enough cells to become the billions of neurons of the brain.

The study showed that GSK-3 controls the signals that determine how many neurons actually end up composing the brain.

The novel findings may have significant implications for people suffering from neuropsychiatric illness like schizophrenia, depression, and bipolar disorder.

"I don't believe anyone would have imagined that deleting GSK-3 would have such dramatic effects on neural stem cells," Nature quoted senior study author Dr William D. Snider, professor of neurology and cell and molecular physiology, and director of the UNC Neuroscience Centre, as saying

"People will have to think carefully about whether giving a drug like lithium to children could have negative effects on the underlying structure of the nervous system," he added.

During the study, the researchers genetically engineered mice to lack both forms of the GSK-3 gene, designated alpha and beta.

They further used a "conditional knock-out" strategy to remove GSK-3 at a specific time in the development of the mouse embryo, when a type of cell called a radial progenitor cell had just been formed.

"It was really quite striking," said Snider.

"Without GSK-3, these neural stem cells just keep dividing and dividing and dividing. The entire developing brain fills up with these neural stem cells that never turn into mature neurons," he added.

GSK-3 is known to coordinate signals for proliferation and differentiation within nerve cells through multiple "signalling pathways."

They found that every one of the pathways that they studied went awry after deleting the GSK-3 gene.

The study has been published in the journal Nature Neuroscience. (ANI)

Copyright 2009 Asian News International (ANI) - All Rights Reserved.

Provided by Syndigate.info an Albawaba.com company
COPYRIGHT 2009 Al Bawaba (Middle East) Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Asian News International
Date:Oct 12, 2009
Words:365
Previous Article:'Understanding' referee Srinath clears Akmal of ICC Code of Conduct breach.
Next Article:Indian wrestlers thrash two Australians in racism-linked brawl in Melbourne.
Topics:


Related Articles
Brain-Cell Loss Found in Narcolepsy.
Contributing gene finally found.
Gene research targets stroke risk.
New blood tests for panic disorder.
Gene that controls number of brain cells identified.
Novel mouse gene could lead to new Alzheimer's treatments.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters