Printer Friendly

Free Testosterone Reflects Metabolic as well as Ovarian Disturbances in Subfertile Oligomenorrheic Women.

1. Introduction

Polycystic ovary syndrome (PCOS) is very common in women with subfertility and oligomenorrhea [1-3]. Diagnosing PCOS is based on the "Rotterdam criteria": the presence of at least two of the following conditions: ovulatory dysfunction, polycystic ovary morphology (PCOM) on ultrasound, or androgen excess [4]. Although very frequently used, these criteria have important limitations. Due to improved ultrasound imaging, PCOM is often present, also in normally cycling women without other PCOS features. Furthermore, these diagnostic criteria do not take into account metabolic parameters, and patients with clearly different metabolic characteristics are diagnosed under the umbrella term of PCOS [5, 6].

Diagnosing androgen excess in women can also be challenging, as it may be assessed either clinically (hirsutism or acne), biochemically, or both [2, 4]. It remains unclear which androgen(s) should be measured to assess biochemical hyperandrogenemia in women suspected for PCOS [7]. In clinical practice, total testosterone (total T) is frequently used, but measuring total T levels in women by automated immunoassays (IA) is often inaccurate. Instead of IA, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has therefore been proposed as the method of choice for accurate measurement of low testosterone levels in women [8-11]. Also, androstenedione (A4), the steroid precursor of testosterone, has been proposed as a marker of androgen excess in PCOS patients, especially in identifying PCOS patients with a higher metabolic risk [12].

Furthermore, testosterone is mainly bound to sex hormone-binding globulin (SHBG) and albumin. Only a small fraction (1-2%) circulates as nonprotein-boundfree testosterone (free T), and it is only the free T fraction that can enter the cell and exert androgen activity [13].

In a recent best practice summary, free T was proposed as the most sensitive marker for diagnosing androgen excess [10] and equilibrium dialysis as the preferred measurement method. However, this technique is only available in a limited number of reference laboratories [10, 14]. Instead of a direct free T measurement, calculated free T can be used to determine hyperandrogenemia in PCOS patients [9, 10]. Inevitably, these calculations require an accurate measurement of total T and SHBG [2]. Fortunately, when LC-MS/ MS-measured total T is used, there is an excellent correlation between calculated free T and measured free T in women, and calculated free T can be used to evaluate female androgen status [9, 10, 15].

However, to date, only a limited number of studies have investigated the clinical correlates of these newly emerging LC-MS/MS measurements in the appraisal of female androgen status. Specifically, the use of LC-MS/MS-measured total T, A4, and free T (calculated from LC-MS/MS total T) is not well established in the diagnosis of PCOS. Nevertheless, accurately diagnosing hyperandrogenism is important, as women with androgen excess are at increased risk of developing type 2 diabetes and the metabolic syndrome [16].

In this study, we assessed the clinical usefulness of using state-of-the-art LC-MS/MS technology to measure sex steroids in subfertile women with oligomenorrhea and suspected PCOS. Furthermore, associations between total and free testosterone and metabolic and ovarian parameters were analyzed.

2. Methods

2.1. Subjects. 97 women with oligo- or amenorrhea (cycle length > 38 days) were recruited at the Leuven fertility center. All women were screened for pregnancy and congenital adrenal hyperplasia (21-hydroxylase deficiency). Women taking oral contraceptives were excluded. Subjects with hyperprolactinemia (n = 1), newly diagnosed type 2 diabetes (n = 1), active thyroid disease (n = 1), hypothalamic amenorrhea (luteinizing hormone (LH), follicle-stimulating hormone (FSH) below the lower limits of the reference intervals (<2.4 U/L for LH and <3.5 U/L for FSH), n =1), or premature ovarian failure (FSH > 12 U/L) (n = 2) were excluded. Furthermore, 3 women were excluded because of an ovulatory (LH > 40 U/L) or luteal blood sample (progesterone > 1.5 [micro]g/L). In 22 women, there was no serum available for additional sex steroid measurements, and these women were also excluded, leaving 66 women in the study sample (Supplementary Figure 1).

The study protocol was approved by the local ethical board of the University Hospitals Leuven. All patients gave written informed consent.

2.2. Clinical Assessments. At inclusion, weight, height, waist circumference, and blood pressure were recorded for all patients. BMI was calculated from weight and height. Hirsutism was assessed with the simplified Ferriman-Gallwey score, and patients were classified with hirsutism if this score was [greater than or equal to] 3 [17]. Acne was self-reported. Patients with a BMI < 25 kg/[m.sup.2] were classified as having a normal BMI; patients with a BMI between 25 and 29.9 were classified as overweight, and those with a BMI [greater than or equal to] 30 as obese.

2.3. Sex Steroid Measurements by Liquid Chromatography-Tandem Mass Spectrometry. Estradiol (E2) and estrone (E1) were measured by LC-MS/MS as described previously [18]. Total T and A4 were measured by a newly developed LC-MS/MS method. Method details are described in Supplementary Materials. Free testosterone was calculated with the Vermeulen formula [19]. LC-MS/MS measurements were compared with originally reported values by direct immunoassay (Diasorin Gamma Coat) for A4 and electrochemiluminescence immunoassay (ECLIA) on a Modular E platform (Roche Diagnostics) for total T for all patients if available in the medical records (n = 57).

2.4. Other Laboratory Measurements. LH, FSH, progesterone, SHBG, thyroid-stimulating hormone (TSH), dehydroepiandrosterone sulphate (DHEAS), and fasting insulin were measured by ECLIA (Modular E170 from Roche Diagnostics). Anti-Mullerian hormone (AMH) was measured by enzyme-linked immunosorbent assay (ELISA) (Beckman Coulter Gen II). Fasting glucose, total cholesterol, HDL cholesterol, and triglycerides were measured by a colorimetric method (Cobas c702 from Roche Diagnostics). LDL cholesterol was calculated from total cholesterol, HDL cholesterol, and triglycerides by the Friedewald formula [20]. The LH/ FSH ratio was calculated by dividing the LH concentration in U/L by the FSH concentration in U/L. Insulin resistance was calculated using the updated homeostasis model assessment of insulin resistance (HOMA-IR) [21].

2.5. Ovarian Ultrasound. Two-dimensional vaginal ultrasound was performed by an experienced gynaecologist (Voluson E8, GE Healthcare). For both ovaries, the number of antral follicles (AFC) was counted, from which the mean AFC was calculated [22]. For both ovaries, ovarian volume (OV) was calculated (0.5 x length x width x thickness). The mean volume of the left and right ovary was also calculated. Furthermore, follicle localization (random, peripheral, or both) and follicle size (uniform or nonuniform) were registered.

Thirteen patients with a dominant follicle, a corpus luteum, a hemorrhagic cyst, or a history of ovarian surgery or teratoma were additionally excluded when assessing ultrasound parameters. Patients were classified as having PCOM if they had [greater than or equal to] 12 antral follicles (2-9 mm in diameter) in both ovaries and/or an ovarian volume > 10 mL in one or two ovaries [4, 23].

2.6. Polycystic Ovary Syndrome (PCOS) Definition. Polycystic ovary syndrome was defined by the Rotterdam criteria: the presence of at least two of the following criteria: ovulatory dysfunction, PCOM, or biochemical androgen excess [4]. PCOM was defined as discussed above. For androgen excess, total T > 41ng/dL or free T > 0.49ng/dL was used as cut-off [15].

2.7. Statistical Analysis. Spearman rank was used to assess correlations between hormonal measurements. Linear or logistic regression (unadjusted and adjusted for age and BMI) was used to assess associations between androgens, SHBG, and metabolic and ultrasound parameters. Pearson's r was used to assess correlations between LC-MS/MS and immunoassay results and ultrasound parameters. P < 0.05 was considered statistically significant. All analyses were performed using the STATA version 13 (Stata Corp).

3. Results

Age, hormonal, metabolic, and ovarian parameters of patients are reported in Table 1. Correlations between the different hormonal measurements are shown in Table 2. As expected, total T, A4, and free T were strongly correlated with each other. Furthermore, E2 was correlated with total T and A4, whereas E1 was also correlated with free T. LH and LH/FSH ratio were related to total and free T and A4. Furthermore, LC-MS/MS androgen measurements showed a better correlation with ultrasound data than immunoassay measurements (AFC and ovarian volume; r = 0.49 and 0.51 for LC-MS/MS total T; r = 0.42 and 0.41 for immunoassay total T; r = 0.55 and 0.58 for LC-MS/MS A4; r = 0.44 and 0.56 for radioimmunoassay A4, data not shown).

Associations between androgens, SHBG, and metabolic and ultrasound parameters are shown in Table 3. Total T, A4, and free T closely reflected ovarian volume and AFC in oligomenorrheic subfertile patients, independent of BMI. Neither total T nor A4 was related to BMI, insulin, or insulin resistance. In contrast, increasing free T or decreasing SHBG concentrations were associated with a higher BMI, as well as higher insulin levels and insulin resistance, but this association disappeared after adjusting for BMI. After adjusting for age and BMI, total testosterone was associated with total cholesterol and LDL cholesterol. There were no significant associations between free T and lipid measurements after adjustments for age and BMI.

Thirty-seven women (56%) had normal free T ([less than or equal to] 0.49 ng/ dL), and 29 women (44%) had high free T (>0.49ng/dL) (Table 4). Total T, A4, LH, and LH/FSH levels were higher in women with high free T, whereas SHBG was lower. All the observed differences remained significant after adjusting for age and BMI (Table 4). Women with high free T had a higher BMI, had higher insulin levels, and were more insulin-resistant. However, the associations between free T and insulin or HOMA-IR disappeared after adjusting for age and BMI. Furthermore, patients with high free T had a higher AMH level, a higher mean ovarian volume, and an increased number of antral follicles, also after adjusting for age and BMI (Table 4). In Supplementary Table 1, the same comparisons were made between women with normal total T ([less than or equal to] 41 ng/dL) and high total T (>41 ng/dL).

4. Discussion

In our study, total T, A4, and free T closely reflected ovarian volume and AFC in oligomenorrheic subfertile patients with suspected PCOS. However, neither total T nor A4 was related to BMI, insulin, or insulin resistance. In contrast, increasing free T concentrations was associated with a higher BMI, as well as higher insulin levels and insulin resistance [24], but this association disappeared after adjusting for BMI.

This link between free T and metabolic parameters can, at least partly, be explained by the impact of BMI on SHBG levels. As expected, SHBG was inversely associated with BMI, and it is well known that SHBG levels decrease in obesity, both in men and women. In women, an obesity-related decrease in SHBG is accompanied by a higher free T. This is in contrast to obese men, in whom a decrease in SHBG is accompanied by a decrease in total T, whereas free T remains normal or slightly decreases [25, 26]. Furthermore, SHBG levels in women are two to three times higher than in men, as is the number of unoccupied SHBG steroid-binding sites (up to 80% in women versus 45% in men) [27, 28]. Hence, the sex steroid buffering capacity of SHBG is higher in women than in men, and the main function of SHBG in women is protection against high free androgen levels [29]. Thus, when SHBG levels decrease with increasing BMI, this buffering capacity is breached, eventually leading to increasing free T concentrations and androgen excess. It is therefore likely that even slight changes in the biological availability of androgens may have clinical consequences in women.

Furthermore, free T was positively correlated with LH and LH/FSH ratio, and women with high free T have higher LH and a higher LH/FSH ratio compared to women with normal free T, independent of BMI. Androgen excess can dysregulate hypothalamic-pituitary-ovarian axis function by disrupting normal GnRH pulse frequency. As a result, pituitary LH production increases, while FSH remains inadequately low, eventually hampering cyclic ovarian estradiol and progesterone production [30]. Oligomenorrhea and ovulatory dysfunction may thus be early clinical signs of androgen excess. Moreover, women with high free T levels had a higher AMH, higher ovarian volume, and higher AFC, independent of BMI. Thus, women with high free T have numerous characteristics of PCOS: ovarian aspects (an increase in AMH as well as ultrasound features), hormonal aspects (a higher LH/FSH ratio), and also metabolic aspects (BMI, insulin levels, and insulin resistance). A similar analysis for women with high total T showed nonsignificant unadjusted P values for metabolic parameters (BMI, insulin levels, and insulin resistance; P = 0.382, 0.639, and 0.632, resp.).

Our study has several strengths. All sex steroids were measured by a sensitive LC-MS/MS method, suitable for precise measurement of low testosterone concentrations in women. In concordance with literature [11, 15], direct immunoassay results misclassified almost 1 out of 4 patients as compared to LC-MS/MS measurements, reflecting the non-ideal correlation for total T as well as A4 (Pearson's r = 0.77 and 0.68, resp.). This further supports the use of validated LC-MS/MS methods in evaluating women for biochemical hyperandrogenemia [15, 31]. In addition, extensive sample pretreatment is not needed and only 200 [micro]L of serum is required; therefore, our LC-MS/MS method is applicable for measuring total T and A4 in routine clinical practice. Furthermore, in all patients, ovarian ultrasound was rigorously performed, and observations were recorded in a standardized manner. Additionally, a broad range of hormonal and metabolic parameters was registered.

However, some limitations need to be considered. Our study sample is relatively small, and only oligomenorrheic patients consulting a university fertility center were included. Although 45% of patients are overweight or obese, most patients have a favorable metabolic profile. Our findings therefore need validation in other patient groups. Due to the cross-sectional and observational design of the study, we cannot discriminate between cause and effect.

In conclusion, assessing SHBG and free testosterone is important in evaluating androgen excess in subfertile women with ovulatory dysfunction and suspected PCOS, as it reflects both ovarian and metabolic disturbances.

https://doi.org/10.1155/2018/7956951

Conflicts of Interest

The authors declare that they have no conflict of interest. Laurent M. R. is a fellow of the Research Foundation Flanders (FWO). Vermeersch P. is a senior clinical investigator of the Research Foundation Flanders (FWO).

Authors' Contributions

Antonio L. and Pauwels S. contributed equally to this work, and also, Vermeersch P. and Vanderschueren D. contributed equally to this work.

Acknowledgments

The authors thank all the women who participated in the study. The authors thank their study coordinators Katja Servaes and Myriam Welkenhuysen. The authors thank Nele Peersman for the sex steroid measurements. This work was supported by a grant from the Fund for Scientific Research Flanders (FWO-Vlaanderen Grant no.G085413N) and by a research grant from the University of Leuven (KU Leuven GOA/15/017). Pauwels S. was supported by the Fund for Clinical Research from the University Hospitals Leuven.

Supplementary Materials

Supplementary Figure 1: flow chart of participants. Supplementary text: detailed description of liquid chromatographytandem mass spectrometry method for serum total testosterone and androstenedione. Supplementary Table 1: comparison of normal versus high total testosterone. (Supplementary Materials)

References

[1] M. Dhont, "WHO-classification of anovulation: background, evidence and problems," International Congress Series, vol. 1279, pp. 3-9, 2005.

[2] C. N. Jayasena and S. Franks, "The management of patients with polycystic ovary syndrome," Nature Reviews Endocrinology, vol. 10, no. 10, pp. 624-636, 2014.

[3] F. J. Broekmans, E. A. H. Knauff, O. Valkenburg, J. S. Laven, M. J. Eijkemans, and B. C. J. M. Fauser, "PCOS according to the Rotterdam consensus criteria: change in prevalence among WHO-II anovulation and association with metabolic factors," BJOG, vol. 113, no. 10, pp. 1210-1217, 2006.

[4] R. S. Legro, S. A. Arslanian, D. A. Ehrmann et al., "Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline," The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 12, pp. 4565-4592, 2013.

[5] E. Diamanti-Kandarakis and A. Dunaif, "Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications," Endocrine Reviews, vol. 33, no. 6, pp. 981-1030, 2012.

[6] C. Alviggi, A. Conforti, P. de Rosa et al., "The distribution of stroma and antral follicles differs between insulin-resistance and hyperandrogenism-related polycystic ovarian syndrome," Frontiers in Endocrinology, vol. 8, p. 117, 2017.

[7] J. H. Barth, E. Yasmin, and A. H. Balen, "The diagnosis of polycystic ovary syndrome: the criteria are insufficiently robust for clinical research," Clinical Endocrinology, vol. 67, no. 6, pp. 811-815, 2007.

[8] W. Rosner, R. J. Auchus, R. Azziz, P. M. Sluss, and H. Raff, "Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement," The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 405-413, 2007.

[9] G. Conway, D. Dewailly, E. Diamanti-Kandarakis et al., "The polycystic ovary syndrome: a position statement from the European Society of Endocrinology," European Journal of Endocrinology, vol. 171, no. 4, pp. P1-29, 2014.

[10] N. F. Goodman, R. H. Cobin, W. Futterweit et al., "American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome part 1," Endocrine Practice, vol. 21, no. 11, pp. 1291-1300, 2015.

[11] W. M. Groenestege, H. N. Bui, J. T. Kate et al., "Accuracy of first and second generation testosterone assays and improvement through sample extraction," Clinical Chemistry, vol. 58, no. 7, pp. 1154-1156, 2012.

[12] M. W. O'Reilly, A. E. Taylor, N. J. Crabtree et al., "Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione," The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 3, pp. 1027-1036, 2014.

[13] G. L. Hammond, "Access of reproductive steroids to target tissues," Obstetrics and Gynecology Clinics of North America, vol. 29, no. 3, pp. 411-423, 2002.

[14] M. Le, D. Flores, D. May, E. Gourley, and A. K. Nangia, "Current practices of measuring and reference range reporting of free and total testosterone in the United States," The Journal of Urology, vol. 195, no. 5, pp. 1556-1561, 2015.

[15] F. Tosi, T. Fiers, J. M. Kaufman et al., "Implications of androgen assay accuracy in the phenotyping of women with polycystic ovary syndrome," The Journal of Clinical Endocrinology and Metabolism, vol. 101, no. 2, pp. 610-618, 2016.

[16] N. M. Daan, Y. V. Louwers, M. P. H. Koster et al., "Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk?," Fertility and Sterility, vol. 102, no. 5, pp. 1444-1451.e3, 2014.

[17] H. Cook, K. Brennan, and R. Azziz, "Reanalyzing the modified Ferriman-Gallwey score: is there a simpler method for assessing the extent of hirsutism?," Fertility and Sterility, vol. 96, no. 5, pp. 1266-1270.e1, 2011.

[18] S. Pauwels, L. Antonio, I. Jans et al., "Sensitive routine liquid chromatography-tandem mass spectrometry method for serum estradiol and estrone without derivatization," Analytical and Bioanalytical Chemistry, vol. 405, no. 26, pp. 8569-8577, 2013.

[19] A. Vermeulen, L. Verdonck, and J. M. Kaufman, "A critical evaluation of simple methods for the estimation of free testosterone in serum," The Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3666-3672, 1999.

[20] W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, "Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge," Clinical Chemistry, vol. 18, no. 6, pp. 499-502, 1972.

[21] J. C. Levy, D. R. Matthews, and M. P. Hermans, "Correct homeostasis model assessment (HOMA) evaluation uses the computer program," Diabetes Care, vol. 21, no. 12, pp. 2191-2192, 1998.

[22] F. J. Broekmans, D. de Ziegler, C. M. Howles, A. Gougeon, G. Trew, and F. Olivennes, "The antral follicle count: practical recommendations for better standardization," Fertility and Sterility, vol. 94, no. 3, pp. 1044-1051, 2010.

[23] A. H. Balen, J. S. E. Laven, S. L. Tan, and D. Dewailly, "Ultrasound assessment of the polycystic ovary: international consensus definitions," Human Reproduction Update, vol. 9, no. 6, pp. 505-514, 2003.

[24] E. Lerchbaum, V. Schwetz, T. Rabe, A. Giuliani, and B. Obermayer-Pietsch, "Hyperandrogenemia in polycystic ovary syndrome: exploration of the role of free testosterone and androstenedione in metabolic phenotype," PLoS One, vol. 9, no. 10, article e108263, 2014.

[25] L. Antonio, F. C. W. Wu, T. W. O'Neill et al., "Low free testosterone is associated with hypogonadal signs and symptoms in men with normal total testosterone," The Journal of Clinical Endocrinology and Metabolism, vol. 101, no. 7, pp. 2647-2657, 2016.

[26] F. C. Wu, A. Tajar, S. R. Pye et al., "Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study," The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2737-2745, 2008.

[27] G. L. Hammond, T. S. Wu, and M. Simard, "Evolving utility of sex hormone-binding globulin measurements in clinical medicine," Current Opinion in Endocrinology, Diabetes, and Obesity, vol. 19, no. 3, pp. 183-189, 2012.

[28] G. L. Hammond, "Diverse roles for sex hormone-binding globulin in reproduction," Biology of Reproduction, vol. 85, no. 3, pp. 431-441, 2011.

[29] M. R. Laurent, G. L. Hammond, M. Blokland et al., "Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis," Scientific Reports, vol. 6, no. 1, article 35539, 2016.

[30] S. K. Blank, C. R. McCartney, and J. C. Marshall, "The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome," Human Reproduction Update, vol. 12, no. 4, pp. 351-361, 2006.

[31] R. M. Buttler, F. Martens, F. Fanelli et al., "Comparison of 7 published LC-MS/MS methods for the simultaneous measurement of testosterone, androstenedione, and dehydroepiandrosterone in serum," Clinical Chemistry, vol. 61, no. 12, pp. 1475-1483, 2015.

L. Antonio [ID], (1,2) S. Pauwels, (3,4) M. R. Laurent, (5) D. Vanschoubroeck, (6) I. Jans, (3) J. Billen, (3) F. Claessens [ID], (5) B. Decallonne [ID], (1,2) Diane De Neubourg, (7) P. Vermeersch, (3,4) and D. Vanderschueren [ID] (1,2,3)

(1) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium

(2) Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium

(3) Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium

(4) Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium

(5) Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium

(6) Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium

(7) Department of Reproductive Medicine, Antwerp University Hospital, Edegem, Belgium

Correspondence should be addressed to D. Vanderschueren; dirk.vanderschueren@uzleuven.be

Received 27 November 2017; Revised 8 February 2018; Accepted 28 June 2018; Published 10 September 2018

Academic Editor: Amerigo Vitagliano
Table 1: Biochemistry, hyperandrogenism, metabolic and ovarian
parameters, and PCOS diagnosis for 66 women with oligomenorrhea.

                                 Mean (SD)
                                  or n (%)

Age                              28.3 (3.0)
Biochemistry
  Total T (ng/dL)               46.5 (23.7)
  A4 (ng/dL)                      180 (90)
  Free T (ng/dL)                0.57 (0.37)
  SHBG (nmol/L)                 70.1 (32.6)
  E2 (ng/L)                     59.2 (50.6)
  E1 (ng/L)                     61.9 (33.4)
  LH (U/L)                       9.4 (4.8)
 FSH (U/L)                       5.8 (1.3)
  LH/FSH                         1.6 (0.9)
 DHEAS ([micro]g/dL)              212 (91)
  AMH (ng/mL)                    8.4 (5.4)
Clinical hyperandrogenism
  Hirsutism score                2.1 (2.4)
  Having hirsutism                21 (33%)
  Having acne                     28 (44%)
Metabolic parameters
  BMI                            25.0 (5.2)
    % normal BMI                 36 (54.6%)
    % overweight                 21 (31.8%)
    % obese                      9 (13.6%)
  Waist circumference (cm)      86.4 (13.3)
  Glucose (mg/dL)               92.2 (15.7)
  Insulin (pmol/L)              67.4 (40.6)
  HOMA-IR                       1.25 (0.74)
  Total cholesterol (mg/dL)     174.6 (29.6)
  HDL cholesterol (mg/dL)       52.0 (14.2)
  LDL cholesterol (mg/dL)       104.6 (25.0)
  Triglycerides (mg/dL)         90.1 (50.2)
Ovarian ultrasound
parameters (n = 53)
  Mean ovarian volume (mL)       10.0 (4.1)
  Mean number of antral         31.0 (14.8)
  follicles
  Follicle localization
    Random                        29 (59%)
    Peripheral                    18 (37%)
    Random and peripheral          2 (4%)
  Follicle size
    Uniform                       16 (37%)
    Nonuniform                    27 (63%)
  % of women meeting              49 (92%)
  PCOM criteria
PCOS diagnosis (n = 53)
  Having PCOS                     49 (92%)
    Oligomenorrhea +              24 (49%)
    PCOM + high total T
    Oligomenorrhea +              25 (51%)
    PCOM + normal total T

                                          Reference
                                           interval

Age
Biochemistry
  Total T (ng/dL)                 [less than or equal to] 41
  A4 (ng/dL)                      [less than or equal to] 240
  Free T (ng/dL)                 [less than or equal to] 0.49
  SHBG (nmol/L)                             41-103
  E2 (ng/L)                                 15-350
  E1 (ng/L)                                 17-200
  LH (U/L)                                 2.4-12.6
 FSH (U/L)                                 3.5-12.5
  LH/FSH
 DHEAS ([micro]g/dL)                       98.8-340
  AMH (ng/mL)                               1.0-9.5
Clinical hyperandrogenism
  Hirsutism score                             <3
  Having hirsutism
  Having acne
Metabolic parameters
  BMI                                      18.5-24.9
    % normal BMI
    % overweight
    % obese
  Waist circumference (cm)                    <80
  Glucose (mg/dL)                           80-110
  Insulin (pmol/L)                         17.8-173
  HOMA-IR
  Total cholesterol (mg/dL)       [less than or equal to] 190
  HDL cholesterol (mg/dL)        [greater than or equal to] 45
  LDL cholesterol (mg/dL)         [less than or equal to] 115
  Triglycerides (mg/dL)           [less than or equal to] 150
Ovarian ultrasound
parameters (n = 53)
  Mean ovarian volume (mL)        [less than or equal to] 10
  Mean number of antral                       <12
  follicles
  Follicle localization
    Random
    Peripheral
    Random and peripheral
  Follicle size
    Uniform
    Nonuniform
  % of women meeting
  PCOM criteria
PCOS diagnosis (n = 53)
  Having PCOS
    Oligomenorrhea +
    PCOM + high total T
    Oligomenorrhea +
    PCOM + normal total T

                                  Limit of
                                quantification

Age
Biochemistry
  Total T (ng/dL)                    2.5
  A4 (ng/dL)                         2.5
  Free T (ng/dL)
  SHBG (nmol/L)                      2.0
  E2 (ng/L)                          1.3
  E1 (ng/L)                          1.2
  LH (U/L)                           0.1
 FSH (U/L)                           0.1
  LH/FSH
 DHEAS ([micro]g/dL)                 0.1
  AMH (ng/mL)                        0.03
Clinical hyperandrogenism
  Hirsutism score
  Having hirsutism
  Having acne
Metabolic parameters
  BMI
    % normal BMI
    % overweight
    % obese
  Waist circumference (cm)
  Glucose (mg/dL)                     2
  Insulin (pmol/L)                   0.3
  HOMA-IR
  Total cholesterol (mg/dL)          3.9
  HDL cholesterol (mg/dL)            3.1
  LDL cholesterol (mg/dL)
  Triglycerides (mg/dL)              8.8
Ovarian ultrasound
parameters (n = 53)
  Mean ovarian volume (mL)
  Mean number of antral
  follicles
  Follicle localization
    Random
    Peripheral
    Random and peripheral
  Follicle size
    Uniform
    Nonuniform
  % of women meeting
  PCOM criteria
PCOS diagnosis (n = 53)
  Having PCOS
    Oligomenorrhea +
    PCOM + high total T
    Oligomenorrhea +
    PCOM + normal total T

For ultrasound parameters and PCOS definition: 13 patients
were additionally excluded (see Methods). Total T: total
testosterone; A4: androstenedione; E2: estradiol; E1: estrone;
free T: calculated free testosterone; SHBG: sex hormone-binding
globulin; LH: luteinizing hormone; FSH: follicle-stimulating
hormone; DHEAS: dehydroepiandrosterone sulphate; AMH: anti-
Mullerian hormone; BMI: body mass index; HOMA-IR: homeostasis
model assessment of insulin resistance; PCOM: polycystic
ovary morphology.

Table 2: Correlation matrix.

           Total T     A4     Free T    SHBG

Total T       1
A4         0.92 *      1
Free T     0.82 *    0.83 *      1
SHBG        -0.05    -0.21    -0.58 *     1
E2         0.45 *    0.42 *    0.30     0.11
E1         0.54 *    0.60 *   0.47 *    -0.12
LH         0.59 *    0.57 *   0.51 *    -0.06
FSH         -0.10    -0.14     -0.28    0.35
LH/FSH     0.61 *    0.61 *   0.62 *    -0.21

Data are reported as Spearman's [rho]. * P < 0.05 after the Bonferroni
correction.
Total T: total testosterone; A4: androstenedione; free T: calculated
free testosterone; SHBG: sex hormone-binding globulin; E2: estradiol;
E1: estrone; LH: luteinizing hormone; FSH: follicle-stimulating
hormone.

Table 3: Associations between androgens and SHBG and metabolic
and ovarian parameters.

                 Adjustments        Total T               A4

BMI              Unadjusted          1.06                1.17
                                (-0.13, 2.24)       (-0.001, 2.34)
                                     1.06                1.17
                     Age         (-0.13, 2.25)       (-0.01, 2.35)

Glucose          Unadjusted          0.07                0.25
                                (-1.68, 1.81)       (-1.50, 1.99)
                                    -0.19               -0.01
                 Age and BMI     (-1.95, 1.57)       (-1.78, 1.76)

Insulin          Unadjusted          3.89                4.53
                                (-5.67, 13.45)      (-4.98, 14.04)
                                     -0.79               -0.63
                 Age and BMI     (-8.33, 6.76)       (-8.19, 6.94)

HOMA-IR          Unadjusted          0.08                0.09
                                (-0.10, 0.25)       (-0.09, 0.27)
                                    -0.01               0.001
                 Age and BMI     (-0.14, 0.13)       (-0.14, 0.14)

Total            Unadjusted          9.95                7.22
cholesterol                    (3.56, 16.33) **     (0.64-13.80) *
                                     8.90                6.00
                 Age and BMI   (2.41, 15.38) **     (-0.70, 12.71)

HDL              Unadjusted          1.24                0.09
cholesterol                      (-2.03, 4.52)       (-3.19, 3.37)
                                     1.88                0.80
                 Age and BMI     (-1.27, 5.03)       (-2.39, 3.98)

LDL              Unadjusted          7.17                5.96
cholesterol                     (1.66, 12.67) *     (0.39, 11.52) *
                                     6.01                4.67
                 Age and BMI    (0.45, 11.57) *     (-0.98, 10.32)

Triglycerides    Unadjusted          7.69                5.88
                                (-3.78, 19.17)      (-5.62, 17.37)
                                     5.04                2.65
                 Age and BMI    (-6.04, 16.12)      (-8.50, 13.80)

AMH              Unadjusted          0.08                0.08
                                (0.03, 0.12) **     (0.03, 0.12) **
                                     0.07                0.08
                 Age and BMI    (0.03, 0.12) **     (0.03, 0.12) **

AFC              Unadjusted          0.04                0.05
                               (0.03, 0.06) ***    (0.03, 0.06) ***
                                     0.04                0.05
                 Age and BMI   (0.03, 0.06) ***    (0.03, 0.06) ***

                 Adjustments         Free T

BMI              Unadjusted          2.09
                               (0.98, 3.19) ***
                                      2.12
                     Age        (1.00, 3.23) ***

Glucose          Unadjusted          0.02
                                 (-0.02, 0.06)
                                     0.01
                 Age and BMI     (-0.03, 0.05)

Insulin          Unadjusted          0.01
                                (0.002, 0.02) *
                                     0.001
                 Age and BMI     (-0.007, 0.01)

HOMA-IR          Unadjusted          0.48
                                (0.10, 0.85) *
                                     0.11
                 Age and BMI     (-0.38, 0.60)

Total            Unadjusted           0.01
cholesterol                      (0.001, 0.02)*
                                      0.01
                 Age and BMI     (-0.003, 0.01)

HDL              Unadjusted          -0.01
cholesterol                      (-0.03, 0.01)
                                     -0.004
                 Age and BMI     (-0.02, 0.01)

LDL              Unadjusted           0.01
cholesterol                     (0.001, 0.02) *
                                      0.01
                 Age and BMI     (-0.004, 0.02)

Triglycerides    Unadjusted           0.01
                                (0.001, 0.01) *
                                     0.005
                 Age and BMI    (-0.0004, 0.01)

AMH              Unadjusted           0.06
                                (0.02, 0.11) **
                                      0.06
                 Age and BMI    (0.02, 0.10) **

AFC              Unadjusted           0.04
                                (0.02, 0.05) ***
                                      0.04
                 Age and BMI    (0.02, 0.05) ***

                 Adjustments           SHBG

BMI              Unadjusted           -2.89
                               (-4.16, -1.61) ***
                                      -2.92
                     Age        (-4.21, -1.64) ***

Glucose          Unadjusted           -1.50
                                  (-3.64, 0.65)
                                      -0.90
                 Age and BMI      (-3.40, 1.61)

Insulin          Unadjusted          -19.39
                               (-30.20, -8.58) **
                                      -5.52
                 Age and BMI      (-16.16, 5.13)

HOMA-IR          Unadjusted           -0.36
                                (-0.55, -0.16) **
                                      -0.10
                 Age and BMI      (-0.29, 0.09)

Total            Unadjusted            1.92
cholesterol                       (-6.35, 10.20)
                                       8.19
                 Age and BMI      (-0.95, 17.31)

HDL              Unadjusted            4.65
cholesterol                       (0.84, 8.47) *
                                       4.42
                 Age and BMI      (0.22, 8.62) *

LDL              Unadjusted            0.08
cholesterol                       (-6.93, 7.08)
                                       5.51
                 Age and BMI      (-2.23, 13.25)

Triglycerides    Unadjusted           -14.03
                                (-27.68, -0.39) *
                                       -8.7
                 Age and BMI      (-23.76, 6.35)

AMH              Unadjusted           -0.01
                                  (-0.05, 0.03)
                                      -0.01
                 Age and BMI      (-0.05, 0.03)

AFC              Unadjusted           -0.01
                                  (-0.03, 0.005)
                                      -0.01
                 Age and BMI      (-0.02, 0.003)

Linear regression with adjustments for age and BMI. Data are
reported as ? coefficients with 95% confidence interval per
standard deviation increase in androgen/SHBG. * P < 0 05,
** P < 0 01, *** P < 0 001. T: testosterone; A4: androstenedione;
SHBG: sex hormone-binding globulin; BMI: body mass index;
HOMA-IR: homeostasis model assessment of insulin resistance;
AMH: anti-Mullerian hormone; AFC: antral follicle count.

Table 4: Comparison of normal versus high free T in the study sample.

                                Free T [less
                              than or equal to]      Free T >
                                 0.49 ng/dL;        0.49 ng/dL;
                                 n = 37 (56%)      n = 29 (44%)

Clinical parameters
  Age                             28.6 (2.4)        28.0 (3.7)
  Hirsutism score                 1.5 (1.9)          2.9 (2.8)
  Having hirsutism (%)             9 (25%)          12 (42.9%)
  Having acne (%)                  16 (46%)          12 (41%)
Hormones
  Total T (ng/dL)                33.3 (14.7)        63.3 (22.5)
  A4 (ng/dL)                       127 (52)          247 (83)
  Free T (ng/dL)                 0.32 (0.12)        0.90 (0.33)
  SHBG (nmol/L)                  85.1 (33.0)        50.9 (19.6)
  E2 (ng/L)                      56.7 (48.9)        62.3 (53.3)
  E1 (ng/L)                      54.7 (31.5)        71.1 (34.0)
  LH (U/L)                        7.9 (3.9)         11.3 (5.3)
  LH/FSH                          1.3 (0.7)          2.1 (0.9)
  AMH (ng/mL)                     6.9 (4.5)         10.7 (5.9)
Metabolic parameters
  BMI                             23.3 (4.3)        27.2 (5.5)
    % normal BMI                   24 (65%)          12 (41%)
    % overweight                   11 (30%)          10 (34%)
    % obese                         2 (5%)            7 (24%)
  Glucose (mg/dL)                 89.8 (8.0)        91.3 (6.6)
  Insulin (pmol/L)               55.8 (31.6)        82.6 (46.3)
  HOMA-IR                        1.03 (0.57)        1.53 (0.85)
Ovarian parameters
  Mean ovarian volume (mL)        8.0 (2.8)         12.2 (4.2)
  Mean AFC                       23.9 (10.5)        39.1 (15.0)
  Follicle localization
    Random                         23 (74%)          10 (42%)
    Peripheral                     7 (23%)           13 (54%)
    Random + peripheral             1 (3%)            1 (4%)
  Follicle size
    Uniform                        6 (21%)           12 (60%)
    Nonuniform                     23 (79%)           8 (40%)
  % of women with PCOM             27 (87%)          27 (100%)

                                             P value
                               P value       (age and
                              unadjusted   BMI adjusted)

Clinical parameters
  Age                           0.419
  Hirsutism score               0.029          0.262
  Having hirsutism (%)          0.131          0.515
  Having acne (%)               0.728          0.902
Hormones
  Total T (ng/dL)               <0.001        <0.001
  A4 (ng/dL)                    <0.001        <0.001
  Free T (ng/dL)                <0.001        <0.001
  SHBG (nmol/L)                 <0.001         0.001
  E2 (ng/L)                     0.657          0.878
  E1 (ng/L)                     0.047          0.131
  LH (U/L)                      0.005          0.008
  LH/FSH                        <0.001         0.001
  AMH (ng/mL)                   0.007          0.005
Metabolic parameters
  BMI                           0.003
    % normal BMI
    % overweight
    % obese
  Glucose (mg/dL)               0.451          0.911
  Insulin (pmol/L)              0.010          0.450
  HOMA-IR                       0.008          0.408
Ovarian parameters
  Mean ovarian volume (mL)      <0.001        <0.001
  Mean AFC                      <0.001        <0.001
  Follicle localization         0.047
    Random
    Peripheral
    Random + peripheral
  Follicle size                 0.007
    Uniform
    Nonuniform
  % of women with PCOM          0.053

Data are reported as mean (standard deviation) for continuous
variables or as n (percentage) for categorical variables.
Linear or logistic regression was used to assess differences
between groups (unadjusted, adjusted for age, and BMI).
Total T: total testosterone; A4: androstenedione; free T:
calculated free testosterone; SHBG: sex hormone-binding
globulin; E2: estradiol; E1: estrone; LH: luteinizing hormone;
FSH: follicle-stimulating hormone; HOMA-IR: homeostasis model
assessment of insulin resistance; AFC: antral follicle count;
PCOM: polycystic ovarian morphology.
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Antonio, L.; Pauwels, S.; Laurent, M.R.; Vanschoubroeck, D.; Jans, I.; Billen, J.; Claessens, F.; De
Publication:International Journal of Endocrinology
Geographic Code:4EUBL
Date:Jan 1, 2018
Words:5811
Previous Article:Effects of Vitamin D Supplementation on Glucose and Insulin Homeostasis and Incident Diabetes among Nondiabetic Adults: A Meta-Analysis of Randomized...
Next Article:Adiponectin: A New Regulator of Female Reproductive System.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |