Printer Friendly

Fused quartz, the uncompromising lab ware.

When it comes to glass laboratory vessels, many conventional or routine applications can rely on the adequate proficiency of common borosilicate materials, also known by the Pyrex brand name. For applications requiring everyday, routine physical and chemical properties, borosilicate lab ware is perfectly adequate for a broad range of uses. But when it comes to applications demanding exceptional properties for highly controlled environments, fused-quartz vessels offer superior capabilities that make experiments and rigorous testing more accurate, flexible, and safer. Plus (although unknown to some), fused quartz lab ware is readily available, even in custom vessel designs, and offers high value for appropriate applications.

Quartz lab ware offers users exceptional mechanical, electrical, optical, and thermal properties that provide uncompromising performance for a wide range of robust applications throughout science and industry. A wide variety of fused-quartz lab products are available, including flasks, beakers, test tubes, joints, dishes, crucibles and cuvettes, for the wide variety of functions required in the medical laboratory (e.g., volumetric measuring, holding or storing chemicals or samples, mixing or preparing solutions and other mixtures, containing lab processes like chemical reactions, distillation, separations including chromatography and spectrophotometry, and more. Since virtually all quartz lab ware is individually hand blown, customer-specified pieces are also available.

Unmatched thermal properties

Fused quartz is superior to borosilicate when it comes to heat. Fused quartz is a solid material at room temperature. At high temperatures, it behaves like all glasses. It does not experience a distinct melting point as crystalline materials do, but softens over a fairly broad temperature range. This transition from a solid to a plastic-like behavior is distinguished by a continuous change in viscosity (resistance to changing shape) with temperature.

[ILLUSTRATION OMITTED]

Fused quartz products, including lab ware, can be heated to 1,150[degrees]C under minimal load conditions. It can then be plunged into cold water without cracking, due to its related property of high thermal shock resistance. The annealing point is 1,140[degrees]C; strain point is 1,070[degrees]C; fusion point is between 1,700[degrees]C and 1,800[degrees]C.

"In practical lab applications, the thermal stability of fused quartz can be related to safety," says Doug Sisson, president of DC Scientific, Pasadena, MD, a manufacturer of glassware including fused-quartz lab ware.

While heating glass in a medical laboratory is not a usual occurrence, the durability of fused quartz is unquestioned. "We have customers in the petrochemical industry that use quartz flasks for heating materials such as gasoline. If those were borosilicate flasks and they were set on top of a heater, the borosilicate flasks could break and create a fire. Flasks made of fused quartz, because of the extremely high temperature properties and the low coefficient of expansion, will not break due to the heat or temperature shock. It saves time. They are more expensive, but the quartz vessels are much safer and will also last longer," Sisson explains.

Exceptional purity

Fused-quartz purity levels are unsurpassed in the glassware industry, and are much superior to borosilicate products.

"The performance of most fused-quartz products is closely related to the purity of the material," explains James Horvath, president of Technical Glass Products (TGP), Painesville, OH, a distributor and fabricator of fused-quartz material. "The purity of raw material and fusion processes must be closely monitored and controlled, which can yield products with typically less than 50 ppm total elemental impurities by weight. This is extremely pure when compared with borosilicate, although it also has a wide range of laboratory applications. TGP also manufactures borosilicate glassware, so Horvath is keenly aware of the properties and benefits of both products.

"The chemical purity and inertness of quartz are essential to many lab applications," Horvath continues. "If a lab vessel reacts with the reagent it holds, that may be highly problematic. Also, if a glass component leaches into the reagent, that will affect the outcome of test. So, the chemical purity is a major reason why some users choose vessels made of fused quartz."

Horvath adds that the optical purity of quartz that may be equally important to many users. The transmisivity, or ability of a relatively broad range of light wavelengths to pass unimpeded through clear quartz lab ware, can be vital to many experiments.

"For UV or infrared applications, you want to have very good optical transmission at specific wavelengths," says Horvath.

Mechanical toughness

"The material is also very inert and, therefore, highly chemical resistant," Horvath says. "If you were using a glass beaker, for example, that could react with a solution it contained, that would corrupt the solution. Fused-quartz lab ware is rarely attacked by any acid, except a fluorine-based gas or solution. It can withstand exposure to many acids, even at very high temperatures, for up to months and even years."

Quartz also makes an excellent electric insulator. Both electrical insulation and microwave transmission properties are retained at very high temperatures and over a wide range of frequencies.

"Many of the properties of fused quartz make it ideal for many industrial applications as well," says DC Scientific's Sis-son. "We have customers who use it for burning in IC chips, for example, because of their high temperature, high purity, and UV transmission requirements. We also have customers in the petroleum industry that use quartz lab ware for many of the same reasons."

The applications of TCP customers range from semiconductor to fiber optic and photovoltaic (solar) cell manufacturing, specialty lighting, aerospace, and pharmaceutical and university laboratories. For many of them, TGP offers custom design and technical services, as well as the necessary production capabilities.

[ILLUSTRATION OMITTED]

"In addition to quality, we care about the availability of technical support and other value-added services," Sisson adds. "Flexibility on order quantities and timely deliveries are important, too."

Louise Townsend is a Florida-based writer who formerly specialized in legislative issues for a major Washington, DC, pharmaceutical association.
COPYRIGHT 2010 Nelson Publishing
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:CLINICAL ISSUES
Author:Townsend, Louise
Publication:Medical Laboratory Observer
Geographic Code:1USA
Date:Sep 1, 2010
Words:979
Previous Article:FLU 2010-2011 Roundtable.
Next Article:Hospital lauds its point-of-care testing success.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters