Printer Friendly

Fused imidazopyrazoles: synthetic strategies and medicinal applications.

1. Introduction

Over the past two decades, imidazopyrazole and related drugs have been attracting the attention of the medicinal chemists due to their considerable biological and pharmacological activities. Medicinal properties of imidazopyrazole derivatives include anticancer [1-11]; for example, 2,3-dihydro-1H-imidazo[1,2-b]pyrazoles have in vivo effects on the proliferation of mouse leukemic [1], and the same compound has antiviral activity in herpes simplex virus type 1-infected mammalian cells [12], and substituted imidazo[1,2-b]pyrazole (cephem derivatives) is used as antimicrobials [13-15]. Also, imidazo[1,2-b]pyrazole nucleus used as photographic dye-forming couplers comprise, useful in photographic materials and processes, have improved absorption [16-19]. In view of the above fact and in connection to our previous review articles about biologically active heterocyclic systems [20-25], we decided to prepare this review to present for the reader a survey of the literature of the different azoles linked directly with imidazole nucleus; also some of the medicinal applications are mentioned.

Fused imidazopyrazole refers to three isomers according to the conjunction between imidazole and pyrazole nucleus. The three isomers of imidazopyrazole are shown in Figure 1. Today, there are several approaches available for the synthesis of imidazopyrazoles and they may be classified into two main categories:

(a) annulation of the imidazole ring onto a pyrazole scaffold;

(b) annulation of the pyrazole ring onto an imidazole scaffold.

2. Synthesis by Annulation of the Imidazole Ring onto a Pyrazole Scaffold

2.1. Synthesis of Imidazo[1,2-b]Pyrazole. Ethyl 5-amino-1-(2-hydroxy-2-phenylethyl)-1H-pyrazole-4-carboxylate 3, obtained by reaction of 2-hydrazino-1-phenylethanol 1 with ethyl (ethoxymethylene)cyanoacetate 2, was treated with concentrated sulphuric acid at 0[degrees]C to give the 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylate 4. Also, on condensation of 1 with ethoxymethylenemalononitrile in absolute ethanol the 5-amino-1-(2-hydroxy-2-phenylethyl)-1H-pyrazole-4-carbonitrile 6 was obtained and then hydrolysed in alkaline ethanol/water solution to form 5-amino-1-(2-hydroxy-2-phenylethyl)-1H- pyrazole-4-carboxamide 7. Finally, 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxamide 8 was prepared by cyclization in the presence of concentrated sulphuric acid [26]. The synthesized 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole derivatives were tested in vitro in order to evaluate their ability to interfere with human neutrophil functions. All tested compounds showed strong inhibition of fMLP-OMe-induced chemotaxis (Scheme 1) 26, 27].


The synthesis of imidazo[1,2-b]pyrazoles was reported; thus the condensation of the hydrazinoacetaldehyde synthon with electrophiles such as ethyl (ethoxymethylene)cyanoacetate 2 and 3-oxo-2-phenylpropanenitrile 9 gave ethyl 5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylate 10 and 1-(2,2-diethoxyethyl)-4-phenyl-1Hpyrazol-5-amine 12, respectively. The latter compounds were cyclized in acid to produce imidazopyrazoles 11 and 13, respectively. Similarly, ethyl 5-amino-1-(2,2-diethoxyethyl)-1h-pyrazole-4-carboxylate 14 was reacted with hydrazine followed by reaction with nitrous acid to afford 1H-imidazo[1,2-b]pyrazole-7-carbonyl azide 15 rearranged to produce carbamates 16 [28] Scheme 2).

A series of 1H-imidazo[1,2-b]pyrazolecarboxylate derivatives were synthesized from reaction between ethyl cyanopyruvate sodium 17 and hydrazinoacetaldehyde diethylacetal in a biphasic water/chloroform in the presence of sulfuric acid to give ethyl 5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-3carboxylate 18 followed by cyclization to give imidazopyrazole 19. The synthesized compounds were evaluated in vitro for 5-HT3 receptor affinity. The biochemical data show significant activity for these derivatives (Scheme 3) [29]. On the other hand, imidazo[1,2-b]pyrazole-7-carbonitrile was prepared by the condensation of 2-hydrazinoacetaldehyde diethyl acetal with (ethoxymethylene)malononitrile 5, which gave pyrazole followed by ring closure under acid-catalyzed hydrolytic conditions to afford imidazopyrazole 21 [30] (Scheme 3).

Amino-1-(2-hydroxyethyl)pyrazole 22 was formylated, treated with methanesulfonyl chloride and triethylamine, and then followed by cyclization with sodium hydride, to give 1-formyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole 23 [31] (Scheme 4).

3-Amino-5-phenylpyrazoles 25 were reacted with 2-(4-methyl-2-phenyl-1,3-thiazol-5-yl)-2-oxo-N-phenylethanehy- drazonoyl bromide 24 in boiling ethanol to give 3-phenylazo 2-(4-methyl-2-phenyl-thiazol-5-yl)-6-phenyl-5H-imidazo[1, 2-b]pyrazoles 26 (Scheme 5) 32].

In the same fashion, it was reported that equimolar amounts of hydrazonoyl bromides 27 and 32 were reacted with 5-amino-3-phenyl-1H-pyrazole 25 in ethanol under reflux to afford the corresponding imidazo[1,2-b]pyrazoles 31 and 34,respectively Scheme 6) 33,34].

5-Aminopyrazole 25 was reacted with hydrazonyl halides such as 2-oxo-N,-arylpropanehydrazonoyl chlorides 35 [35-37] and 2-bromobenzofurylglyoxal-2-arylhydrazones 37 [38] in ethanol at reflux temperature to give 6-phenyl 3-(aryldiazenyl)-5H-imidazo[1,2-b]pyrazoles 36 and 38, respectively (Scheme 7).







Regioselective cyclization reaction between compound 25 and oxaldiimidoyl dichlorides 39 in THF in the presence of triethylamine afforded 3H-imidazo[1,2-fr]pyrazoles 40 in good yields [39] Scheme 8).

Appel's dehydration conditions of (2-oxo-1,2-diphenylethylidene)hydrazono)-N-phenylbutanamide 41, prepared from reaction of benzil hydrazone with acetoacetanilide, led to azinoketimine 42 which underwent electrocyclic ring closure under the reaction conditions to give imidazo[1,2-b]pyrazole-2-one 49 and 1H-imidazo[1,2-fr]pyrazole 50 [40] (Scheme 9).

In the same fashion, treatment of N-aziridinylimino carboxamides 52 prepared by the reaction of 1-amino-2phenylaziridine 51 with acetoacetanilide in tetrahydrofuran at room temperature with a mixture of triphenylphosphine, carbon tetrachloride, and triethylamine (Appel's condition) in dichloromethane at reflux temperature led to the formation of2,3-dihydro-1H-imidazo[1,2-fr]-pyrazoles56 (54-82%) asa major product [41] Scheme 10).

5-Amino-3-phenyl-1H-pyrazole 25 was reacted with hydroximoyl chloride 57 in ethanol at room temperature to give 3-nitroso-2-aryl-6-phenyl-1H-imidazo[1,2-b]pyrazoles 58 in 60-75% yields [30] Scheme 11).



Intermolecular aza-Wittig reaction of 5-(triphenylphosphoranylideneamino)-3-phenylpyrazole 60 with achloroketone, namely, 2-chloro-2-phenylacetophenone, chloroacetylchloride, and 1-chloro-1-(phenyldiazenyl)propan-2-one, afforded the imidazo[1,2-b]pyrazole derivatives 62a-c via elimination of hydrogen chloride from the initially formed intermediate 61 [42] Scheme 12).

A series of 2-aryl-7-cyano/ethoxycarbonyl-6-methylthio1H-imidazo[1,2-b]pyrazoles 65 have been synthesized in moderate to good yields, via reaction of 5-amino-4-cyano/ethoxycarbonyl-3-methylthio-1H-pyrazole 63 with either [alpha]-bromoacetophenones or [alpha]-tosyloxyacetophenones followed by cyclocondensation of the formed intermediate 64 under acidic conditions. Using [alpha]-tosyloxyacetophenones instead of [alpha]-bromoacetophenones in the previous reaction has such advantages that the reactions gave the final products in higher yields, became more eco-friendly as well as less time consuming, and avoided highly lachrymatory and toxic [alpha]-haloketones which are now not available commercially. Fungicidal activity of the synthesized compound was studied [43,44] Scheme 13).

3-Antipyrinyl-5-aminopyrazole 66 was reacted with either ethyl a-chloroacetoacetate or chloroacetyl chloride to yield 1-(2-hydroxy-3H-imidazo[1,2-b]pyrazole-3-yl)ethanone 67 and 3H-imidazo[1,2-b]pyrazole-2-ol 68, respectively [45] Scheme 14).

7-Chloro-6-methyl-2-phenyl-3-(phenylsulfinyl)-1H-imidazo[1,2-b]pyrazole 69, useful as starting materials for color photograph couplers and dyes, was prepared from treating 5-amino-4-chloro-3-methyl-1H-pyrazole 68 with phenacyl bromide in the presence of y-collidine, reacting the product with PhSSPh in the presence of NaH and heating at 60[degrees] in the presence of HCl [46] (Scheme 15).




Ethyl 2-hydrazinylacetate hydrochloride 70 was reacted with 2-oxo-N,,2-diphenylacetohydrazonoyl cyanide 71 to afford 6-phenyl-7-(phenyldiazenyl)-1H-imidazo[1,2-b]pyrazole-2(3H)-one 72 [47] Scheme 16).

1H-Imidazo[1,2-b]pyrazole-7-carbonitrile derivatives, which are spleen tyrosine kinase (syk) inhibitors, are useful in the treatment of syk-mediated diseases. Thus, substituted imidazo[1,2-b]pyrazole-7-carbonitrile 76 was prepared by cyclocondensation of aminopyrazolecarbonitrile 73 with 3,4dimethoxyphenyl isonitrile 74 and 2,4-dihydro-2-oxo-1Hbenzo[d][1,3]oxazine-7-carbaldehyde 75 [35] Scheme 17).





In a recent report [36], 3-(benzylideneamino)-2-phenyl5H-imidazo[1,2-b]pyrazole-7-carbonitriles 77 were synthesized, in moderate to high yields, from one-pot, four-component condensation reaction of aromatic aldehydes, toluene-4-sulfonylmethyl isocyanide, and 5-amino-1H-pyrazole-4-carbonitrile 73 in acetonitrile in the presence of p-toluenesulfonic acid as a catalyst at room temperature (Scheme 18).

Similarly, A series of N-alkyl-2-aryl-5H-imidazo[1,2-b]pyrazole-3-amines 78 in good to high yields were synthesized by the three-component condensation of an aromatic aldehyde, aminopyrazole, and isocyanide in acetonitrile in the presence of 4-toluenesulfonic acid as a catalyst at room temperature [37] Scheme 19).




2.2. Syntheses of Imidazo[1,5-b]Pyrazole. 2,3-Dihydroimidazo[1,5-b]pyrazoles 84 containing a structurally heterocyclic system corresponding to cyclized histamine were prepared by cyclodehydration of substituted N-(3-pyrazolylmethyl)acetamides 80 or N-(3-pyrazolylmethyl)acetamides 83, obtained by the catalytic hydrogenation of 1-benzoyl-4,5-dihydro-1H-pyrazole-3-carbonitriles 79 followed by acylation. These latter precursors 79 were conveniently obtained by the cycloaddition of substituted acrylonitriles with C[H.sub.2][N.sub.2] followed by in situ benzoylation using benzoyl chloride [48] (Scheme 20).

2.3. Imidazo[4,5-c]Pyrazole. Recently, imidazo[4,5-c]pyrazoles 89 were synthesized in 65-96% yields by cyclization of N7-(4-halopyrazol-5-yl)amidine 88 under the conditions of copper-catalyzed cross-coupling reactions. Compound 88 was obtained via two pathways: (A) the reaction of 5-aminopyrazoles 25 with imidoyl chlorides 85 in dry 1,4-dioxane at room temperature and (B) the reaction of imino esters 87 with substituted aniline, followed by halogenations using either NBS in boiling acetonitrile or elementary iodine in the presence of KOH at room temperature [49] (Scheme 21).

Nitrosation of compound 25 with sodium nitrite yielded the 4-nitrosopyrazoles 90, which were reduced to the diamines 91 with hydrazine hydrate in the presence of palladized charcoal. Since 91 were often unstable during the usual work-up for isolation, they were directly reacted with thiophosgene to give the isothiocyanatopyrazoles 94. Heating of 94 in pyridine gave the imidazo[4,5-c]pyrazole-5-thiones 95. In order to obtain 5-substituted derivatives imidazo[4,5-c]pyrazole-5-thiones 95 were reacted with iodomethane in sodium hydroxide to give 5-methylthio derivatives 96, which were subjected to hydrogen peroxide to yield 3-methyl-5-methylsulfonyl 1-phenylimidazo[4,5-c]pyrazoles 97. Compound 96 was submitted to hydrogenolytic desulfurisation in the presence of Raney nickel, thus producing 98. When heated at 200[degrees]C for 2h, 5-amino-4-ethoxycarbonylaminopyrazole 92, obtained by treatment of 91 with ethyl chloroformate, afforded imidazo[4,5-c]pyrazole-5-one 93. The key step in the synthesis of 5-methylimidazo[4,5-c]pyrazole 102 was the intramolecular cyclodehydration in boiling pyridine of 5-ethylamino-4-nitrosopyrazole 101, which was prepared from 5-acylaminopyrazole 100. Reduction of 99 with LiAlH4 afforded the 5-alkylaminopyrazole 100. Nitrosation of 100 with amyl nitrite in the presence of hydrochloric acid yielded 101. Imidazo[4,5-c]pyrazoles 93, 95, 96, 97, 98, and 102, which were considered of interest as potential herbicides, were examined for the preemergence, postemergence, and posttransplant control of weeds in rice against broadleaf and grass weed species. Some imidazo[4,5-c]pyrazoles have potential herbicidal activity against a wide range of weeds, with 5-thiomethyl 96 and 5-unsubstituted derivatives being the most efficient. No herbicidal activity was observed in the 5-methylsulfonylimidazo[4,5c]pyrazole 97 and imidazo[4,5-c]pyrazolone 93 series [50] (Scheme 22).



Similarly, imidazo [4,5-c] pyrazoles 106 were synthesized by acylation 5-aminopyrazoles 25 either with benzoyl chloride or with acetic anhydride to give 5-acylaminopyrazoles 103. Reduction of compounds 103 with LiAlH4 afforded the corresponding 5-alkylaminopyrazoles 104. Nitrosation of compounds 104 with amyl nitrite in the presence of hydrochloric acid yielded 5-alkylamino-4-nitrosopyrazoles 105. Cyclisation of compounds 105 to imidazo [4,5-c] pyrazoles 106 was achieved by heating 105 in boiling pyridine for 15-90 min [51] Scheme 23).


3. Syntheses by Annulation of the Pyrazole Ring onto an Imidazole Scaffold

3.1. Synthesis of Imidazo[1,2-b]Pyrazole. 2,3-Dihydro-1H-imidazo[1,2-b]pyrazoles 112 and 113 were prepared by hydrazinolysis with 2,4-dinitrophenylhydrazine of ethyl 2-(1-(benzylideneamino)imidazolidin-2-ylidene)-2-nitroace tate 110 which was conveniently prepared from ethyl nitroacetate and N-benzylidene-2-(methylthio)-4,5 dihydro-1H-imidazol-1-amine 109 as described in Scheme 24 [52].

3.2. Synthesis of Imidazo[1,5-b]Pyrazole. Dihydro-LH-imidazo [1,5-b]pyrazole-4,6(2H,5H)-dione 119 was synthesized from treatment 1-(benzylideneamino)-5-(2-hydroxyethyl)hydantoin 117, prepared from treated sodium salt of acetone semicarbazone 115 with a-bromo-y-butyrolactone 116 and the reaction mixture was then subjected to acid hydrolysis followed by condensation with benzaldehyde, with SO[Cl.sub.2] to give 1-benzylidene-2,3,3a,4,5,6-hexahydro-4,6-dioxo-1H-imidazo[1,5-b]pyrazolium chloride 118. Next the latter salt was treated with MeOH and ether [53] (Scheme 25).

3.3. Synthesis of Imidazo[4,5-c]Pyrazole. 3-Amino-6-([beta]-D-ribofuranosyl)imidazo[4,5-c]pyrazole 125 was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). Thus, 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-0-isopropylidene-^-D-ribofur- anosyl)-4-(1,2,4-oxadiazol-3-yl)imidazole 123, synthesized from treatment of 5-amino-1-([beta]-D-ribofuranosyl)imidazole4-carboxamide 122 with sodium ethoxideat room temperature followed by reaction with ethyl acetate at reflux temperature, underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleosides 124 in good yields. Subsequent protecting group manipulations afforded the desired 3-amino-6-([beta]-D-ribofuranosyl)imidazo[4,5c]pyrazole 125 as a 5:5 fused analog of adenosine. Compound 125 was evaluated for activity against two herpes viruses, herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV), in a plaque reduction assay and an ELISA, respectively. Cytotoxicity was detected both in stationary human foreskin fibroblasts (HFF cells) and in growing KB cells. No activity was observed at the highest concentration tested (100 [micro]M) against HCMV and HSV-1 [54] Scheme 26).







4. Miscellaneous Methods

1,5-Dihydrazino-2,4-dinitrobenzene 126 was treated with [beta]-etoesters to give 65-95% corresponding dihydrazones 127, which were subjected to reductive cyclization using Pt[O.sub.2] catalyst to provide benzo [1,2-b.:5,4-b,]bis (1H-imidazo[1,2b]pyrazoles 128 in 47-54% yields [55] Scheme 27).

Upon UV irradiation the substituted pyrrolo[2,3-d]-1,2,3-triazoles 129 (R = Me, Et; R: = Ph, substituted phenyl) were transformed to imidazo[4,5-c]pyrazoles 132 via intermediates 1,2,3,5-tetrazocine 130. X-ray crystal structure of 132 (R = Me, Ar = 4-Br[C.sub.6][H.sub.4]) is reported [56] (Scheme 28).

5. Conclusions

This review has attempted to summarize the synthetic methods, reactions, and medicinal application of imidazopyrazoles. Synthesis of imidazopyrazole derivatives may be via two categories: annulations of imidazole ring onto a pyrazole scaffold or annulations of pyrazole ring onto an imidazole scaffold.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publishing of this paper.


The authors would like to thank the Research Center of College of Engineering at King Saud University for supporting this work.


[1] R. Ganapathi and A. Krishan, "Effect of 2,3-dihydro-1Himidazo[1,2-b]pyrazole on the proliferation of mouse leukemic and normal cells in vivo," Cancer Research, vol. 40, no. 4, pp. 1103-1108, 1980.

[2] L. M. Allen and J. T Thornthwaite, "Studies on the pharmacology and cytokinetics of 2,3-dihydro-1H-imadazo[1,2b]pyrazole (NSC 51143) with P815 mastocytoma cells," Cancer Research, vol. 40, no. 11, pp. 4059-4063, 1980.

[3] M. C. Henry, C. D. Port, E. Rosen, and B. S. Levine, "Preclinical toxicologic study of 2,3-dihydro-1H-imidazo[1,2-b] pyrazole (IMPY) in mice, dogs, and monkeys," Cancer Treatment Reports, vol. 64, no. 10-11, pp. 1031-1038, 1980.

[4] D. D. Shoemaker, O. C. Ayers, M. E. D'Anna, and R. L. Cysyk, "Studies on the disposition of 2,3-dihydro-1H-imidazo[1,2b]pyrazole in rodents," European Journal of Cancer and Clinical Oncology, vol. 17, no. 4, pp. 391-396, 1981.

[5] H. L. Ennis, L. Moller, J. J. Wang, and O. S. Selawry, "2,3-Dihydro-1H-imidazo[1,2-b]pyrazole. A new inhibitor of deoxyribonucleic acid synthesis," Biochemical Pharmacology, vol. 20, no. 10, pp. 2639-2646, 1971.

[6] M. T Ahmet, K. T Douglas, J. Silver, A. J. Goddard, and D. E. Wilman, "Iron and haem complexation studies of 2,3-dihydro1H-imidazo(1,2-b)pyrazole (IMPY, NSC 51143), a tumor cell ribonucleotide reductase inhibitor," Anti-Cancer Drug Design, vol. 1, no. 3, pp. 189-195, 1986.

[7] A. J. Goddard, R. M. Orr, J. A. Stock, and D. E. V. Wilman, "Synthesis and ribonucleotide reductase inhibitory activity of analogues of 2,3-dihydro-1H-imidazo[1,2-b]pyrazole (IMPY)," Anti-Cancer Drug Design, vol. 2, no. 3, pp. 235-245, 1987

[8] A. Krishan, K. D. Paika, and E. Frei III, "Cell cycle synchronization of human lymphoid cells in vitro by 2,3 dihydro 1H imidazo[1,2 b]pyrazole," Cancer Research, vol. 36, no. 1, pp. 138-142, 1976.

[9] A. L. Sagone Jr, J. A. Neidhart, and R. M. Husney, "Effect of 2,3-dihydro-1H-imidazo[1,2-b]pyrazole (IMPY) on the metabolism of human red cells," Investigational New Drugs, vol. 1, no. 3, pp. 243-248, 1983.

[10] A. Sato, J. A. Montgomery, and J. G. Cory, "Synergistic inhibition of leukemia L1210 cell growth in vitro by combinations of 2-fluoroadenine nucleosides and hydroxyurea or 2,3-dihydro1H-pyrazole[2,3-a]imidazole," Cancer Research, vol. 44, no. 8, pp. 3286-3290, 1984.

[11] C. L. Vogel, J. M. Denefrio, D. C. Padgett, and M. A. Silverman, "Phase I clinical trial of weekly iv 2,3-dihydro-1H-imidazo[1,2b]pyrazole (IMPY)," Cancer Treatment Reports, vol. 64, no. 1011, pp. R1153-R1156, 1980.

[12] J. C. Pelling and C. Shipman Jr., "Antiviral activity of 2,3-dihydro-1H-imidazo[1,2-b]pyrazole in herpes simplex virus type 1-infected mammalian cells," Biochemical Pharmacology, vol. 25, no. 21, pp. 2377-2382, 1976.

[13] H. Yamanaka, Y. Ogawa, and K. Itane, "Preparation of cephem derivatives as antibacterials," JP 05213971, 1993, http://world

[14] K. Sakane, K. Kawabata, and Y. Inamoto, "Preparation of new cephem compounds," EP 427248, 1991,

[15] H. Yamanaka, Y. Ogawa, and K. Itane, "Preparation of cephem derivatives as antibacterials," JP 05213971, 1993,

[16] K. Sato, T. Kawagishi, and H. Kobayashi, "Silver halide color photographic material" Tech. Rep. JP 07134380, 1995, http :// ?locale=en_EP.

[17] J. Bailey and D. N. Rogers, "Photographic color couplers, photographic materials containing them and method of forming dye images" WO 8602467, 1986,

[18] T Ukai, T. Ito, T. Kawagishi, and H. Takei, "Photosensitive materials containing dyes," JP 60213937, 1985, http://

[19] T Sato, T. Kawagishi, and N. Furutachi, "Producing magenta images in silver halide color photographic materials," EP 119741, 1984, numberSearch?locale=en_EP.

[20] B. F. Abdel-Wahab and R. E. Khidre, "2-Chloroquinoline-3-carbaldehyde II: synthesis, reactions, and applications" Journal of Chemistry, vol. 2013, Article ID 851297,13 pages, 2013.

[21] R. E. Khidre and B. F. Abdel-Wahab, "Application of benzoylaceteonitrile in the synthesis of pyridines derivatives" Current Organic Chemistry, vol. 17, no. 4, pp. 430-445, 2013.

[22] W. M. Abdou and R. E. Khidre, "Overview of the chemical reactivity of phosphonyl carbanions toward some carbonnitrogen systems," Current Organic Chemistry, vol. 16, no. 7, pp. 913-930, 2012.

[23] B. F. Abdel-Wahab, M. F. El-Mansy, and R. E. Khidre, "Production of pyrans , pyridazines , pyrimidines , pyrazines and triazine compounds using benzoylacetonitriles as a precursor," Journal of the Iranian Chemical Society, vol. 10, no. 6, pp. 1085-1102, 2013.

[24] R. E. Khidre and B. F. Abdel-Wahab, "Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon," Turkish Journal of Chemistry, vol. 37, no. 5, pp. 1-27, 2013.

[25] R. E. Khidre, H. A. Mohamed, and B. F. Abdel-Wahab, "Advances in the chemistry of pyrazolopyrazoles," Turkish Journal of Chemistry, vol. 37, no. 1, pp. 1-35, 2013.

[26] C. Brullo, S. Spisani, R. Selvatici, and O. Bruno, "N-Aryl-2-phenyl-2,3-dihydro-imidazo [1,2-b]pyrazole-1-carboxamides 7-substituted strongly inhibiting both fMLP-OMe- and IL-8-induced human neutrophil chemotaxis," European Journal of Medicinal Chemistry, vol. 47, no. 1, pp. 573-579, 2012.

[27] O. Bruno, C. Brullo, F. Bondavalli et al., "2-Phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole derivatives: New potent inhibitors of fMLP-induced neutrophil chemotaxis," Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 13, pp. 3696-3701, 2007.

[28] P. Seneci, M. Nicola, M. Inglesi, E. Vanotti, and G. Resnati, "Synthesis of mono- and disubstituted 1H-imidazo[1,2-b]pyrazoles," Synthetic Communications, vol. 29, no. 2, pp. 311-341, 1999.

[29] E. Vanotti, F. Fiorentini, and M. Villa, "Synthesis of novel derivatives of 1H-imidazo[1,2-b]pyrazole as potential CNS-agents," Journal of Heterocydic Chemistry, vol. 31, no. 4, pp. 737-743, 1994.

[30] C. Parkanyi, A. O. Abdelhamid, J. C. S. Cheng, and A. S. Shawali, "Convenient synthesis of fused heterocycles from a-keto hydroximoyl chlorides and heterocyclic amines," Journal of Heterocyclic Chemistry, vol. 21, no. 4, pp. 1029-1032, 1984.

[31] H. Ohki, K. Kawabata, Y. Inamoto, S. Okuda, T. Kamimura, and K. Sakane, "Studies on 3'-quaternary ammonium cephalosporins-III. Synthesis and antibacterial activity of 3'-(3-aminopyrazolium)cephalosporins," Bioorganic and Medicinal Chemistry, vol. 5, no. 3, pp. 557-567, 1997

[32] A. O. Abdelhamid, E. K. A. Abdelall, and Y. H. Zakic, "Reactions with hydrazonoyl halides 62: synthesis and antimicrobial evaluation of some new imidazo [1,2-a]pyrimidine, imidazo [1,2 a] pyridine, imdazo [1,2-b]pyrazole, and quinoxaline derivatives," Journal of Heterocyclic Chemistry, vol. 47, no. 2, pp. 477-482, 2010.

[33] A. M. Farag and K. M. Dawood, "One-pot synthesis of imidazo [1,2-b]pyrazole, imidazo[1,2-b]-1,2,4-triazole, imidazo[1,2-a]-pyridine, imidazo[1,2-a]pyrimidine, imidazo[1,2-a]benzimidazole, and 1,2,4-triazolo-[4,3-a]benzimidazole derivatives," Heteroatom Chemistry, vol. 8, no. 2, pp. 129-133, 1997.

[34] A. S. Shawali, M. Sami, S. M. Sherif, and C. Parkanyi, "Synthesis of some derivatives of imidazo[1,2-a]pyridine, pyrazolo[1,5 b] imidazole, and 4-(3H)quinazolinone from [alpha]-ketohydrazidoyl bromides," Journal of Heterocyclic Chemistry, vol. 17, no. 5, pp. 877-880, 1980.

[35] J. Zhang, R. Singh, D. Goff, and T. Kinoshita, "1H- Imidazo[1,2b]pyrazole-7-carbonitrile derivatives as spleen tyrosine kinase (syk) inhibitors and their preparation and use for the treatment Of syk-mediated diseases," U.S. Pat. Appl. Publ., US 20100316649 A1 20101216, 2010.

[36] A. Rahmati, M. Eskandari-Vashareh, and M. Alizadeh-Kouzehrash, "Synthesis of 3-(benzylideneamino)-2-phenyl-5Himidazo[1,2-b]pyrazole-7-carbonitriles via a four-component condensation reaction," Tetrahedron, vol. 69, no. 21, pp. 4199-4204, 2013.

[37] A. Rahmati and M. A. Kouzehrash, "Synthesis of N-alkyl-2-aryl-5 H-imidazo[1,2-b]pyrazol-3-amines by a three-component condensation reaction," Synthesis, no. 18, Article ID N49511SS, pp. 2913-2920, 2011.

[38] A. O. Abdelhamid, S. S. Ghabrial, M. Y. Zaki, and N. A. Ramadan, "Facile synthesis of fused heterocycles through 2-bromobenzofurylglyoxal-2-arylhydrazones," Archiv der Pharmazie, vol. 325, no. 4, pp. 205-209, 1992.

[39] P. Langer, J. Wuckelt, M. Doring, P. R. Schreiner, and H. Gorls, "Regioselective anionic [3+2] cyclizations of isoxazole, pyrazole and 1,2,4-triazole dinucleophiles--efficient synthesis of 2,4-dihydroimidazo-[4,5-h]quinoxalines, 3H-imidazo[1,2-b]pyrazoles and 5H-imidazo[2,1-c]-[1,2,4]triazoles," European Journal of Organic Chemistry, no. 12, pp. 2257-2263, 2001.

[40] K.-J. Lee, H.-T. Kwon, and B.-G. Kim, "Synthesis of pyrazolo-fused heterocycles by a tandem Appel's dehydration/ electrocyclization methodology," Journal of Heterocyclic Chemistry, vol. 34, no. 6, pp. 1795-1799, 1997

[41] K. Lee, D. Kim, and B. Kim, "Synthesis of pyrazole-fused heterocycles by thermal rearrangement of N-aziridinylimino ketenimines," Journal of Heterocyclic Chemistry, vol. 40, no. 2, pp. 363-367, 2003.

[42] M. A. Barsy and E. A. El-Rady, "Intermolecular aza-Wittig reaction: one-step synthesis of pyrazolo[1,5-a]pyrimidine and imidazo[1,2-b]pyrazole derivatives," Journal of Heterocyclic Chemistry, vol. 43, no. 3, pp. 523-526, 2006.

[43] M. Li, G. Zhao, L. Wen, W. Cao, S. Zhang, and H. Yang, "Utilization of hypervalent iodine in organic synthesis: a novel and facile two-step protocol for the synthesis of new derivatives of 1H-imidazo[1,2-b] pyrazole by the cyclocondensation involving a-tosyloxyacetophenones," Journal of Heterocyclic Chemistry, vol. 42, no. 2, pp. 209-215, 2005.

[44] L. Ming, Z. Guilong, W. Lirong, and Y. Huazheng, "Hypervalent iodine in synthesis: a novel two-step procedure for the synthesis of new derivatives of 1H-imidazo[1,2-b]-pyrazole by the cyclocondensation between 5-amino-4-cyano-3-phenyl-1H-pyrazole and alpha-tosyloxyacetophenones or a-haloacetophenones," Synthetic Communications, vol. 35, no. 4, pp. 493-501, 2005.

[45] A. G. A. Elagamey, S. Z. A. Sowellim, and M. N. Khodeir, "Reactions with heterocyclic amidines (V). Synthesis of some newimidazo[1,2-b] pyrazole, pyrazolo [5,1-c]-1,2,4-triazine and pyrazolo [5,1-c]-1,2,4-triazole derivatives," Archives of Pharmacal Research, vol. 10, no. 1, pp. 14-17, 1987

[46] T Sato and M. Matsuoka, "Preparation of 1H-imidazo[1,2-b] pyrazole derivatives," JP 07278455 A19951024, 1995.

[47] M. H. Elnagdi, E. A. A. Hafez, H. A. El-Fahham, and E. M. Kandeel, "Reactions with heterocyclic amidines. VIII. Synthesis of some new imidazo [1,2-b] pyrazole derivatives," Journal of Heterocyclic Chemistry, vol. 17, no. 1, pp. 73-76, 1980.

[48] I. Lantos, H. Oh, C. Razgaitis, and B. Loev, "Synthesis of 6-substituted-2,3-dihydro-1H-imidazo[1,5-b]pyrazoles," Journal of Organic Chemistry, vol. 43, no. 25, pp. 4841-4844, 1978.

[49] K. Liubchak, A. Tolmachev, and K. Nazarenko, "Synthesis of imidazo[4,5-c]pyrazoles via copper-catalyzed amidine cyclization," The Journal of Organic Chemistry, vol. 77, no. 7, pp. 3365-3372, 2012.

[50] C. B. Vicentini, M. Manfrini, M. Mazzanti, A. Scatturin, C. Romagnoli, and D. Mares, "Synthesis of a novel series of imidazo[4,5-c]pyrazole derivatives and their evaluation as herbicidal agents," Archiv der Pharmazie, vol. 332, no. 10, pp. 337-342, 1999.

[51] C. B. Vicentini, A. C. Veronese, P. Giori, B. Lumachi, and M. Guarneri, "A new general and efficient synthesis of imidazo[4,5c]pyrazole derivatives," Tetrahedron, vol. 46, no. 16, pp. 5777-5788, 1990.

[52] K. Pilgram, "Synthesis of 2,3-dihydro-1H-imidazo[1,2b]pyrazoles," Journal of Heterocyclic Chemistry, vol. 17, no. 7, pp. 1413-1416, 1980.

[53] J. G. Michels and G. C. Wright, "2,3-Dihydro-1H-imidazo[1,5-b]pyrazole-4,6(3aH,5H)-dione," The Journal of Organic Chemistry, vol. 34, no. 10, pp. 3213-3215, 1969.

[54] T.-C. Chien, D. A. Berry, J. C. Drach, and L. B. Townsend, "Synthesis of 3-aminoimidazo[4,5-c]pyrazole nucleoside via the N-N bond formation strategy as a [5:5] fused analog of adenosine," Nucleosides, Nucleotides and Nucleic Acids, vol. 24, no. 10-12, pp. 1971-1996, 2005.

[55] S. Hauptmann, H. Wilde, and M. Szymanowski, "Synthesis and dye formation from benzo [1,2-b:5,4-bi] bis (1H-imidazo[1,2-b] pyrazoles)," Zeitschrift fur Chemie, vol. 28, no. 12, pp. 441-442, 1988.

[56] R. N. Butler, D. M. Colleran, D. F. O'Shea, D. Cunningham, P. McArdle, and A. M. Gilian, "New entry to the imidazo[4,5-c] pyrazole system through photochemically induced sequential transformations of substituted pyrrolo[2,3-d]-1,2,3-triazoles: X-ray crystal structure of a substituted 1,3a,6,6a-tetrahydro-imidazo[4,5-c]pyrazole," Journal of the Chemical Society, Perkin Transactions 1, no. 22, pp. 2757-2759, 1993.

Rizk E. Khidre, (1,2) Bakr F. Abdel-Wahab, (3,4) and Othman Y. Alothman (5)

(1) Chemical Industries Division, National Research Centre, Dokki, Giza 12622, Egypt

(2) Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia

(3) Applied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt

(4) Chemistry Department, Faculty of Science, Shaqra University, Al Dawadmi, Saudi Arabia

(5) Chemical Engineering Department, KingSaud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Correspondence should be addressed to Rizk E. Khidre; and Bakr F. Abdel-Wahab;

Received 7 June 2014; Accepted 18 July 2014; Published 14 August 2014

Academic Editor: Liviu Mitu
COPYRIGHT 2014 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Khidre, Rizk E.; Abdel-Wahab, Bakr F.; Alothman, Othman Y.
Publication:Journal of Chemistry
Article Type:Report
Date:Jan 1, 2014
Previous Article:Reactivity of alkyldibenzothiophenes using theoretical descriptors.
Next Article:Enhanced performance of DSSCs based on the insertion energy level of CdS quantum dots.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |