Printer Friendly

Fossil record and age of the Asteridae.

Abstract The Asteridae is a group of some 80,000 species of flowering plants characterized by their fused corollas and iridoid compounds. Recent phylogenetic analyses have helped delimit the group and have identified four main clades within it; Cornales, Ericales, Lamiids and Campanulids, with the last two collectively known as the Euasteridae. A search for the oldest fossils representing asterids yielded a total of 261 records. Each of these fossils was evaluated as to the reliability of its identification. The oldest accepted fossils for each clade were used to estimate minimum ages for the whole of the Asteridae. The results suggest that the Asteridae dates back to at least the Turonian, Late Cretaceous (89.3 mya) and that by the Late Santonian-Early Campanian (83.5 mya) its four main clades were already represented in the fossil record.

Resumen Las Asteridas son un grupo de unas 80,000 especies de plantas con flor caracterizadas por sus corolas fusionadas y compuestos iridoides. Analisis filogeneticos recientes han ayudado a delimitar al grupo y han identificado cuatro clados principales en el; Cornales, Ericales, Lamiidas y Campanulidas, con las ultimas dos conocidas colectivamente como Euasteridas. Una busqueda por los fosiles mas antiguos que representan asteridas produjo un total de 261 registros. Cada uno de estos fosiles fue evaluado en cuanto a la confiabilidad de su identificacion. Los fosiles aceptados mas antiguos de cada clado se usaron para estimar edades minimas para las Asteridas. Los resultados sugieren que las Asteridas datan al menos del Turoniano, Cretacico Tardio (89.3 ma) y que para el Santoniano Tardio-Campaniano Temprano (83.5 ma) sus cuatro clados principales ya estaban representados en el registro fosil.

Keywords Asteridae * Campanulids * Euasteridae * Fossil. Lamiids * Minimum Age

Introduction

The Asteridae

The Asteridae is a group of flowering plants characterized by their fused corollas and iridoid compounds (Bremer et al., 2002). This group has been recognized by botanists since the eighteenth century, receiving names such as the Monopetalae, Gamopetalae or Sympetalae (Wagenitz, 1992) all of which allude to the characteristic connate corolla. In more recent times, classification systems based on morphology such as those of Cronquist (1981) and Yakhtajan (1997), recognized relationships among several families displaying these characters and placed them in the similar subclass(es): Asteridae in the case of Cronquist (1981) and Asteridae, Lamiidae and Cornidae of Takhtajan (1997). With the advent of molecular systematics, the delimitation of the group has become clearer (Chase et al., 1993; Savolainen et al., 2000; Soltis et al., 2000; APG, 1998, 2003, 2009). Most of the taxa that Cronquist (1981) and Takhtajan (1997) placed in their Asteridae or separately in the Asteridae, Lamiidae and Cornidae are still accommodated in the current concept of Asteridae, but several other taxa traditionally placed in the Dillenidae and Rosidae have also been proven to be asterids (compare the three classification systems in "Appendix A"). This new, expanded and redefined Asteridae includes some 80,000 species in 102-106 families, that is, about 1/3-1/4 of all angiosperm species (APG, 1998, 2003, 2009; Bremer et al., 2002).

The Asteridae as defined today is a remarkable group in many respects; for example, two of its families, Asteraceae (=Compositae, sunflower family) and Rubiaceae (coffee family) are among the most biodiverse plant families in terms of number of species. From an ecological and evolutionary point of view, Asteraceae (the sunflower family), Campanulaceae / Lobeliaceae (the bell-flower family) and Apocynaceae / Asclepiadaceae (the milkweed family) have some of the most specialized pollen presentation mechanisms in the plant kingdom. And from an economical perspective, important crops and other widely cultivated plants are asterids: tomato, potato, chili pepper, eggplant, tobacco (Solanaceae), tea (Theaceae), carrot, caraway, celery, dill (Apiaceae), oregano, thyme, sage, mint (Lamiaceae), sunflower, lettuce, artichoke (Asteraceae), coffee (Rubiaceae), blueberries and cranberries (Erieaceae).

Phylogenetic works focusing on all or parts of the Asteridae have substantially increased over the last few years (i.e. Hufford, 1992; Olmstead et al., 1992, 1993; Albach et al., 2001; Bremer et al., 2001, 2002; Lundberg & Bremer, 2003; Zhang et al., 2003; Chandler & Plunkett, 2004; Albach et al., 1998, 2005; Oxelman et al., 2005; Geuten et al., 2004; Schonenberger et al., 2005, etc) and have provided us with a more robust and better supported hypothesis of relationships among the asterid taxa. The most comprehensive study to date is that of Bremer et al. (2002) who focused on the whole of the Asteridae and included 132 genera in their analysis of six chloroplast markers (Fig. 1). Their results, although consistent with previous studies that focused on all flowering plants (e.g. Chase et al., 1993; Savolainen et al., 2000; Soltis et al., 2000), are an important contribution towards resolving and understanding of the relationships among asterid lineages.

Bremer et al. (2002) identified four main clades (Fig. 1): Cornales, Ericales, Lamiids and Campanulids. Cornales is sister to the rest of the Asteridae; Ericales is sister to the largest clade, the Euasteridae, formed by the Lamiids (formerly Euasterid I) and the Campanulids (formerly Euasterid II). The Euasteridae is where most of the diversity of the group is found (42.91% of all extant eudicot species [Magallon et al., 1999]).

[FIGURE 1 OMITTED]

Fossil Record of the Asteridae

Although the importance of the Asteridae has attracted attention in many areas of research and nearly 1/3 of all angiosperm species are asterids, their fossil record is not as extensive or even reflective of their extant diversity, especially in the large euasterid clade (sensu Soltis et al., 2000, APG, 2003 and Bremer et al., 2002). Moreover, with the exception of selected families (e.g. Eucommiaceae by Call & Dilcher, 1997, Symplocaceae by Kirchheimer, 1949 and Mai & Martinetto, 2006 or Comaceae by Manchester, 2002), the relatively scarce fossil record of the group has never undergone specialized systematic revision or comprehensive treatment. For the most part, reports of fossils identified as asterids are scattered in paleofloral treatments, preliminary reports and short communications. As an additional problem, most of the reports are old--19th or early 20th Century--and poorly documented.

Estimating Ages of Divergence

Ever since the development of the concept of the molecular clock (Zuckerkandl & Pauling, 1962, 1965; Langley & Fitch, 1974) and of stochastic changes in the genome not subject to natural selection (i.e. neutral theory of molecular evolution (Kimura, 1983)), estimation of ages of divergence have no longer been the exclusive province of paleontology. Fossils alone do not pinpoint the place and time of origin of natural groups any more; instead they are used in conjunction with methods that incorporate the current knowledge of molecular evolution and the vast reservoir of genomic data available. In recent years, with the increase in computational power, correlated new algorithms, and the better understanding of genome evolution and of phylogenetics, the interest in molecular dating has increased at an unprecedented rate (see Bromham & Penny, 2003; Sanderson et al., 2004; Welch & Bromham, 2005 for reviews).

Today, it is widely accepted that genes do not necessarily evolve in a clock-like manner--i.e, according to a strict molecular clock sensu Langley and Fitch (1974)--and that different rates of evolution can be found in different genes, in different partitions and/or on different lineages (Sanderson, 2002). This has led to the development of techniques or methods that, coupled with those that estimate phylogenies themselves, give an estimate of timing in the divergence of lineages (clades) not based on a fixed molecular evolution rate. For example, Sanderson (1997) proposed NPRS (NonParametric Rate Smoothing), a method based on the assumption that evolutionary rates are not clock-like and can change from lineage to lineage (the estimation of that change is highly dependent on the rates of the descendant lineages). An improvement over this method that allows control of the level of smoothing through the introduction of a parameter is PL (Penalized Likelihood) also called Semiparametric Rate Smoothing (Sanderson, 2002). These methods and others have been widely applied to estimate ages of divergence of large clades across the entire tree of life (summarized in Hedges & Kumar, 2003; Magallon, 2004 and Welch & Bromham, 2005).

One feature that all these methods have in common is their need for at least one (but often more) calibration or constraint point(s) which will help determine the rate (s) at which the genomic sequences change. In a very simplified way, the number of base differences / time = rate of molecular substitution. Since the fossil record is the main source of calibration point(s) for these analyses, it is of the utmost importance that the fossils used are reliable, both in terms of taxonomic identity and in terms of age. Unfortunately misidentifications of taxa are common in the fossil record, especially in the case of angiosperms. As Collinson et al. (1993) remarked, "These problems have been exacerbated in the past by a common tendency to include fossils in modern taxa based on superficial similarity rather than in-depth analysis. Although the latter is now the rule rather than the exception, many older determinations have not yet been revised."

Other methods that do not use molecular sequences such as minimum-age-dating still depend on a reliable fossil record. Minimum-age-dating assigns ages to the different nodes in the phylogeny by choosing the oldest date among the daughter nodes descended from the node in question (Crepet et al., 2004). Progressing this way along the tree, it is possible to assign objective minimum ages to each node in the phylogeny. This method, although free from the pitfalls that plague rate estimation, is very susceptible to errors due to misidentifications and taxonomic misplacements of fossils. Due to its influence and central role in both kinds of methods, molecular-based and fossil-only-based, it is highly desirable that the fossil record be revised and that the reliability of fossils used to assign ages to phylogenies be assessed.

Estimated Age for the Asterids

One of the earliest attempts to date the angiosperm phylogenetic tree by incorporating fossil data into the angiosperm phylogeny was that of Magallon et al. (1999) who assigned dates to the nodes of the Eudicot clade of the Chase et al. (1993) cladogram by referencing the fossil record. While they did not explicitly date the asterid clade in that study, its "older" order, the Ericales was assigned a date of 89.5 my (Table 1). More recently, Crepet et al. (2004) assigned minimum ages to the early lineages of the angiosperm phylogeny of Soltis et al. (2000) using the fossil record. Although that work deals with the earliest nodes on the angiosperm phylogeny and not with the more derived groups, the minimum age for the Asterid clade (90 my; Table 1) is similar to that reported by Magallon et al. (1999). Age estimates of the angiosperms as a whole, based on molecular clock techniques (Wikstrom et al., 2001) give an older estimate for the origin of the Asterid clade (112-122 my, Table 1) while studies focusing on the Asteridae alone (Bremer et al., 2004) give an even older date, somewhere before 128 million years ago (Table 1). The results of these studies imply a gap of at least 22 million years for which, if accurate, the early asterids left no identifiable fossil record. Only through careful revision and critical study of the fossils upon which these age estimates are based would we be able to assess if this discrepancy is real or is an artifact of the methods. Did the asterids not leave a recognizable fossil record for 22 million years? Or, is the proposed 128 million years an inaccurate estimate?

The accurate dating of correctly identified fossils is critical in any age estimation, based either on fossil record alone or in molecular dating techniques with fossil calibration points. Even the best method for molecular dating will generate meaningless results if the original calibration point(s) on which the whole analysis is/are based, is not reliable (Crane et al., 2004; Graur & Martin, 2004; Benton & Donoghue, 2007). The two problem areas that need to be critically evaluated before a fossil taxon can be accepted as a reliable calibration point are: [1] the certainty of its taxonomic placement and [2] the correctness of the age assignment of the sediments in which the fossil was found, which implies an understanding and a correct interpretation of the geological time scale. This work is a step towards achieving a better understanding of the early Asterid fossil record; by evaluating the reliability of those fossils that could potentially represent the earliest members of asterid families, by producing a time scale for Asterid diversification based on the reliable fossils identified and applying minimum-age-dating, and by comparing this fossil-based time scale to molecular-based age estimates.

Materials and Methods

Literature Review

The evaluation of the fossil record started with a literature search of the fossils that have been published as having affinities with groups that today constitute the Asteridae (sensu Bremer et al., 2002). The search focused on the family level, that is, on the oldest fossils ever reported for each one of the 100-104 families that constitute the group. However, fossils unassigned to family but to higher taxonomic levels were also considered. In the assembling of this list, original descriptions and monographs were preferred.

Evaluation of Fossils

Each one of the fossils was evaluated with respect to the reliability of its identification by reviewing their protologues or monographs. Eight criteria were taken into consideration for each fossil, each one evaluated as provided/not provided by the authors. In order of decreasing reliability the criteria are: [1] inclusion of the fossil in a phylogenetic analysis, [2] discussion of key characters that place the fossil in a group, [3] list of key characters that place the fossil in the group, [4] full taxonomic description and diagnosis of the fossil, [5] photographs of the specimens, [6] drawings, diagrams or reconstructions of the fossils, [7] specimen information; housing institution, collection number, holotype designation, [8] collection information; locality, formation, age.

Once the list was compiled, it was subject to a filter designed to identify the reliable and well supported records by focusing on those fossils that fulfilled the first three criteria. These fossils were accepted as representing reliable records. The remainder of the list was subject to a second filter for which the criterion was the existence of a reliable older fossil belonging to the same family. That is, once a fossil was accepted as member of a family, any younger fossils assigned to that family were excluded from further analysis because they could no longer be considered evidence of the first appearance of that family. The fossils that were not removed by either filter are not only ambiguous and in need of revision but also potentially the earliest evidence for a family/order of Asteridae, that is, the putative oldest evidence of a lineage.

Age Determinations

The age assigned to the fossils follows the most recent accepted date for the sediments in which they are found, and not the age that was assigned to them when they were first described. This is important to consider, especially with regard to older reports in which boundaries for time periods were differently defined. For the purpose of assigning numerical dates to time periods, the upper bound (end) of that period as defined in the International Geologic Time Scale (Gradstein et al., 2004) was used.

Minimum Age Dating

The fossils accepted as reliable after applying criteria mentioned above were incorporated as minimum age indicators in a phylogeny of the Asteridae following the method of Crepet et al. (2004). The asterid cladogram used is based on the results of Bremer et al. (2002) modified by the substitution of particular clades that are now available and that represent more comprehensive and resolved cladograms for those particular groups: Zhang et al. (2003) for Dipsacales, Chandler and Plunkett (2004) for Apiales, Lundberg and Bremer (2003) for Asterales, Oxelman et al. (2005) for parts of Lamiales and Schonenberger et al. (2005) for Ericales.

Results

Fossil Record of the Asteridae

A total of 261 fossils once described as asterids were identified (Table 2). This list should not be considered exhaustive since many younger reports were not included in instances where older, reliable reports had been already listed. Also, reproductive structures were favored over vegetative structures because it is in the reproductive structures that synapomorphies and diagnostic characters of the groups are more likely to be found. Therefore, this list should not be considered a fair representation of the status of the uncritically assessed asterid fossil record; however, it does provide a more accurate assessment of asterid history and also represents a coarse approximation of the abundance of fossil reports for the different clades. From this listing, it can be seen that, although some families (e.g. Fouqueriaceae, Loasaceae) have no reported fossil record, in the end, all orders are represented in the fossil record.

The order of asterids with the best fossil record is the Ericales (Table 2), with 80 reports; however, this apparent abundance of ericalean taxa is misleading since a good portion of these records is based on reports of the genus Symplocos, monographed in 1949 by Kirchheimer. If the taxa described in that work were removed, only 48 records would remain, leaving the Ericales as the most frequently reported order of asterids, but with a more modest advantage.

Of the two clades of the Euasteridae, the Lamiids (Euasteridae I) present a more abundant fossil record than its counterpart, the Campanulids (Table 2). However, it is noticeable that despite the biodiversity these two groups display today, their fossil record combined is barely larger than the combined fossil record of the two early diverging orders, the Cornales and the Ericales.

Cornales

The Cornales is a well supported and well studied group, however, different authors treat the families Cornaceae, Nyssaceae and Mastixiaceae differently. Under some schemes, the families are treated as one broadly defined Cornaceae, while other authors prefer to treat them as separate, although closely related, families (see Xiang et al., 2002; Fan & Xiang, 2003). In this work, they will be referred to as different families, as that provides more information as to the inferred relationships of the fossils. The oldest reliable fossils for this clade are Hironoia fusiformis, a "cornalean" fruit from the Coniacian-Santonian of Japan and Tylerianthus crossmanensis, a fossil flower from the Turonian of New Jersey (Table 3; Fig. 2). Although initially Tylerianthus was described as having affinities with the Hydrangeaceae or the Saxifragaceae, the authors indicate that cladistic analyses placed it as sister to Hydrangeaceae. Later, Crepet et al. (2004) confirmed the placement of Tylerianthus in that family. This fossil places the Order in at least the Turonian (Fig. 2).

[FIGURE 2 OMITTED]

Ericales

The ericalean clade in the both the Bremer et al. (2002) and Schonenberger et al. (2005) analyses is composed of two sister clades, one includes Marcgraviaceae, Balsaminaceae, Tetramerista and Pelliciera, the "balsaminoid" clade, and the other one includes the rest of the Ericales. From the balsaminoid clade, pollen grains representing Pellicieraceae (=Tetrameristaceae in the Schonenberger et al. (2005) analysis) and Marcgraviaceae have been reported from several localities around the neotropics (Table 4). However, none of these reports have provided a detailed account of the characters that identify these fossils as Pelliciera, Marcgravia or Norantea. For this reason these reports are not accepted in the present treatment. It is interesting to notice, however, that the clade has only been reported in the palynological fossil record, no macrofossils have been assigned to this group.

The second clade includes families with no known fossil record such as Fouqueriaceae and Sarraceniaceae, and families with relatively extensive fossil records, like Ebenaceae and Symplocaceae. This group includes many arborescent members whose fossil record is mostly wood (e.g. Ebenaceae, Theaceae, Lecythidaceae).

The most remarkable of ericalean fossils are the fusainized flowers found in Cretaceous sediments in different localities of Eastern North America (New Jersey and Georgia), Europe (Sweden) and Japan (Crepet, 1996; Crane & Herendeen, 1996; Herendeen et al., 1999; Takahashi et al., 1999; Friis et al., 2006). The preliminary surveys of these floras indicate that ericalean flowers are abundant and diverse in these localities. Unfortunately many of them have not been formally described and the ones that have been described frequently show an array of characters not found in modern genera and sometimes not completely conforming to the families to which they are believed to be related. The fossil record also indicates that many modern families were well established by the Eocene (Fig. 3) as evidenced by very complete fossils that include both, vegetative and reproductive structures (i.e. Christophel & Basinger, 1982; Basinger & Christophel, 1985; Lott et al., 1998).

As of today, the oldest representatives of Ericales are Paleoenkianthus sayrevillensis (Nixon & Crepet, 1993) and Pentapetalum trifasciculandricus (Martinez-Millan et al., 2009), both from the Turonian of New Jersey (Table 4). These two fossils have been associated to clades that in the most recent phylogenetic hypothesis are not too closely related (Fig. 3), the Ericaceae and a part of the Theaceae s.l. that Schonenberger et al. (2005) call the Pentaphylacaceae and Bremer et al. (2002), the Ternstroemiaceae.

[FIGURE 3 OMITTED]

Aquifoliales

This order sensu Bremer et al. (2002) includes only four families (Fig. 4), of these, only Aquifoliaceae has a fossil record (Table 5), starting with Maastrichtian fruits mentioned by Knobloch and Mai (1986) and Paleoeene fruits reported by Mai (1987). Brown (1962) reported some leaves from the Early Tertiary of Colorado, however, Collinson et al. (1993) have pointed out the need for a critical revision of the these leaves. Pollen belonging to Ilexpollenites has been reported from the Late Cretaceous of South Australia (Martin, 1977).

[FIGURE 4 OMITTED]

Apiales

Seven families compose this order in the Bremer et al. (2002) cladogram; Apiaceae, Araliaceae, Aralidiaceae, Torriceliaceae, Melanophyllaceae, Griseliniaceae, and Pittosporaceae, of which three have been reported from the fossil record (Table 6). The more comprehensive analysis of Chandler and Plunkett (2004) confirms these families as Apialean lineages and also segregates some members of Apiaceae and Araliaceae, the Maekinlaya and the Myodocarpus groups (Fig. 5).

Torricelliaceae has representatives in the Eocene of Washington, Oregon and Germany and the Miocene of Austria (Table 6). Araliaceae has an extensive fossil record that goes back to the Late Cretaceous but that is in need of revision; few of the araliaceous fossils can be considered reliable and revising them would be of extreme importance. As of now, the oldest reliable record are the leaves of Dendropanax described by Dilcher and Dolph (1970) from the Eocene of Tennessee and fruits of Paleopanax Manchester (1994) from the Eocene of Oregon (Table 6; Fig. 5).

Escalloniaceae-Paracryphiaceae

In the Bremer et al. (2002) analysis, Escalloniaceae is resolved as polyphyletic, with Escallonia, Tribeles and Polyosma in one clade along with the Eremosynaceae (the newly recognized Order Escalloniales of APG, 2009), and Paracryphiaceae and Quintinia in a second clade, sister to the Dipsacales (the Order Paracryphiales of APG, 2009). The uncertainty about the relationships within the family makes it difficult to place fossils in proper context. However, fossil pollen from the Upper Eocene of New Zealand has been related to the genus Quintinia (Mildenhall, 1980), as have fusainized fossil flowers from the Late Santonian-Early Campanian of Southern Sweden (Friis, 1990).

Silvianthemum suecicum, the flower-based taxon from Sweden, was not put in phylogenetic context when described but it is still considered by its authors to be related to Quintinia (Friis et al., 2006). In one attempt to assess its phylogenetic relationships, Backlund (1996) added it to the Dipsacales matrix analyzed by Backlund and Donoghue (1996) concluding that Silvianthemum occupied "a stable but not strongly supported position ... just outside the basal node of the Dipsacales", although it is shown as sister to a Dipsacales-Apiales clade that also includes Tribeles, Polyosma and Bruniaceae, a result not fully compatible with current hypotheses of Campanuliid (Euasterid II) relationships. For this reason, a new analysis was performed using a fixed backbone based on the analyses by Bremer et al. (2002), Zhang et al. (2003) and Donoghue et al. (2003); the 58 taxa and characters 32-60 of the Backlund and Donoghue (1996) morphology matrix; and the Friis (1990) description of Silvianthemum to code its characters. Details of this analysis can be found in "Appendix B". The strict consensus places Silvianthemum as sister to Quintinia with dorsifixed anther attachment as synapomorphy (Fig. 6). Although under the current phylogenetic framework, Silvianthemum is better placed with Quintinia, this might change when the phylogenetic relationships among members of the apparently polyphyletic Escalloniaceae are better understood.

[FIGURE 5 OMITTED]

Dipsacales

Several fossils have been described as leaves of Viburnum, however many are dubious and many have been shown to represent different taxa; for example, those described by Brown (1962) were transferred to Davidia of the Comales (Manchester, 2002). The macrofossil record of the Dipsacales was reviewed by Manchester and Donoghue (1995) and several reports that were rejected by those authors have not been included here (i.e. fossils formerly referred to Abelia). Bell and Donoghue (2005) have also evaluated the available fossil record of the Dipsacales when searching for suitable calibration points for their molecular age estimation analysis and found that Diplodipelta is the oldest most reliable fossil of this group. Diplodipelta places the Dipsacales in the Late Eocene (Table 7; Fig. 7) and although it was not placed in phylogenetic analysis as a terminal, enough synapomorphies were found to confidently place it as sister of Dipelta (Manchester & Donoghue, 1995).

[FIGURE 6 OMITTED]

Asterales

The most recent phylogenetic study of the Asterales is that of Lundberg and Bremer (2003) where they include 12 families in the order. Few of these are represented in the fossil record; macrofossil records include seeds assigned to Campanulaceae and Menyanthaceae (Table 8), a stem assigned to Donatia (Donatiaceae or Stylidaceae) and fruits assigned to Asteraceae (Table 8). In this group, the pollen record is more extensive than the macrofossil one, with families like Stylidaceae s.s. and Goodeniaceae known only from fossil pollen.

The fossil record of the Asteraceae, one of the most species-rich families of flowering plants, has been elusive. Graham, in 1996, reviewed the available fossil record up to that point, however, that information is now outdated. In 2000, Zavada and de Villiers reported pollen grains of the tribe Mutisiae from South Africa and assigned them the name Tubulifloridites antipodica (Table 8). These pollen grains were assigned a Late Paleocene-Eocene age and became the oldest fossils for the family and for the order. But Scott et al. (2006) cast doubts on their identity suggesting that the South African T. antipodica is probably conspecific with T. viteauensis, a second taxon described by Zavada and de Villiers (2000) from Middle Eocene (Bartonian) sediments (Scott et al., 2006) offshore the coast of Namibia (Table 8; Fig. 8).

[FIGURE 7 OMITTED]

Many reports of asteraceous macrofossils have been discredited: Cypselites has been reinterpreted as representing seeds of Apocynaceae instead of achenes of Asteraceae (Reid & Chandler, 1926; Manchester, 2001), Viguiera cronquistii had no characters linking it definitely to the Asteraceae (Crepet & Stuessy, 1978) and Parthenites priscus is not even a real fossil (pers. obs).

Oncothecaceae-Icacinaceae

In the Bremer et al. (2002) analysis, the Icacinaceae turned out as polyphyletic, with Apodytes as sister to Oncotheca in one clade and Cassinopsis, Icacina and Pyrenacantha in a different clade, more closely related to the rest of the Lamiid groups than to the Apodytes clade (Fig. 1). This partly agrees with the results of Karehed (2001) who recovered a Garryales-Apodytes group and a separate Icacina group. This condition makes it difficult to assign some fossils to particular clades, especially when the fossil is of a genus not represented in the phylogenetic analysis. As of today, the position and relationships of the members of Icacinaceae are still unresolved and fluctuating (APG, 2009). For example, in the analysis of Soltis et al. (2007), the only member of Icacinaceae included, Icacina, was recovered as sister to a clade that includes all Lamiid groups except a clade Garryales-Oncotheca. This contrasts with the analysis of Bremer et al. (2002) where the Icacina would be sister to all other Lamiids including Garryales but not Oncotheca.

[FIGURE 8 OMITTED]

The earliest reproductive structures assigned to the Icacinaceae s.l. are the endocarps of Iodes germanica from the Maastrichtian of Germany (Table 9) while the earliest vegetative structures seem to go back to the Late Albian with the fossil wood Icacinoxylon (Table 9). Collinson et al. (1993), however, cast doubts on the identity of these woods and suggest the need for a revision. A review of fossil endocarps of the Icacinaceae is found in Pigg et al. (2008).

Garryales

Despite the small size of this clade--only of two families, Garryaceae (including Aucuba) and Eucommiaceae (Bremer et al., 2002)--, the fossil record is somewhat extensive. Garryaceae has been reported from the Miocene (Table 10). Eucommiaceae, on the other hand, is well documented from the fossil record starting from the Late Early Eocene (Table 10; Fig. 9) which underwent revision by Call and Dilcher (1997), Manchester (1999) and Manchester et al. (2009).

Gentianales

The fossil record of this order, which contains two of the most species-rich families of angiosperms, dates back to the Early Tertiary, probably Paleocene but most likely Eocene (Table 11; Fig. 10). In a preliminary survey of the Black Peaks Formation from the Paleocene of Texas, Abbott (1986) mentioned the presence of wood of Rubiaceae, however it was never described. Graham (2009), who recently reviewed the fossil record of the Rubiaceae also accepts Emmenopterys as one of the its oldest members (Table 11). Fossils identified as Apocynaceae are relatively common in the Early Oligocene of England (Table 11) and probably elsewhere in Europe if the reports of Cypselites are proven to be apocynaceous (Reid & Chandler, 1926; Manchester, 2001). Woods from the Maastrichtian with affinities to the Apocynaceae were described by Wheeler et al. (1987), however, formal assignation to the family was never made. Gentianaceae has been reported from the Eocene (Table 11) based on a preserved flower and the pollen contained in it, however, in spite of the very distinctive pollen the paucity of other floral characters casts some doubt on this identification (Crepet, pers. comm.).

[FIGURE 9 OMITTED]

Vahliaceae-Boraginaceae

In the analysis of Bremer et al. (2002), Vahliaceae and Boraginaceae form a clade (Fig. 1), however this arrangement is different in other analyses (e.g. Soltis et al., 2007). The fossil record of the Boraginaceae is restricted to the Tertiary starting in the Early Eocene (Table 12; Fig. 11). Boraginaceous seeds were reported from India (Table 12) and assigned a Paleocene age based on the presence of these same seeds, this age assignment was arbitrary and cannot be considered reliable.

Two fusainized flowers from the Late Cretaceous of Sweden, Scandianthus major and S. costatus, were originally described as belonging to the Saxifragalean complex and compared to Hydrangeaceae, Vahliaceae, Escalloniaceae and Saxifragaceae (Friis & Skarby, 1982; Friis, 1984). Subsequent phylogenetic analyses spanning all of the angiosperms have shown that those families are not closely related. Nevertheless, the authors have maintained the fossils close to the Vahliaceae (Friis et al., 2006) despite the fact that they had not been subject to phylogenetic analysis or had their characters reviewed in light of more recent phylogenetic hypotheses (Hermsen et al., 2006). For this reason, the comparison table included in the protologue of Scandianthus was adapted for phylogenetic analysis using a fixed backbone compatible with recent hypotheses of angiosperm relationships--Soltis et al. (2000), Bremer et al. (2002) and APG (2003). The final matrix has 12 morphological characters, 28 families and the fossil genus Scandianthus. In this analysis Scandianthus was resolved as sister taxa to Vahliaceae with one locule and pendant placenta as synapomorphies (Fig. 12). Details of this analysis can be found in the "Appendix C".

Solanales

This clade is composed of five families in the cladogram of Bremer et al. (2002) and all of them have scarce or nonexistent fossil records based on existing literature. The Convolvulaceae fossil record is mostly represented by pollen; however there is a leaf from the Late Eocene (Table 13) that could be assigned to the group.

The Solanaceae, however, has had a few fossils assigned to it, although most of these reports have been unreliable due to poor preservation, poor descriptions, or poor comparative work (Table 13). Cantisolanum daturoides has frequently been cited as the oldest evidence for Solanaceae (i.e. Knapp, 2002), however, the taxon is only known from the type specimen, a seed which does not show enough characters to support its assignment to Solanaceae or to any other family (Collinson, 1983; pers. obs.). Several flowers assigned to Solanaceae from the Eocene of Eastern North America (Table 13) by Berry (1914, 1916, 1930) clearly do not show characters of this family and are therefore, also rejected (Martinez-Millan, unpubl.). The flower-based taxon Solanites brongniartii from the Oligocene of France and the seed-based taxon Solanispermum reniforme from the Eocene of England (Table 13; Fig. 13) show solanaceous characters and could potentially belong in this family. The oldest pollen record is probably that of Datura from the Late Eocene, although details about the structure of these grains were not provided (Table 13).

[FIGURE 10 OMITTED]

[FIGURE 11 OMITTED]

[FIGURE 12 OMITTED]

Lamiales

Despite the size of this clade in terms of number of families (Bremer et al., 2002), the fossil record is sparse, with few examples from the Tertiary. Some isolated Eocene fossils had been reported in the past, however Collinson et al. (1993) reported most of these as unconfirmed or rejected them based on the poor preservation. Only one record of Oleaceae, Fraxinus excelsior, based on both reproductive and vegetative organs can be considered reliably supported by available evidence (Table 14; Fig. 14). In the Plantaginaceae, Acanthaceae and Pedaliaceae, all of them with very scarce fossil records, there are only one or two reports which seem to be reliable (Table 14; Fig. 14), while in the Bignoniaceae, a family a more extensive fossil record, around half of its reports should be considered unreliable. The Lamiaceae has been elusive in the fossil record; two fossils described by Cockerell (1926, 1927) were later rejected by MacGinitie (1953, 1969) leaving the fruits from the Bembridge flora in England, as the oldest fossils of this family (Table 14; Fig. 14).

Dating of the Asterid Tree

The estimated minimum age estimated for the whole of the Asteridae is the Turonian (Late Cretaceous), some 89.3 my ago (Table 15; Fig. 15) with the oldest fossils appearing simultaneously in the Cornales and the Ericales (Table 15). The Euasteridae makes its appearance shortly after, in the Late Santonian-Early Campanian, some 83.5 my ago (Table 15; Fig. 15) when the oldest fossils of its two clades, the lamiids and the campanulids, make their first appearances simultaneously (Table 15; Fig. 15). Diversification within these two clades took place shortly after. By the Eocene, most orders were present in the fossil record. Only Lamiales diversified later, in the Oligocene (Table 15; Fig. 15).

[FIGURE 13 OMITTED]

Discussion

Interest in establishing ages of origin and diversification of existing taxonomic groups has increased in recent years. Traditionally it has been up to the paleontologists to establish those dates, based on the first appearances of a taxon in the fossil record. Today, with the increase in use in one form or other of molecular clocks, the demand for reliable calibration points has increased accordingly. Now, it is demanded of paleontology that it delivers taxonomically and stratigraphically reliable fossil identifications that can withstand the test of phylogenetic methods (Benton & Donoghue, 2007; Donoghue & Benton, 2007). Phylogenetic methods have provided a means to more stringently test the placement of fossils by identifying synapomorphies that define those groups. Only fossils whose characters have been properly described and compared can be considered confidently identified. Thus only such fossils can be reasonably used in various methods of dating first appearances of taxa.

[FIGURE 14 OMITTED]

The survey and evaluation of the early fossil record of the Asteridae carried out in this work (Tables 3-14) attempts to provide a list of those fossil taxa that have been described as asterids and their degree of reliability. Those fossils that have been included in phylogenetic analyses offer the highest degree of confidence as their characters have been objectively tested against those of assumed related taxa. Unfortunately, very few fossils putatively representing asterids meet this criterion. The fusainized flowers from New Jersey (Nixon & Crepet, 1993; Gandolfo et al., 1998; Martinez-Millan et al., 2009) and Georgia (Keller et al., 1996), the mastixioids reviewed by Tiffney and Haggard (1996), and the fusainized flowers from Sweden analyzed in this work are among the few that have been put to, and passed the test of the phylogenetic analysis. One of the reasons for the paucity of reliably identified asterids is the lack of available matrices of morphological characters. Since most phylogenetic studies are based on genes, the morphological matrix in which a fossil could be included is rarely compiled.

[FIGURE 15 OMITTED]

Two alternative methods for the inclusion of fossil taxa have been proposed; the total evidence analysis and the molecular scaffold approach (Hermsen & Hendricks, 2008). In the total evidence approach, the molecular data and the morphology data are analyzed simultaneously and the fossil taxon is treated as no different as any other terminal in the analysis; the fossil is part of the process of formulating the phylogeny itself. This approach provides the most rigorous test of the relationships of the fossil to the rest of the taxa. The molecular scaffold approach involves finding the most suitable place for the fossil taxa given a pre-defined phylogeny of extant taxa. The fossil is not included in the original analysis that produced the phylogeny, but in a subsequent analysis whose objective is to find the best place for said fossil in that particular phylogeny. This was the approach used in this work to place the fossils Silvianthemum and Scandianthus. Of the two alternatives, however, the total evidence approach is certainly superior; it increases taxon sampling, increases the amount of information used to create the phylogeny, allows the fossil to impact the phylogenetic hypothesis and allows the discovery of secondary signals (see Hermsen & Hendricks, 2008 for a detailed discussion).

A less preferable but still acceptable alternative to the inclusion of the fossil in a phylogenetic analysis, is a description of the fossil with a thorough discussion of diagnostic characters including potential synapomorphies that relate the fossil to a particular clade. About two-thirds of the asterid fossils listed here (175 out of 261) include such a discussion, which allows the placement of the fossils in the most "suitable" position in the tree according to their characters. The rest of the fossils need to be reevaluated as their descriptions are not detailed and specific enough to be convincing.

It was by following these criteria that the minimum age dating of the Asteridae depicted in Fig. 15 has been obtained. According to these results, it seems that there have been three diversification "explosions" in the history of the Asteridae marked by the simultaneous first appearances of clades in the fossil record. The first one was in the Late Cretaceous when the four main groups of the Asteridae enter the fossil record; two in the Turonian (89.3 mya) the Cornales and the Ericales, and two in the Santonian (83.5 mya) the Lamiids and the Campanulids. The second one was in the Early Tertiary, around the Eocene (55-33.9 mya) involving most of the euasterid orders. And the third one taking place around the Oligocene when the last order, the Lamiales, diversified (Table 15; Fig. 15).

The fact that more than one fossil places a clade in a particular time frame increases confidence in the reliability of the minimum age of that clade. For example, the minimum age of Late Cretaceous for the Cornales is given by Tylerianthus crossmanensis from the Turonian of New Jersey (Table 3; Fig. 2), but if this fossil were to be removed, Hironoia fusiformis from Early Coniacian-Early Santonian of Japan would still place the Cornales in the Late Cretaceous (Table 3). Even more dramatic is the case of the Ericales as this clade has numerous fossils in the Late Cretaceous (Table 4; Fig. 3). The fact that the fossils come from different geographical locations adds another layer of confidence as the independence across data points (fossil identifications) can be more objectively assessed.

The diversification of the Euasteridae in the Late Cretaceous is, in principle, more difficult to support since there "are only three fossils that place this huge clade in the Late Cretaceous: Scandianthus major, Scandianthus costatus and Silvianthemum suecicum (Table 12; Figs. 6, 12), and all of them come from the same locality. For this reason, assessing the phylogenetic relationships of these fossils is imperative. In the analyses performed in this work, both fossil taxa were ultimately placed as sisters to the same extant taxa that their authors had suggested based on direct observations: Silvianthemum with Quintinia and Scandianthus with the Vahliaceae (Friis, 1990; Friis & Skarby, 1982). However, these results should be taken with caution. For example, the matrix for the analysis of Scandianthus was derived from the same table that the authors built to support their conclusions, therefore, it is not surprising that Seandianthus was placed with the Vahliaceae. Independent confirmation of the placement of these fossils, or discovery of other euasterid fossils in the Late Cretaceous would certainly increase confidence in and robustness of these results.

In contrast to the minimum ages obtained from looking at the fossil record, the estimates based on molecular evidence suggest that the diversification of the Asteridae happened during the Early Cretaceous instead of the Late Cretaceous (Table 15). However, different molecular dating studies disagree with each other as much as they disagree with the fossil record (Table 15).

One of the most frequently cited molecular dating works is that of Wikstrom et al. (2001) who used non-parametric rate smoothing (NPRS; Sanderson, 1997) and a single calibration point--in the Rosid clade--to date the cladogram of Soltis et al. (2000). In their results, the Asteridae was estimated to have originated 112-122 mya and its diversification to have started some 106-114 mya (Table 15). Bremer et al. (2004), on the other hand, used the cladogram of Bremer et al. (2002) to explicitly estimate the time of origin and divergence of different groups of asterids based on molecular dating (Table 15). Three methods were applied: strict molecular clock of Langley and Fitch (1974), non-parametric rate smoothing (NPRS) of Sanderson (1997) and penalized likelihood (PL) of Sanderson (2002), although the authors only report the ages obtained with PL.

A comparison between these ages and the ones estimated by Wikstrom et al. (2001) indicates that Bremer et al. (2004) consistently got older age estimates than Wikstrom et al. (2001), between 11 and 30 my older (i.e. Campanulids and Lamiales, Table 15). This discrepancy could be due to a number of factors including different methodological tools used for estimating ages (NPRS vs. PL), different phylogenetic hypothesis used (Soltis et al., 2000 vs. Bremer et al., 2002) and different placement calibration points (one fixed calibration point in the Rosid clade vs. one fixed calibration point at the base of the Asterid clade). However, both molecular-based estimates agree in that they give significantly older estimates than those based on the fossil record alone (Table 15).

Advances and improvements in the methods to estimate molecular ages and phylogenies are constantly being produced (see Magallon, 2004; Pulquerio & Nichols, 2007; Soltis et al., 2007). This will undoubtedly improve our estimates of divergence events, and with it our understanding of evolutionary events in the history of clades. However, even the most precise of methods will deliver unreliable results if the data analyzed are not of good quality, including the fossils used as calibration points. One important step towards the improvement of quality of this calibration points is distinguishing those fossils that can be trusted in their taxonomic assignment from those that need to be restudied. This work provides that first step for the early fossil record of the Asteridae.

DOI 10.1007/sl 2229-010-9040-1

Appendix A

Circumscription of Asterids

The concept and circumscription of asterids has changed dramatically from the days of classification systems based on morphology only. Table 16 shows three widely known systems and their concept of asterids and other groups that are now considered asterids.

Appendix B

Phylogenetic Analysis of Silvianthemum Friis, 1990

Although the fossil taxon Silvianthemum suecicum Friis, 1990 was included in a phylogenetic analysis (Backlund, 1996 using the Backlund & Donoghue, 1996 matrix of morphological characters), it is appropriate to revisit this taxon as the aforementioned analysis is not compatible with more recent and robust hypotheses of phylogenetic relationships. For this new analysis, characters 32-60--representing floral morphology, androecium, gynoecium and fruit characters--of the Backlund and Donoghue (1996) matrix of morphological characters were used. Silvianthemum was coded based on its original description (Friis, 1990). The resulting matrix has 59 taxa, including the fossil taxon and 29 characters (Table 17):

32. Sexual distribution: bisexual=0; dioecious= 1; gynodioecious=2; trioecious=3.

33. Perianth position: hypogynous=0; semi-epigynous= 1; epigynous=2.

34. Flower/corolla orientation: one petal adaxial=0; one petal abaxial= 1.

35. Sepal size: absent or not visible=0; very reduced, inrolled plumes or minute teeth= 1; well developed prominent=2.

36. Sepals, number of: 2=0; 3= 1; 4=2; 5=3; 6 or more, indefinite=4.

37. Sepal vascularization: 1 trace=0; 3 traces=1; 4 traces=2; 5 traces=3.

38. Sepal modification for fruit dispersal: none=0; developing into a plumose seed/ fruit= 1; developing to seeds/fruits with awns/bristles=2; enlarged and leaflike aiming for wind dispersal= 3.

39. Petal and sepal folding-pattern in buds: valvate=0; imbricate=1.

40. Petal fusion: fused=0; free= 1.

41. Petals, number of: three petals/lobes=0; four petals/lobes= 1; five petals/lobes= 2; six or more petals/lobes=3; unnamed state=4 [sic].

42. Corolla tube: petals weakly connate or no tube=0; tube rotate/small but distinct= 1; tube well developed/long=2.

43. Corolla symmetry: actinomorphic=0; weakly zygomorphic= 1; strongly zygomorphic/bilabiate=2.

44. Corolla nectary type: absent=0; nectar disk=1; multicellular hairs=2; unicellular hairs=3.

45. Corolla nectary number: 1, or fewer than number of lobes=0; 1-5, or equal to number of lobes= 1.

46. Corolla vascularization: lacking lateral connections=0; with lateral connections= 1.

47. Stamen number: 1=1; 2=2; 3=3; 4=4; 5=5; 6-more, indefinite=6.

48. Stamen relative length: equal in length=0; prominently unequal in length=1; didynamous=2.

49. Staminal filament indumentum: glabrous=0; hairy= 1; unnamed state=2.

50. Filament attachment: free from corolla=0; weakly fused to corolla=1; prominently fused to corolla=2.

51. Staminal modifications: all stamens fertile=0; sterile staminodia present= 1.

52. Anther attachment: dorsifixed=0; basifixed= 1; sagittate=2.

53. Anther orientation at dehiscence: extrorse=0; introrse= 1.

54. Sporangium number in thecae: 1 =0; 2= 1.

55. Carpels, number: 1=1; 2=2; 3=3; 4=4; 5-5.

56. Carpel abortion: all fertile=0; one aborted=1; two adjacent aborted=2; two adjacent aborted and ovule displaced=3; two opposite aborted=4.

57. Sterile loci: none=0; present but much reduced and visible only as minor openings= 1; normal/prominent in cross sectioning of ovary=2.

58. Carpel vascularization: free adaxial and abaxial=0; adaxial bundles only=1; only free abaxial, adaxial not recessed=2.

59. Stigma shape: entire and slender=0; capitate=1; bilobate=2; trilobate=3; pentalobate=4.

60. Fruit type: capsule loculicidal=0; capsule septicidal=1; berry=2; drupe=3; cypsela, with persistent remains of calyx=4; cypsela, lacking remains of calyx= 5; schizocarp=6.

The analysis of Bremer et al. (2002) showed that the Escalloniaceae is a polyphyletic group and that part of it, namely Quintinia is more closely related to the Dipsacales than to the rest of the family. It also showed that the Columelliaceae and the Bruniaceae do not belong with the Dipsacales and that Polyosma and Tribeles do not belong with the Apiales. These results differ enough from Backlund and Donoghue (1996) that a reevaluation of the position of Silvianthemum is justified.

In this work, the 59 extant taxa used by Backlund and Donoghue (1996) were rearranged in clades following the results of Bremer et al. (2002), Donoghue et al. (2003) and Zhang et al. (2003). The backbone tree and its group membership matrix were constructed in Winclada version 1.00.08 (Nixon, 2002). In order to allow Silvianthemum to "float" free among all possible positions in the cladograms, all its cells were changed to "?". Similarly, those taxa not included in the Bremer et al. (2002), Donoghue et al. (2003) or Zhang et al. (2003) works--Zabelia, Knautia, Succisa, Belonanthus, Phyllactis and Stangea--were allowed to "float" free inside the Dipsacales clade by changing their scores to "?" in all characters that defined relationships within that clade. All characters were assigned a weight of 50.

The group membership matrix and the matrix of morphological characters matrix were combined in Winclada. A total of ten heuristic searches were run in NONA version 2.0 (Goloboff, 1999) where each run consisted on 1,000 replications of SPR searches on randomly generated initial wagner trees, holding up to ten trees per replication with an additional TBR on the resulting trees (>h10001; rs0; h/10; mult*1000; max*). The resulting trees were combined in Winclada where suboptimal and duplicate trees were eliminated and a strict consensus was calculated.

The analysis yielded 312 trees whose strict consensus was rerooted to match the basal polytomy of the Campanuliid clade showed in Bremer et al. (2002). In this strict consensus (Fig. 16), Silvianthemum and Quintinia are sister groups with dorsifixed anther attachment as synapomorphy (ch 52). The Dipsacales is the sister group of this clade.

Appendix C

Phylogenetic Analysis of Scandianthus Friis and Skarby, 1982

In order to test the assignment of the fossil genus Scandianthus to the Vahliaceae in a phylogenetic context, the characters used by the authors in their original description of the fossil taxon were used to create a data matrix. In Friis and Skarby's (1982) original table, Scandianthus was compared to 28 families then assigned to the Saxiffagales. In the table most columns represent character states (absent/present scoring) and not independent characters, here, this situation was addressed by creating multistate unordered characters. The resulting data matrix has 12 characters (Table 18):

1. Flower sex: bisexual=0; unisexual=1.

2. Flower part position: epigynous=0; perigynous= 1 ; hypogynous=2.

3. Perianth part connation: floral parts flee=0; floral parts fused= 1.

4. Androecium number: diplostemonous=0; obdiplostemonous= 1; haplostemonous=2; numerous stamens=3.

5. Carpel number: 2=0; 3-5(-15)=1.

6. Apo/Syncarpic gynoecium: apocarpous=0; syncarpous= 1.

7. Locule number: 1=0; 2-5(-15)=1.

8. Style number in syncarpous gynoecium: 1 =0; 2= 1.

9. Capsule as fruit: capsule=0; other than capsule (berry, drupe or nut)=1.

10. Placentae pendant: absent=0; present= 1.

11. Ovule relative number: few=0; many= 1.

12. Nectary disc: absent=0; present=1.

The families used by Friis and Skarby (1982) were then thought to form the saxifragalean complex. The phylogenetic analyses by Soltis et al. (2000) dismembered this "saxifragalean complex" by showing that these families are distantly related. The works of Soltis et al. (2000), Bremer et al. (2002) and APG (2003) were used here to create a fixed backbone compatible with these newer hypotheses of relationships. This backbone tree was constructed in Winclada version 1.00.08 (Nixon, 2002) and a group membership matrix was derived from it. In this matrix (29 taxa, 20 characters) all character states for Scandianthus were changed to "?" and all characters were assigned a weight of 20. The group membership matrix and the morphological characters matrix were combined in Winclada and ten heuristic searches were run in NONA version 2.0 (Goloboff, 1999). Each run consisted on 1,000 replications of SPR searches on randomly generated initial wagner trees, holding up to ten trees per replication with an additional TBR on the resulting trees (>h10001; rs0; h/10; mult* 1000; max*). The resulting trees were combined in Winclada where suboptimal and duplicate trees were eliminated and a strict consensus was calculated.

[FIGURE 16 OMITTED]

The searches resulted in 32 trees whose strict consensus was rerooted in the node between the Saxifragales and the Rosid-Asterid clade (Fig. 17). The strict consensus shows Scandianthus as sister to Vahliaceae based on both having one locule (ch 7) and pendant placentae (ch 10).

[FIGURE 17 OMITTED]

Acknowledgments The author would like to thank the following colleagues for helping locate type specimens and for providing access to the collections in their institutions: Magali Volpes (AIX, Aix-en-Provence), Dr. Dario De Franceschi, Dr. Jean Dejax and Mme. Christiane Gallet (MNHN, Paris), Dr. Paul Kenrick, Dr. Peta Hayes and Mr. Cedric Shutte (NHM, London), and Dr. Dena Smith and Dr. Jonathan Marcot (CU Museum, Boulder CO). Special thanks to the librarians at the Hortorium, Mann, Kroch and Engineering Libraries, the Library Annex and Interlibrary Loan for providing prompt access to obscure materials that would have been otherwise impossible to obtain. The author would also like to thank Dr. William Crepet for comments and suggestions that greatly improved this paper, and Dr. Steven Manchester for this thorough review of the manuscript. This research was supported by grants from the following sources: Sigma Xi Cornell Chapter, the Mario Einaudi Center for International Studies, Grants-in-Aid of Research (Sigma Xi), The Paleontological Society, the Mid-America Paleontology Society (MAPS), the American Society of Plant Taxonomists (ASPT), the Botanical Society of America (BSA), the Harold E. Moore, Jr Memorial and Endowment Funds, the Department of Plant Biology, Cornell University and NSF grant DEB 01-08369.

Published online: 6 March 2010

Literature Cited

Abbott, M. L. 1986. Petrified wood from the Paleocene, Black Peaks Formation, Big Bend National Park, Texas. Pages 141-142 in P. H. Pause & R. G. Spears (eds.), Geology of the Big Bend area and Solitario Dome, Texas, West Texas Geological Society Fieldtrip March 12-15, 1986. Publ. 86-82.

Albach, D. C., P. S. Soltis, D. E. Soltis & R. Olmstead. 1998. Phylogenetic analysis of the asteridae s.1. based on sequences of four genes. American Journal of Botany 85(6 suppl): 111.

--, --, -- & --. 2001. Phylogenetic analysis of asterids based on sequences of four genes* Annals of the Missouri Botanical Garden 88(2): 163-212.

--, H. M. Meudt & B. Oxelman. 2005. Piecing together the "new" Plantaginaceae. American Journal of Botany 92(2): 297-315.

Angiosperm Phylogeny Group. 1998. An ordinal classification of the families of flowering plants. Annals of the Missouri Botanical Garden 85(4): 531-553.

--. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Botanical Journal of the Linnean Society 141(4): 399-436.

--. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIII. Botanical Journal of the Linnean Society 161(2): 105-121.

Awasthi, N. 1969a. On the ocurrence of two new fossil woods belonging to the family Lecythidaceae in the Tertiary rocks of south India. The Palaeobotanist 18(1): 67-74.

--. 1969b. A fossil wood of Ebenaceae from the Tertiary of south India. The Palaeobotanist 18(2): 192-196.

Backlund, A. 1996. Phylogeny of the dipsacales comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, 243. Acta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden

-- & M. J. Donoghue. 1996. Morphology and phylogeny of the order Dipsacales. In: A. Backlund. Phylogeny of the Dipsacales. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 243. Atta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden.

Bande, M. B. 1986. Fossil wood of Gmelina Linn. (Verbenaceae) from the Deccan Intertrappean Beds of Nawargaon with comments on the nomenclature of Tertiary fossil woods. The Palaeobotanist 35(2): 165-170.

Barron, E. 1992. Presencia de Fraxinus excelsior Linne (Oleaceae, Gentianales) en el Mioceno superior de la depresion Ceretana; implicaciones tafonomicas y paleoecologicas. Revista Espanola de Paleontologia 7(2): 101-108.

Basinger, J. F. & D. C. Christophel. 1985. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Canadian Journal of Botany 63(10): 1825-1843.

Becker, H. F. 1961. Oligocene plants from the Upper Ruby River Basin, South-Western Montana. The Geological Society of America Memoir 82. Waverly Press, New York.

Bell, C. D. & M. J. Donoghue. 2005. Dating the Dipsacales: Comparing models, genes, and evolutionary implications. American Journal of Botany 92(2): 284-296.

Benton, M. J. & P. C. J. Donoghue. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24(1): 26-53.

Berry, E. W. 1914. The affinities and distribution of the lower Eocene flora of Southeastern North America. Proceedings of the American Philosophical Society 53(214): 129-250.

--. 1916. The lower Eocene floras of Southeastern North America. U. S. Geological Survey Professional Paper 91: 1-481.

--. 1922. A new genus of fossil fruit (Calatoloides, Eocene, Texas). American Journal of Science 5th series 3: 251-253.

--. 1930. Revision of the lower Eocene Wilcox flora of the southeastern States, with descriptions of new species, chiefly from Tennessee and Kentucky. U. S. Geological Survey Professional Paper 156: 1-196.

--. 1934. A lower lance florule from Harding County, South Dakota. U. S. Geological Survey Professional Paper 185-F: 127-133.

Bones, T. J. 1979. Atlas of fossil fruits and seeds from North Central Oregon. OMSI Occasional Papers in Natural Science 1: 5-23

Bremer, K., A. Baeklund, B. Sennblad, U. Swenson, K. Andreasen, M. Hjertson, J. Lundberg, M. Backlund & B. Bremer. 2001. A Phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphics. Plant Systematics and Evolution 229(3-4): 137-169.

Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Kallersjo & E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24(2): 274-301.

--, E. M. Friis & B. Bremer. 2004. Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Systematic Biology 53(3): 496-505.

Bromham, L. & D. Penny. 2003. The modern molecular clock. Nature Reviews Genetics 4(3): 216-224.

Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. U. S. Geological Survey Professional Paper 375: 1-119.

Call, V. B. & D. L. Dilcher. 1997. The fossil record of Eucommia (Eucommiaceae) in North America. American Journal of Botany 84(6): 798-814.

Chandler, M. E. J. 1962. The Lower Tertiary floras of Southern England. II. Flora of the Pipe-Clay Series of Dorset (Lower Bagshot). British Museum (Natural History). London, UK.

--. 1964. The Lower Tertiary floras of Southern England. IV. A Summary and Survey of Findings in the light of Recent Botanical Observations. British Museum (Natural History). London, UK.

Chandler, G. T. & G. M. Plunkett. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society 144(2): 123-147.

Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. D. Duvall, R. A. Price, H. G. Hills, Y. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q. Xiang, G. M. Plunkett, P. S. Sniffs, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H., Jr. Learn, S. W. Graham, S. C. H. Barrett, S. Dayanadan & V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 40(3): 528-580.

Chelebayeva, A. I. 1984. Rod Cordia (Boraginaceae) v Paleogene Kamchatki i sopredel'nykh territoriy [The genus Cordia (Boraginaceae) from the Paleogene of Kamtchatka and adjacent territories]. Botanicheskiy Zhurnal 69(5): 605-615.

Christophel, D. C. & J. F. Basinger. 1982. Earliest floral evidence for the Ebenaceae in Australia. Nature (London) 296(5856): 439-441.

Cockerell, T. D. A. 1926. The antiquity of the Labiatae or Mint Family. Nature 118(2976): 696.

--. 1927. A supposed fossil catmint. Torreya 27(3): 54.

Collinson, M. E. 1983. Fossil plants of the London Clay. Palaeontological Association Field Guides to Fossils No. 1. The Palaeontological Association. London.

--. 1988. The special significance of the Middle Eocene fruit and seed flora from Messel, West Germany. Courier Forschungsinstitut Senckenberg 107: 187-197.

--, M. C. Boulter & P. L. Holmes. 1993. Magnoliophyta ('Angiospermae'). Pages 809-841 in M. J. Benton (ed.), The fossil record 2. Chapman and Hall. London, UK.

Crane, P. R. & P. Herendeen. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobotany and Palynology 90(3-4): 319-337.

--, -- & E. M. Friis. 2004. Fossils and plant phylogeny. American Journal of Botany 91(10): 1683-1699.

Crepet, W. L. 1996. Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Review of Palaeobotany and Palynology 90(3-4): 339-359.

-- & T. F. Stuessy. 1978. A reinvestigation of the fossil Viguiera cronquistii (Compositae). Brittonia 30(4): 483-491.

--, & C. P. Daghlian. 1981. Lower Eocene and Paleocene Gentianaceae: Floral and Palynological Evidence. Science, new series 214(4516): 75-77.

--, K. C. Nixon & M. A. Gandolfo. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and maerofossil evidence from Cretaceous deposits. American Journal of Botany 91(10): 1666-1682.

Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, NY, USA.

Dilcher, D. L. & G. E. Dolph. 1970. Fossil Leaves of Dendropanax from Eocene Sediments of Southeastern North America. American Journal of Botany 57(2): 153-160.

Donoghue, P. C. J. & M. J. Benton. 2007. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution 22(8): 424-431.

Donoghue, M. J., C. D. Bell & R. C. Winkworth. 2003. The evolution of reproductive characters in Dipsacales. International Journal of Plant Sciences 164(5 suppl): S453-S464.

Elsik, W. C. 1968. Palynology of a Paleocene Rockdale lignite, Milam county, Texas. II. Morphology and taxonomy (end). Pollen et Spores 10(3): 599-664.

Fan, C. & Q.-Y. Xiang. 2003. Phylogenetic analyses of Comales based on 26S rRNA and combined 26S rDNA-matK-rbcL sequence data. American Journal of Botany 90(9): 1357-1372.

Friis, E. M. 1984. Preliminary report of Upper Cretaceous angiosperms reproductive organs from Sweden and their level of organization. Annals of the Missouri Botanical Garden 71(2): 403-418.

--. 1985. Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of Southern Sweden. Review of Palaeobotany and Palynology 45(3-4): 171-183.

--. 1990. Silvianthemum suecicum gen. et sp. nov., a new saxiffagalean flower from the Late Cretaceous of Sweden. Biologiske Skrifter, Det Kongelige Danske Videnskabemes Selskab 36: 1-35.

-- & A. Skarby. 1982. Scandianthus gen. nov., Angiosperm flowers of Saxifragalean Affinity from the Upper Cretaceous of Southern Sweden. Annals of Botany new series 50(5): 569-583.

--, K. R. Pedersen & P. R. Crane. 2006. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction* Palaeogeography, Palaeoclimatology, Palaeoecology 232(2-4): 251-293.

Gabel, M. L. 1987. A fossil Lithospermum (Boraginaceae) from the Tertiary of South Dakota. American Journal of Botany 74(11): 1690-1693.

Gandolfo, M. A., K. C. Nixon & W. L. Crepet. 1998. Tylerianthus crossmanensis gen. et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. American Journal of Botany 85(3): 376-386.

Geuten, K., E. Smets, P. Schols, Y.-M. Yuan, S. Janssens, P. Kupfer & N. Pyck. 2004. Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Molecular Phylogenetics and Evolution 31(2): 711-729.

Gibson, N., K. W. Kiernan & M. K. Maephail. 1987. A fossil bolster plant from the King River, Tasmania* Papers and Proceedings of the Royal Society of Tasmania 121: 35-42.

Giraud, B., R. Bussert & E. Sehrank. 1992. A new theacean wood from the Cretaceous of northern Sudan. Review of Palaeobotany and Palynology 75(3-4): 289-299.

Goloboff, P. A. 1999. NONA version 2.0. Program distributed by the author. Tucuman, Argentina. <www.cladistics.com>.

Gradsteln, F. M., J. G. Ogg, A. G. Smith, W. Blecker & L. J. Lourens. 2004. A New Geologic Time Scale, with special reference to Precambrian and Neogene from the Dabie Mountains, central China. Episodes 27(2): 83-100.

Graham, A. 1977. New records of Pelliceria (Theaceae/Pelliceriaceae) in the Tertiary of the Caribbean. Biotropica 9(1): 48-52.

--. 1996. A contribution to the geologic history of the Compositae. Pages 123 140 in D. J. N. Hind & H. J. Beentje (eds.), Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1. The Royal Botanic Gardens, Kew.

--. 1999. Studies in Neotropical paleobotany; XIII, An Oligo-Miocene palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86(1): 17-31.

--. 2009. Fossil record of the Rubiaceae. Annals of the Missouri Botanical Garden 96(1): 90-108.

-- & D. M. Jarzen. 1969. Studies in Neotropical Paleobotany. I. The Oligocene Communities of Puerto Rico. Annals of the Missouri Botanical Garden 56(3): 308-357.

Graur, D. & W. Martin. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20(2): 80-86.

Gros, J. P. 1993. Xylotomies d'un nouveau bois d'Apocynaceae du Cenozoique de France, Euholarrhenoxylon aisnense n. g. et n.sp. et du bois actuel de comparaison, Holarrhena floribunda (G. Don) Dur & Schinz, Apocynaceae. Bulletin Mensuel--Societe Linneenne de Lyon, (France) 62 (1): 11-25

Grote, P. J. & D. L. Dileher. 1989. Investigations of angiosperms from the Eocene of North America; a new genus of Theaceae based on fruit and seed remains. Botanical Gazette 150(2): 190-206.

-- & --. 1992. Fruits and Seeds of Tribe Gordonieae (Theaceae) from the Eocene of North America. American Journal of Botany 79(7): 744-753.

Hedges, S. B. & S. Kumar. 2003. Genomic clocks and evolutionary timescales. Trends in Genetics 19(4): 200-206.

Herendeen, P. S., S. Magallon-Puebla, R. Lupia, P. R. Crane & J. Kobylinska. 1999. A preliminary conspectus of the Allon Flora from the Late Cretaceous (Late Santonian) of Central Georgia, U.S.A. Annals of the Missouri Botanical Garden 86(2): 407-471.

Hermsen, E. J. & J. R. Hendricks. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95(1): 72-100.

--, K. C. Nixon & W. L. Crepet. 2006. The impact of extinct taxa on understanding the early evolution of Angiosperm clades: an example incorporating fossil reproductive structures of Saxiffagales. Plant Systematics and Evolution 260(2-4): 141-169.

Hufford, L. 1992. Phylogeny of Asteridae: An Introduction. Annals of the Missouri Botanical Garden 79 (2): 207-208.

Huzioka, K. 1961. A new Palaeogene species of the genus Eucommia from Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society of Japan. New Series 41: 9-12.

Karehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88(12): 2259-2274.

Keller, J. A., P. S. Herendeen & P. R. Crane. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. American Journal of Botany 83(4): 528-539.

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, New York, USA.

Kirchheimer, F. 1949. Die Symplocaceen der erdgeschichtlichen Vergangenheit. Palaeontographica Abteilung B: Palaeophytologie 90: 1-50.

Knapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany 53(377): 2001-2022.

Knobloch, E. & D. H. Mai. 1986. Monographie der Fruchte and Samen in der Kreide von Mitteleuropa. Rozpravy Ustredniho Ustavu Geologickeho Praha 47: 1-219.

Lagenheim, J. H., B. L. Hackner & A. Bartlett. 1967. Mangrove pollen at the depositional site of Oligo-Miocene amber from Chiapas, Mexico. Botanical Museum Leaflets 21(10): 289-324.

Lanckucka-Srodoniowa, M. 1977. New herbs described from the Tertiary of Poland. Acm Palaeobotanica 18(1): 37-44.

--. 1979. Macroscopical plant remains from the freshwater Miocene of the Nowy Sacz Basin (West Carpathians, Poland). Acta Palaeobotanica 20(1): 3-117.

Langley, C. H. & W. M. Fitch. 1974. An estimation of the constancy of the rate of molecular evolution. Journal of Molecular Evolution 3(3): 161-177.

Leopold, E. B. & S. T. Clay-Poole. 2001. Florissant leaf and pollen floras of Colorado compared; climatic implications. Pages 17-69 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson. Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.

Lott, T. A., S. R. Manchester & D. L. Dilcher. 1998. A unique and complete polemoniaceous plant from the middle Eocene of Utah, USA. Review of Palaeobotany and Palynology 104(1): 39-49.

Lundberg, J. & K. Bremer. 2003. A phylogenetic study of the Order Asterales using one morphological and three molecular data sets. International Journal of Plant Sciences 164(4): 553-578.

MacGinitie, H. D. 1953. Fossil plants of the Florissant Beds, Colorado. Carnegie Institution of Washington Contributions to Paleontology 559: 1-198.

--. 1969. The Eocene Green River flora of Northwestern Colorado and Northastern Utah. University of California Publications in Geological Sciences 83. Berkeley, USA.

Macphail, M. K. & R. S. Hill. 1994. K-Ar dated palynofloras in Tasmania; 1, Early Oligocene, Proteacidites tuberculatus Zone sediments, Wilmot Dam, northwestern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 128:1-15.

Mai, D. H. 1987. Neue Fruchte und Samen aus Palaozanen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197-229 + 10pl.

-- & E. Martinetto. 2006. A reconsideration of the diversity of Symplocos in the European Neogene on the basis of fruit morphology. Review of Palaeobotany and Palynology 140(1-2): 1-26.

Magallon, S. A. 2004. Dating lineages: Molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165(4 suppl): S7-S21.

-- & S. R. S. Cevallos-Ferriz. 1994. Eucommia constans n. sp. fruits from Upper Cenozoic strata of Puebla, Mexico: Morphological and anatomical comparison with Eucommia ulmoides Oliver. International Journal of Plant Sciences 155(1): 80-85.

--, P. R. Crane & P. S. Herendeen. 1999. Phylogenetic Pattern, Diversity, and Diversification of Eudicots. Annals of the Missouri Botanical Garden 86(2): 297-372.

Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nutbeds Flora, Clarno Formation, North Central Oregon. Palaeontograpbica Americana 58: 1-205.

--. 1999. Biogeographical Relationships of North American Tertiary Floras. Annals of the Missouri Botanical Garden 86(2): 472-522.

--. 2001. Update on the megafossil flora of Florissant, Colorado. Pages 137-161 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson (eds.), Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.

--. 2002. Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Systematic Botany 27(2): 368-382.

-- & M. J. Donoghue. 1995. Winged fruits of Linneeae (Caprifoliaceae) in the Tertiary of Western North America: Diplodipelta gen. nov. International Journal of Plant Sciences 156(5): 709-722.

--, Z.-D. Chen, A.-M. Lu & K. Uemura. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47(1): 1-42.

Martin, H. A. 1977. The history of Ilex (Aquifoliaceae) with special reference to Australia: evidence from pollen. Australian Journal of Botany 25(6): 655-673.

--. 2000. Re-assignment of the affinities of the fossil pollen type Tricolpites trioblatus Mildenhall and Pocknall to Wilsonia (Convolvulaceae) and a reassessment of the ecological interpretations. Review of Palaeobotany and Palynology 111(3-4): 237-251.

Martinez-Millan, M., VC. L. Crepet & K. C. Nixon. 2009. Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian, Late Cretaceous). American Journal of Botany 96(5): 933-949.

Massalongn, A. 1851. Sopra le piante fossili dei terreni terziarj del Vicentino. A. Bianchi Padova.

Mathewes, R. W. & R. C. Brooke. 1971. Fossil Taxodiaceae and new angiosperm macrofossils from Quilchema British Columbia. Syesis 4(1-2): 209-216.

Mathur, A. K. & U. B. Mathur. 1985. Boraginaceae (angiosperm) seeds and their bearing on the age of Lameta Beds of Gujarat. Current Science 54(20): 1070-1071.

Mehrotra, R. C. 2000. Study of plant megafossils from the Tufa Formation of Nangwalbibra, Garo Hills, Meghalaya, India. The Palaeobotanist 49(2): 255-237.

Meijer, J. J. F. 2000. Fossil woods from the late cretaceous Aachen formation. Review of Palaeobotany and Palynology 112(4): 297-336.

Melchior, R. C. 1976. Oreopanax dakotensis, a new species of the Araliaceae from the Paleocene of North Dakota. Scientific Publications of the Science Museum of Minnesota new series 3(3): 1-8.

Mildenhall, D. C. 1980. New Zealand late Cretaceous and Cenozoic plant biogeography: a contibution. Palaeogeography, Palaeoclimatology, Palaeoecology 31(3-4): 197-233.

Nixon, K. C. 2002. Winclada ver. 1.00.08. Published by the author, Ithaca, NY, USA. <www.cladisfics.com>.

-- & W. L. Crepet. 1993. Late cretaceous fossil flowers with ericalean affinity. American Journal of Botany 80(6): 616-623.

Olmstead, R. G., H. J. Miehaels, K. M. Scott & J. D. Palmer. 1992. Monophyly of the Asteridae and Identification of Their Major Lineages Inferred From DNA Sequences of rbcL. Annals of the Missouri Botanical Garden 79(2): 249-265.

--, B. Bremer, K. M. Scott & J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato Based on rbcL Sequences. Annals of the Missouri Botanical Garden 80(3): 700-722.

Oxelman, B., P. Kornhall, R. G. Olmstead & B. Bremer. 2005. Further disintegration of Scrophulariaceae. Taxon 54(2): 411-425.

Piel, K. M. 1971. Palynology of Oligocene sediments from central British Columbia. Canadian Journal of Botany 49(11): 1885-1920 + 17pl.

Pigg, K. B., S. R. Manehester& M. L. DeVore. 2008. Fruits of Icacinaceae (Tribe Iodeae) from the Late Paleocene of western North America. American Journal of Botany 95(7): 824-832.

Pocknall, D. T. 1987. Paleoenvironments and age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. Palaios 2(4): 368-376.

Pole, M. S. 1996. Plant macrofossils from the Foulden Hills Diatomite (Miocene), central Otago, New Zealand. Journal of the Royal Society of New Zealand 26(1): 1-39.

Prakash, U. & R. DayaL 1964. Barringtonioxylon eopterocarpum sp. nov., a fossil wood of Lecythidaceae from the Deccan Intertrappean beds of Mahurzari. The Palaeobotanist 13(1): 25-29.

--. & P. P. Tripathi. 1969. Fossil woods from the Tipam sandstones near Hailakandi, Assam. The Palaeobotanist 18(2): 183-191.

Prasad, M. 1988. Some more fossil woods from the lower Siwalik sediments of Kalagarh, Uttar Pradesh, India. Geophytology 18(2): 135-144 + 3 pl.

--. 1993. Siwalik (middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynology 76(1): 49-82.

-- & U. M. S. Pradhan. 1998. Study on plant fossils from the siwalik sediments of far western Nepal. The Palaeobotanist 47(1): 99-109.

Pulquerio, M. J. F. & R. A. Nichols. 2007. Dates from the molecular clock: how wrong can they be? Trends in Ecology and Evolution 22(4): 180-184.

Reid, E. M. & M. E. J. Chandler. 1926. Catalogue of Cainzoic plants in the Department of Geology. Vol. 1. The Brembridge Flora. British Museum (Natural History), London, UK.

-- & --. 1933. The London clay flora. British Museum (Natural History), London, UK. Rodriguez de Sarmiento, M. N. & J. Durango de Cabrera. 1995. Hallazgos de Remijia tenuiflorifolla Berry (Rubiaceae) con restos fungicos, Laguna del Hunco, Terciario, Chubut, Argentina. Acta Geologica Leopoldensia 42: 139-145.

Salard-Cheboldaeff, M. 1978. Sur la palynoflore Maestrichtiene et Tertiaires du Bassin sedimentaire littoral du Cameroun. Pollen et Spores 20(2): 215-260.

Sanderson, M. J. 1997. A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy. Molecular Biology and Evolution 14(12): 1218-1231.

--. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19(1): 101-109.

--, J. L. Thorne, N. Wikstriim & K. Bremer. 2004. Molecular evidence on plant divergence times. American Journal of Botany 91(10): 1656-1665.

Saporta, G. de. 1862. Etudes sur la vegetation du sud-est de la France a l'epoque Tertiaire. Annales des Sciences Naturelles 4e Serie Botanique 17:191-311 + 14 pl.

--. 1873. Etudes sur la vrgrtation du sud-est de la France a l'epoque Tertiaire. Supplement 1, Revision de la flore des Gypses d'Aix. Troisirme fascicule. Description des esprces Dicotylrdones. Annales des Sciences Naturelles 5e Serie Botanique 18: 23-146 + 12 pl.

--. 1889. Dernirres adjonctions a la Flore fossile d'Aix-en-Provence. Description des esprcesdeuxieme partie. Annales des Sciences Naturelles 7e Serie Botanique 10: 1-192 + 20 pl.

Savolainen, V., M. W. Chase, S. B. Hoot, M. C. Morton, D. E. Soltls, C. Bayer, M. F. Fay, A. Y. De Bruijn, S. Sullivan & Y. Qiu. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49(2): 306-362.

Schonenberger, J. & E. M. Friis. 2001. Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden. American Journal of Botany 88(3): 467-480.

--, A. A. Anderberg & K. J. Sytsma. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences 166(2): 265-288.

Schweigert, G. 1992. Zur Altersstellung der Floren von Riggau und Friedersreuth (Hessenreuther Forst, Oberpfalz) mit Beschreibung von Styrax hradekense (Kvacek & Buezek) n. comb [The age of the Riggau and Friedersreuth floras, Hessenreuth Forest, Upper Palatinate, with a description of Styrax hradekense, n. comb]. Geologisehe Blaetter fuer Nordost-Bayern und Angrenzende Gebiete 42(3-4): 229-244.

Scott, R. A. & E. S. Barghoorn. 1957. Phytocrene microcarpa--a new species of Icaeinaceae based on Cretaceous fruits from Kreischerville, New York. The Palaeobotanist 6(1): 25-28.

Scott, L., A. Cadman & I. McMillan. 2006. Early history of Cainozoic Asteraceae along the Southern African west coast. Review of Palaeobotany and Palynology 142(1-2): 47-52.

Sole de Porta, N. 1960. Observaciones palinologicas sobre el plioceno de Cartagena (Colombia). Boletin de Geologia (Bucaramanga) 4: 45-50.

Soltis, D. E., P. E. Soltis, M. W. Chase, M. E. Mort, D. C. Albaeh, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. E Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon & J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences. Botanical Journal of the Linnean Society 133(4): 381-461.

--, M. A. Gitzendanner & P. E. Soltis. 2007. A 567-taxon data set for angiosperms: The challenges posed by Bayesian analyses of large data sets. International Journal of Plant Sciences 168(2): 137-157.

Stockey, R. A., B. A. Lepage & K. Pigg. 1998. Permineralized fruits of Diplopanax (Cornaceae, Mastixioideae) from the Middle Eocene Princeton Chert of British Columbia. Review of Palaeobotany and Palynology 103(3-4): 223-234.

Szafer, W. 1961. Miocene flora from Stare Gliwice in Upper Silesia. Instytut Geologiczny Prace, XXXIII. Wydawnictwa Geologiczne, Warsaw.

Takahashi, M., P. R. Crane & H. Ando. 1999. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, Lower Coniacian, Upper Cretaceous) of Northeast Japan. Journal of Plant Research 112(2): 187-206.

--, -- & S. R. Manchester. 2002. Hironoiafusiformis gen. et sp. nov.. A eornalean fruit from the Kamikitaba locality (Upper Cretaceous, Lower Coniacian) in Northeastern Japan. Journal of Plant Research 115(6): 463-473.

Takhtajan, A. 1997. Diversity and classification of flowering plants. Columbia University Press, New York, NY, USA.

Tanai, T. 1990. Euphorbiaceae and Icacinaceae from the Paleogene of Hokkaido. Japan. Bulletin of the National Science Museum of Tokyo. Series C: Geology and Paleontology 16(3): 91-118.

Thayn, G. F., W. D. Tidwell & VC. L. Stokes. 1985. Flora of the lower cretaceous cedar mountain formation of Utah and Colorado. Part III: Icacinoxylon pittiense n. sp. American Journal of Botany 72 (2): 175-180.

Tiffney, B. H. 1999. Fossil fruit and seed flora from the Early Eocene Fisher/Sullivan Site. Pages 139-159 in R. E. Weems & G. J. Grimsley (eds.), Early Eocene vertebrates and plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia. Virginia Division of Mineral Resources Publication.

-- & K. K. Haggard. 1996. Fruits of Mastixioideae (Cornaceae) from the Paleogene of western North America. Review of Palaeobotany and Palynology 92(1-2): 29-54.

Tralau, H. 1964. The genus Trapella Olivier in the Tertiary of Europe. Botaniska Notiser 117(2): 119-123.

--. 1965. Die Gattung Trapella im zentraleuropaeischen Tertiaer. Geologisches Jahrbuch 82: 771-775.

Trivedi, B. S. & S. K. Chaturvedi. 1972. Voyrioseminites magnus gen et sp. nov. a fossil seed from Tertiary coal of Malaya. Geophytology 1(2): 161-164 + 1pl.

Vassiljev, I. V. 1976. Some representatives of Anacardiaceae and Apocynaceae in the Palaeogene floras of western Kazakhstan, U.S.S.R. The Palaeobotanist 25: 543-548.

Vaudois-Mieja, N. 1983. Extension paleogeographique en Europe de l'actuel genre asiatique Rehderodendron Hu (Styracacees). Comptes-Rendus des Seances de l'Academie des Sciences, Serie 2: Mecanique-Physique, Chimie, Sciences de l'Univers, Sciences de la Terre 296(1): 125-130.

Wagenitz, G. 1992. The Asteridae: Evolution of a concept and its present status. Annals of the Missouri Botanical Garden 79(2): 209-217.

Welch, J. J. & L. Bromham. 2005. Molecular dating when dates vary. Trends in Ecology and Evolution 20(6): 320-327.

Wheeler, E., M. Lee & L. C. Marten. 1987. Dicotyledonous woods from the Upper Cretaceous of southern Illinois. Botanical Journal of the Linnean Society 95(2): 77-100.

Wikstrom, N., V. Savolainen & M. W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London series B 268(1482): 2211-2220.

Wilde, V. 1989. Untersuehungen zur Systematik der Blattreste aus dem Mitteleozan der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinstitut Senckenberg 115: 1-213.

Wolfe, J. A. 1964. The Miocene floras from Fingerrock Wash Southwestern Nevada. U. S. Geological Survey Professional Paper 454-N: N1-N36 + 12 pl.

-- & H. E. Seharn. 1989. Paleoecologic, paleoclimatic, and evolutionary significance of the Oligocene Creede Flora, Colorado. Paleobiology 15(2): 180-198.

-- & --. 1990. Taxonomic revision of the Spermatopsida of the Oligocene Creede Flora, southern Colorado. U. S. Geological Survey Bulletin 1923: 1-40.

Xiang, Q.-Y., M. L. Moody, D. E. Soltis, C. Fan & P. S. Soltis. 2002. Relationships within Cornales and circumscription of Cornaceae--matK and rbcL sequence data and effects of outgroups and long branches. Molecular Phylogenetics and Evolution 24(1): 35-57.

Zamaloa, M. C. 2000. Palinoflora y ambiente en el Terciario del nordeste de Tierra del Fuego, Argentina. Revista del Museo Argentino de Ciencias Naturales 2(1): 43-51.

Zavada, M. S. & S. E. de Villiers. 2000. Pollen of the Asteraceae from the Paleocene-Eocene of South Africa. Grana 39(1): 39-45.

Zhang, W.-H., Z.-D. Chen, J.-H. Li, H.-B. Chen & Y.-C. Tang. 2003. Phylogeny of Dipsacales s. 1. based on chloroplast trnL-F and ndhF sequences. Molecular Phylogenetics and Evolution 26(2): 176-189.

Zuckerkandl, E. & L. Pauling. 1962. Molecular disease, evolution, and genetic heterogeneity. Pp 189-225. In: M. Kasha & B. Pullman (eds). Horizons in biochemistry. Academic Press, New York, USA.

-- & --. 1965. Evolutionary divergence and convergence in proteins Pages 97-166 in Bryson, V. and H. J. Vogel (eds.), Evolving genes and proteins. Academic Press, New York, USA.

Marcela Martinez-Millan (1,2)

(1) L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853-4303, USA

(2) Author for Correspondence; e-mail: mm383@cornell.edu
Table 1 Estimated Times of Divergence of Relevant Angiosperm Groups
Based on Fossil Estimates and Molecular Dating, Ages are Given in
Millions of Years Before Present (MYBP)

Clade          Magallon et al., 1999   Wikstrom et al., 2001
Estimate       Fossil                  Molecular

Angiosperms    --                      158-179
Eudicots       --                      131-147
Asterids       --                      112-122
Comales        69.5                    106-114
Ericales       89.5                    106-114
Euasterids     --                      107-117
Campanulids    --                      102-112
Aquifoliales   69.5                    99-107
Apiales        69.5                    85-90
Dipsacales     53.2                    85-90
Asterales      29.3                    101-94
Lamiids        --                      102-112
Garryales      45.9                    100-107
Gentianales    53.2                    83-89
Solanales      53.2                    82-86
Lamiales       37                      71-74

Clade          Bremer et al., 2004   Crepet et al., 2004
Estimate       Molecular             Fossil

Angiosperms    --                    113
Eudicots       --                    100
Asterids       --                    90
Comales        128                   --
Ericales       127                   90
Euasterids     127                   --
Campanulids    123                   --
Aquifoliales   121                   --
Apiales        113                   --
Dipsacales     111                   --
Asterales      112                   --
Lamiids        123                   --
Garryales      114                   --
Gentianales    108                   --
Solanales      106                   --
Lamiales       106                   --

Table 2 Summary of the Fossil Record of Asteridae by Orders.
Numbers Indicate the Number of Fossil Occurrences Found During
the Literature Review Before Evaluating Each Record.
"Reproductive" Includes Macrofossil Remains of Flowers, Fruits
and Seeds, "Vegetative" Mostly Includes Leaves and Wood. Six
Fossils are Represented Twice Since They are Known From
Organically Connected Reproductive and Vegetative Remains.
"Unplaced Families" Include the Clades Escalloniaceae-Paracryphiaceae
(Paracryphiales of APG, 2009), Icacinaceae-Oncothecaceac
and Boraginaceae-Vahliaceae  (see Fig. 1)

Order               Fossils   Reproductive   Vegetative   Pollen

Comales               21           17             4          2
Ericales              81           49            24         10
Campanulids           56           40             6         10
Aquifoliales           5            3             0          2
Apiales               18           16             1          1
Dipsacales             8            5             2          1
Asterales             24           15             3          6
Lamiids              103           58            30         16
Ganyales              11            7             2          2
Gentianales           24            9             7          8
Solanales             14            9             2          3
Lamiales              24           16             8          2
Unplaced families     31           18            12          1
TOTAL                261          164            65         38

Table 3 Early Fossil Record of the Comales. Acc = Accepted

Fossil taxon                      Organ        Age

Hydrangeaceae

  Tylerianthus crossmanensis      Flower       Turonian
   Gandolfo, Nixon et Crepet
   1998

Comaceae

  Cornus clarnensis               Endocarp     Middle Eocene
   Manchester 1994

  Mastixioxylon symplocoides      Wood         Middle-Late
   Meijer 2000                                   Santonian

Cornaceae/Nyssaceae

  Nyssoxylon sp.                  Wood         Middle-Late
                                                 Santonian

Nyssaceae

  Davidia antiqua (Newberry)      Leaf/fruit   Early Paleocene
   Manchester 2002

  Davidia antiqua (Newberry)      Leaf/fruit   Paleocene
   Manchester 2002

  Nyssa                           Pollen       Middle Oligocene

  Nyssa sp.                       Endocarp     Early Ypresian,
                                                 Early Eocene

  Tricolporopollenites kruschii   Pollen       Paleocene
  Potonie 1934

Nyssaceae/Mastixiaceae

  Hironoia fus fonnis             Fruit        Early Coniacian-
   Takahashi, Crane et                           Early Santonian
   Manchester 2002

Mastixiaceae

  Beckettia sp.                   Fruit        Early Ypresian,
                                                 Early Eocene

  cf. Mastixia                    Endocarp     Early Paleocene-
                                                 Earliest Eocene

  cf. Mastixia                    Fruit        Late Early Eocene-
                                                 Early Middle
                                                 Eocene

  Diplopanax eydei Stockey,       Fruit        Middle Eocene
   LePage et Pigg 1998

  Langtonia bisulcata Reid et     Endocarp     Early Eocene
   Chandler 1933

  Langtonia bisulcata Reid et     Endocarp     Middle Eocene
   Chandler 1933

  Mastixia eydei Tiffney et       Endocarp     Late Eocene
   Haggard 1996

  Mastixia oregonense (Scott)     Endocarp     Middle Eocene
   Tiffney et Haggard 1996

  Mastixicarpum occidentale       Endocarp     Middle Eocene
   Manchester 1994

Fossil taxon                      Locality

Hydrangeaceae

  Tylerianthus crossmanensis      Raritan, NJ, USA
   Gandolfo, Nixon et Crepet
   1998

Comaceae

  Cornus clarnensis               Clamo, OR, USA
   Manchester 1994

  Mastixioxylon symplocoides      Aachen, La
   Meijer 2000                      Calamine, NE
                                    Belgium
Cornaceae/Nyssaceae

  Nyssoxylon sp.                  Aachen, La
                                    Calamine, NE
                                    Belgium
Nyssaceae

  Davidia antiqua (Newberry)      Bureya, SE Russia
   Manchester 2002

  Davidia antiqua (Newberry)      Fort Union Gr, ND,
   Manchester 2002                  MT, WY, USA

  Nyssa                           San Sebastikn Puerto
                                    Rico

  Nyssa sp.                       Nanjemoy, VA, USA

  Tricolporopollenites kruschii   Wilcow flora, TX,
  Potonie 1934                    USA

Nyssaceae/Mastixiaceae

  Hironoia fus fonnis             Ashizawa Fm, NE
   Takahashi, Crane et              Honshu Japan
   Manchester 2002

Mastixiaceae

  Beckettia sp.                   Nanjemoy, VA,
                                    USA

  cf. Mastixia                    Fort Union, WY,
                                    USA

  cf. Mastixia                    Sepulcher, MT-WY,
                                    USA

  Diplopanax eydei Stockey,       Princeton Chert, BC,
   LePage et Pigg 1998              Canada

  Langtonia bisulcata Reid et     London Clay,
   Chandler 1933                    England

  Langtonia bisulcata Reid et     Clamo, OR, USA
   Chandler 1933

  Mastixia eydei Tiffney et       Auriferous Gravels,
   Haggard 1996                     CA, USA

  Mastixia oregonense (Scott)     Clamo, OR, USA
   Tiffney et Haggard 1996

  Mastixicarpum occidentale       Clamo, OR, USA
   Manchester 1994

Fossil taxon                      Reference          Acc.

Hydrangeaceae

  Tylerianthus crossmanensis      Gandolfo et al.,   Yes
   Gandolfo, Nixon et Crepet      1998
   1998

Comaceae

  Cornus clarnensis               Manchester,        Yes
   Manchester 1994                1994

  Mastixioxylon symplocoides      Meijer, 2000       Yes
   Meijer 2000

Cornaceae/Nyssaceae

  Nyssoxylon sp.                  Meijer, 2000       Yes

Nyssaceae

  Davidia antiqua (Newberry)      Manchester,        Yes
   Manchester 2002                  2002

  Davidia antiqua (Newberry)      Manchester,        Yes
   Manchester 2002                  2002

  Nyssa                           Graham &           No
                                    Jarzen, 1969

  Nyssa sp.                       Tiffney, 1999      Yes

  Tricolporopollenites kruschii   Elsik, 1968        No
  Potonie 1934

Nyssaceae/Mastixiaceae

  Hironoia fus fonnis             Takahashi et       Yes
   Takahashi, Crane et              al., 2002
   Manchester 2002

Mastixiaceae

  Beckettia sp.                   Tiffney, 1999      Yes

  cf. Mastixia                    Tiffney &          Yes
                                    Haggard, 1996

  cf. Mastixia                    Tiffney &          Yes
                                    Haggard, 1996

  Diplopanax eydei Stockey,       Stockey et al.,    Yes
   LePage et Pigg 1998              1998

  Langtonia bisulcata Reid et     Reid &             Yes
   Chandler 1933                    Chandler, 1933

  Langtonia bisulcata Reid et     Manchester,        Yes
   Chandler 1933                    1994

  Mastixia eydei Tiffney et       Tiffney &          Yes
   Haggard 1996                     Haggard, 1996

  Mastixia oregonense (Scott)     Tiffney &          Yes
   Tiffney et Haggard 1996          Haggard, 1996

  Mastixicarpum occidentale       Tiffney &          Yes
   Manchester 1994                  Haggard, 1996

Table 4 Early Fossil Record of the Ericales

Fossil taxon                   Organ        Age

Marcgraviaceae

  Marcgravia sp                Pollen       Middle Oligocene

  Norantea sp                  Pollen       Middle Oligocene

Tetrameristaceae
("Pellicieraceae")

  "Pelliciera"-like            Pollen       Oligocene-Miocene

  Pelliciera                   Pollen       Early Middle Eocene

  Pelliciera                   Pollen       Eocene

  Pelliciera                   Pollen       Oligocene-Miocene

  Pelliciera                   Pollen       Oligocene-Miocene

  Pelliciera                   Pollen       Middle Oligocene

  Psilatricolporites crassus   Pollen       Tertiary
  van der Hammen et
  Wigmstra 1964

Lecythidaceae

  Barringtonioxylon            Wood         Tertiary
  arcotense Awasthi 1969

  Barringtonioxylon            Wood         Early Tertiary
  eopterocarpum                             (Eocene?)
  Prakash et Dayal 1964

  Careyoxylon                  Wood         Tertiary
  pondicherriense
  Awasthi 1969

Sapotaceae

  Chrysophyllum tertiarum      Leaf         Late Paleocene
  Mehrotra 2000

Ebenaceae

  Austrodiospyros              Flower/      Late Eocene
  cryptostoma Basinger         leaf
  et Christophel 1985

  Diospyros palaeoebenum       Leaf         Middle Miocene-
  Prasad 1994                               Pliocene

  Ebenoxylon arcotense         Wood         Tertiary
  Awasthi 1969

  Ebenoxylon kalagarhensis     Wood         Middle Miocene
  Prasad 1988

  Ebenoxylon kartikcherrense   Wood         Late Miocene
  Prakash et Tripathi 1969

  Ebenoxylon miocenicum        Wood         Middle Miocene
  Prakash 1978

  Ebenoxylon palaeocandoleana  Wood         Middle Miocene
  Prasad 1993

  Ebenoxylon siwalicus         Wood         Middle Miocene
  Prakash 1981

Myrsinaceae

  Ardisia palaeosimplicifolia  Leaf         Middle Miocene-
  Prasad 1994                               Pliocene

  "Myrsinaceae"                Leaf         Early Miocene

Polemoniaceae

  Gilisenium hueberi Lott,     Plant        Middle Eocene
  Manchester et Dilcher 1998

Theaceae

  Andrewsiocarpon              Seed/fruit   Middle Eocene
  henryense Grote et
  Dilcher 1989

  Gordonia lamkinensis         Fruit        Middle Eocene
  Grote et Dilcher 1992

  Gordonia warmanensis         Fruit        Middle Eocene
  Grote et Dilcher 1992

  Gordoniopsis polysperma      Fruit        Middle Eocene
  Grote and Dilcher 1992

Pentaphylacaceae
("Temstroemiaceae")

  Eurya crassitesta Knobloch   Seed         Maastrichtian-
  1975                                      Paleocene

  Eurya microstigmosa Mai      Seed         Early Paleocene
  1987

  Eurya stigmosa (Ludwig)      Seed         Paleocene
  Mai 1987

Pentaphylacaceae
("Sladeniaceae")

  Sladenioxylon africanum      Wood         Albian-
  Giraud, Bassert et                        Cenomanian
  Schrank 1992

Pentaphylacaceae
("Pentaphylacaceae")

  Pentapetalum trifasciculan-  Flower       Turonian
  dricus Martinez-Millan,
  Crepet et Nixon, 2009

Actinidiaceae/Theaceae

  Paradinandra suecica         Flower       Late Santonian-
  Schonenberger et                          Early
  Friis 2001                                Campanian

Actinidiaceae

  Actinidia argutaeformis      Seed         Miocene
  Dorofeev 1963

  Actinidia faveolata Reid     Seed         Miocene
  1915

  Actinidia oregonensis        Seed         Middle Eocene
  Manchester 1994

  Parasaurauia allonensis      Flower       Early Campanian
  Keller, Herendeen et
  Crane 1996

  Saurauia antiqua Knobloch    Seed         Senonian-
  et Mai 1986                               Santonian

Ericaceae

  "Ericaceae"                  Pollen       Oligocene-
                                            Miocene

  Paleoenkianthus              Flower       Turonian
  sayrevillensis
  Nixon et Crepet 1993

Diapensiaceae

  Actinocalyx bohrii Friis     Flower       Late Santonian-
  1985                                      Early Campanian

Styracaceae

  Rehderodendron stonei        Fruit        Eocene
  (Reid et Chandler)
  Mai 1970

  Styrax hradekense            Leaf         Oligocene
  Schweigert 1992

Symplocaceae

  Durania ehrenbergii          Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

  Palliopora                   Endocarp     Middle-Late
  symplocoides                              Oligocene
  Kirchheimer 1949

  Sphenoteca gigantea          Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

  Sphenoteca incurva           Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

  Symplocos arecaeformis       Endocarp     Middle-Late
  (Schlotheim)                              Oligocene
  Kirchheimer 1949

  Symplocos braunii            Endocarp     Late Miocene
  Kirchheimer 1949

  Symplocos bureauana          Leaf         Early Eocene
  Saporta 1868

  Symplocos casparyi           Endocarp     Early Miocene-
  Ludwig 1857                               Early Pliocene

  Symplocos cf.                Endocarp     Early Pliocene
  crataegoides Buchanan-
  Hamilton 1937

  Symplocos commutatifolia     Leaf         Eocene
  Berry 1938

  Symplocos detrita            Leaf         Early Miocene
  Velenovsky 1882

  Symplocos elongata           Endocarp     Early Pliocene
  Ludwig 1857

  Symplocos globosa            Endocarp     Early Pliocene
  Ludwig 1857

  Symplocos gothani            Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

  Symplocos grimsleyi          Endocarp     Early Ypresian,
  Tiffney 1999                              Early Eocene

  Symplocos headonensis        Fruit        Late Eocene
  Chandler 1926

  Symplocos kirstei            Endocarp     Early-Middle
  Kirchheimer 1939                          Oligocene

  Symplocos laurifolia         Leaf         Miocene
  Hofmann 1926

  Symplocos lignitarum         Endocarp     Middle-Late
  (Quenstedt) Kirchheimer                   Oligocene
  1949

  Symplocos ludwigh            Endocarp     Early Pliocene
  Kirchheimer 1949

  Symplocos microcarpa         Endocarp     Early Pliocene
  Reid 1920

  Symplocos minutula           Endocarp     Early Oligocene-
  (Sternberg) Kirchheimer                   Late Miocene
  1949

  Symplocos n. sp.             Endocarp     Early Pliocene
  Reid 1923

  Symplocos oleaceae           Endocarp     Late Miocene
  Ludwig 1858

  Symplocos oregona            Leaf         Late Eocene
  Chaney et Sanbom 1933

  Symplocos poppeana           Endocarp     Middle-Late
  Kirchheimer 1940                          Oligocene

  Symplocos pseudogregaria     Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

  Symplocos quadrilocularis    Fruit        Early Eocene
  Reid et Chandler 1933

  Symplocos radobojana         Fruit        Late Oligocene-
  Unger1866                                 Early Miocene

  Symplocos salzhausenensis    Endocarp     Late Miocene
  (Ludwig) Kirchheimer
  1949

  Symplocos schereri           Endocarp     Middle-Late
  Kirchheimer 1935                          Oligocene

  Symplocos smithii Florin     Leaf         Late Pliocene
  1920

  Symplocos SP.                Endocarp     Late Eocene-
  Kirchheimer 1949                          Early Pliocene

  Symplocos subspicata         Leaf         Eocene
  Friedrich 1883

  Symplocos trilocularis       Fruit        Early Eocene
  Reid et Chandler 1933

  Symplocos urceolata          Fruit        Early Pliocene
  Reid 1920

  Symplocos wiesaensis         Endocarp     Middle-Late
  Kirchheimer 1949                          Oligocene

Fossil taxon                   Locality

Marcgraviaceae

  Marcgravia sp                San Sebastian
                               Puerto Rico

  Norantea sp                  San Sebastian
                               Puerto Rico

Tetrameristaceae
("Pellicieraceae")

  "Pelliciera"-like            Simcjovel, Chis,
                               Mexico

  Pelliciera                   Chapelton, Jamaica

  Pelliciera                   Gatuncillo, Panama

  Pelliciera                   La Boca, Panama

  Pelliciera                   La Quinta, Chis,
                               Mexico

  Pelliciera                   San Sebastian,
                               Puerto Rico

  Psilatricolporites crassus   Guiana Basin,
  van der Hammen et            Guianas
  Wigmstra 1964

Lecythidaceae

  Barringtonioxylon            Cuddalore Series,
  arcotense Awasthi 1969       India

  Barringtonioxylon            Deccan Intertrappean
  eopterocarpum                Beds, India
  Prakash et Dayal 1964

  Careyoxylon                  Cuddalore Series,
  pondicherriense              India
  Awasthi 1969

Sapotaceae

  Chrysophyllum tertiarum      Nangwalbibra India
  Mehrotra 2000

Ebenaceae

  Austrodiospyros              Anglesea, Victoria,
  cryptostoma Basinger         Australia
  et Christophel 1985

  Diospyros palaeoebenum       Siwalik, Nepal
  Prasad 1994

  Ebenoxylon arcotense         Cuddalore Series,
  Awasthi 1969                 India

  Ebenoxylon kalagarhensis     Siwalik, India
  Prasad 1988

  Ebenoxylon kartikcherrense   Kartikcherra,
  Prakash et Tripathi 1969     India

  Ebenoxylon miocenicum        Siwalik, India
  Prakash 1978

  Ebenoxylon palaeocandoleana  Siwalik, India
  Prasad 1993

  Ebenoxylon siwalicus         Siwalik, India
  Prakash 1981

Myrsinaceae

  Ardisia palaeosimplicifolia  Siwalik, Nepal
  Prasad 1994

  "Myrsinaceae"                Foulden Hills,
                               New Zealand

Polemoniaceae

  Gilisenium hueberi Lott,     Green River,
  Manchester et Dilcher 1998   UT, USA

Theaceae

  Andrewsiocarpon              Claiborne Fm, KY,
  henryense Grote et           TN, USA
  Dilcher 1989

  Gordonia lamkinensis         Claiborne Fm,
  Grote et Dilcher 1992        KY, USA

  Gordonia warmanensis         Claiborne Fm,
  Grote et Dilcher 1992        TN, USA

  Gordoniopsis polysperma      Claiborne Fm,
  Grote and Dilcher 1992       TN, USA

Pentaphylacaceae
("Temstroemiaceae")

  Eurya crassitesta Knobloch   Eisleben, Germany
  1975

  Eurya microstigmosa Mai      Gunna, Germany
  1987

  Eurya stigmosa (Ludwig)      Eisleben, Germany
  Mai 1987

Pentaphylacaceae
("Sladeniaceae")

  Sladenioxylon africanum      Wadi Awatib,
  Giraud, Bassert et           Sudan
  Schrank 1992

Pentaphylacaceae
("Pentaphylacaceae")

  Pentapetalum trifasciculan-  Raritan, New Jersey
  dricus Martinez-Millan,
  Crepet et Nixon, 2009

Actinidiaceae/Theaceae

  Paradinandra suecica         Asen, Scania,
  Schonenberger et             N Sweden
  Friis 2001

Actinidiaceae

  Actinidia argutaeformis      Nowy Sacz Basin,
  Dorofeev 1963                Poland

  Actinidia faveolata Reid     Nowy Sacz Basin,
  1915                         Poland

  Actinidia oregonensis        Clamo, OR, USA
  Manchester 1994

  Parasaurauia allonensis      Gaillard Fm, Buffalo
  Keller, Herendeen et         Creek GA, USA
  Crane 1996

  Saurauia antiqua Knobloch    Klikov-
  et Mai 1986                  Schichtenfolge,
                               Germany

Ericaceae

  "Ericaceae"                  La Quinta, Chis,
                               Mexico

  Paleoenkianthus              Raritan, New Jersey
  sayrevillensis
  Nixon et Crepet 1993

Diapensiaceae

  Actinocalyx bohrii Friis     Asen, Scania,
  1985                         S Sweden

Styracaceae

  Rehderodendron stonei        Sabals d' Anjou,
  (Reid et Chandler)           France
  Mai 1970

  Styrax hradekense            Hessemeuth, Germany
  Schweigert 1992

Symplocaceae

  Durania ehrenbergii          Rheinland, Germany
  Kirchheimer 1949

  Palliopora                   Rheinland, Germany
  symplocoides
  Kirchheimer 1949

  Sphenoteca gigantea          Rheinland, Germany
  Kirchheimer 1949

  Sphenoteca incurva           Rheinland, Germany
  Kirchheimer 1949

  Symplocos arecaeformis       Rheinland, Germany &
  (Schlotheim)                 Poland
  Kirchheimer 1949

  Symplocos braunii            Hessen, Germany
  Kirchheimer 1949

  Symplocos bureauana          Marne, France
  Saporta 1868

  Symplocos casparyi           Hessen, Germany
  Ludwig 1857

  Symplocos cf.                Hessen, Germany
  crataegoides Buchanan-
  Hamilton 1937

  Symplocos commutatifolia     Rio Pichilefu,
  Berry 1938                   Argentina

  Symplocos detrita            Vrsovice, Czech Rep.
  Velenovsky 1882

  Symplocos elongata           Hessen, Germany
  Ludwig 1857

  Symplocos globosa            Hessen, Germany
  Ludwig 1857

  Symplocos gothani            Rheinland, Germany
  Kirchheimer 1949

  Symplocos grimsleyi          Nanjemoy, VA, USA
  Tiffney 1999

  Symplocos headonensis        Hampshire, UK
  Chandler 1926

  Symplocos kirstei            Thuringen, Germany
  Kirchheimer 1939

  Symplocos laurifolia         Kathrein, Austria
  Hofmann 1926

  Symplocos lignitarum         Rheinland, Germany
  (Quenstedt) Kirchheimer
  1949

  Symplocos ludwigh            Hessen, Germany
  Kirchheimer 1949

  Symplocos microcarpa         Pont-de-Gail, France
  Reid 1920

  Symplocos minutula           Rheinland, Germany,
  (Sternberg) Kirchheimer      Switzerland,
  1949                         Austria, France,
                               Czech Rep, Poland

  Symplocos n. sp.             Pont-de-Gail, France
  Reid 1923

  Symplocos oleaceae           Hessen, Germany
  Ludwig 1858

  Symplocos oregona            Goshen, Oregon,
  Chaney et Sanbom 1933        USA

  Symplocos poppeana           Lausitz, Germany
  Kirchheimer 1940

  Symplocos pseudogregaria     Rheinland, Germany
  Kirchheimer 1949

  Symplocos quadrilocularis    Minster, Kent, UK
  Reid et Chandler 1933

  Symplocos radobojana         Radobcj, Yugoslavia,
  Unger1866                    Czech Rep

  Symplocos salzhausenensis    Hessen, Germany
  (Ludwig) Kirchheimer
  1949

  Symplocos schereri           Rheinland, Germany
  Kirchheimer 1935

  Symplocos smithii Florin     Amakusa, Japan
  1920

  Symplocos SP.                Hessen, Germany,
  Kirchheimer 1949             England,
                               Netherlands

  Symplocos subspicata         Eisleben, Germany
  Friedrich 1883

  Symplocos trilocularis       Minster, Kent, UK
  Reid et Chandler 1933

  Symplocos urceolata          Pont-de-Gail, France
  Reid 1920

  Symplocos wiesaensis         Lausitz, Germany
  Kirchheimer 1949

Fossil taxon                   Reference           Acc.

Marcgraviaceae

  Marcgravia sp                Graham &            No
                               Jarzen,1969

  Norantea sp                  Graham &            No
                               Jarzen, 1969

Tetrameristaceae
("Pellicieraceae")

  "Pelliciera"-like            Lagenheim et        No
                               al., 1967

  Pelliciera                   Graham, 1977        No

  Pelliciera                   Graham, 1977        No

  Pelliciera                   Graham, 1977        No

  Pelliciera                   Graham, 1999        No

  Pelliciera                   Graham &            No
                               Jarzen, 1969

  Psilatricolporites crassus   Graham, 1977        No
  van der Hammen et
  Wigmstra 1964

Lecythidaceae

  Barringtonioxylon            Awasthi, 1969a      Yes
  arcotense Awasthi 1969

  Barringtonioxylon            Prakash &           Yes
  eopterocarpum                Dayal, 1964
  Prakash et Dayal 1964

  Careyoxylon                  Awasthi, 1969a      Yes
  pondicherriense
  Awasthi 1969

Sapotaceae

  Chrysophyllum tertiarum      Mehrotra, 2000      Yes
  Mehrotra 2000

Ebenaceae

  Austrodiospyros              Basinger &          Yes
  cryptostoma Basinger         Christophel,
  et Christophel 1985          1985

  Diospyros palaeoebenum       Prasad &            Yes
  Prasad 1994                  Pradhan, 1998

  Ebenoxylon arcotense         Awasthi, 1969b      Yes
  Awasthi 1969

  Ebenoxylon kalagarhensis     Prasad, 1988        No
  Prasad 1988

  Ebenoxylon kartikcherrense   Prakash &           Yes
  Prakash et Tripathi 1969     Tripathi, 1969

  Ebenoxylon miocenicum        Prasad, 1993        Yes
  Prakash 1978

  Ebenoxylon palaeocandoleana  Prasad, 1993        Yes
  Prasad 1993

  Ebenoxylon siwalicus         Prasad, 1993        Yes
  Prakash 1981

Myrsinaceae

  Ardisia palaeosimplicifolia  Prasad &            Yes
  Prasad 1994                  Pradhan, 1998

  "Myrsinaceae"                Pole, 1996          Yes

Polemoniaceae

  Gilisenium hueberi Lott,     Lott et al., 1998   Yes
  Manchester et Dilcher 1998

Theaceae

  Andrewsiocarpon              Grote & Dilcher,    Yes
  henryense Grote et           1989
  Dilcher 1989

  Gordonia lamkinensis         Grote & Dilcher,    Yes
  Grote et Dilcher 1992        1992

  Gordonia warmanensis         Grote & Dilcher,    Yes
  Grote et Dilcher 1992        1992

  Gordoniopsis polysperma      Grote & Dilcher,    Yes
  Grote and Dilcher 1992       1992

Pentaphylacaceae
("Temstroemiaceae")

  Eurya crassitesta Knobloch   Mai, 1987           Yes
  1975

  Eurya microstigmosa Mai      Mai, 1987           Yes
  1987

  Eurya stigmosa (Ludwig)      Mai, 1987           Yes
  Mai 1987

Pentaphylacaceae
("Sladeniaceae")

  Sladenioxylon africanum      Giraud et al.,      Yes
  Giraud, Bassert et           1992
  Schrank 1992

Pentaphylacaceae
("Pentaphylacaceae")

  Pentapetalum trifasciculan-  Martinez-Milldn     Yes
  dricus Martinez-Millan,      et al., 2009
  Crepet et Nixon, 2009

Actinidiaceae/Theaceae

  Paradinandra suecica         Schonenberger &     Yes
  Schonenberger et             Friis, 2001
  Friis 2001

Actinidiaceae

  Actinidia argutaeformis      Lancucka-           Yes
  Dorofeev 1963                Srodoniowa,
                               1979

  Actinidia faveolata Reid     Lancucka-          Yes
  1915                         Srodoniowa,
                               1979

  Actinidia oregonensis        Manchester,         Yes
  Manchester 1994              1994

  Parasaurauia allonensis      Keller et al.,      Yes
  Keller, Herendeen et         1996
  Crane 1996

  Saurauia antiqua Knobloch    Knobloch &          Yes
  et Mai 1986                  Mai, 1986

Ericaceae

  "Ericaceae"                  Graham, 1999        No

  Paleoenkianthus              Nixon & Crepet,     Yes
  sayrevillensis               1993
  Nixon et Crepet 1993

Diapensiaceae

  Actinocalyx bohrii Friis     Friis, 1985         Yes
  1985

Styracaceae

  Rehderodendron stonei        Vaudois-Mieja,      Yes
  (Reid et Chandler)           1983
  Mai 1970

  Styrax hradekense            Schweigert, 1992    Yes
  Schweigert 1992

Symplocaceae

  Durania ehrenbergii          Kirchheimer,        Yes
  Kirchheimer 1949             1949

  Palliopora                   Kirchheimer,        Yes
  symplocoides                 1949
  Kirchheimer 1949

  Sphenoteca gigantea          Kirchheimer,        Yes
  Kirchheimer 1949             1949

  Sphenoteca incurva           Kirchheimer,        Yes
  Kirchheimer 1949             1949

  Symplocos arecaeformis       Kirchheimer,        Yes
  (Schlotheim)                 1949
  Kirchheimer 1949

  Symplocos braunii            Kirchheimer, -      Yes
  Kirchheimer 1949             1949

  Symplocos bureauana          Kirchheimer,        No
  Saporta 1868                 1949

  Symplocos casparyi           Kirchheimer,        Yes
  Ludwig 1857                  1949

  Symplocos cf.                Kirchheimer,        No
  crataegoides Buchanan-       1949
  Hamilton 1937

  Symplocos commutatifolia     Kirchheimer,        No
  Berry 1938                   1949

  Symplocos detrita            Kirchheimer,        No
  Velenovsky 1882              1949

  Symplocos elongata           Kirchheimer,        No
  Ludwig 1857                  1949

  Symplocos globosa            Kirchheimer,        No
  Ludwig 1857                  1949

  Symplocos gothani            Kirchheimer,        Yes
  Kirchheimer 1949             1949

  Symplocos grimsleyi          Tiffney, 1999       Yes
  Tiffney 1999

  Symplocos headonensis        Kirchheimer,        No
  Chandler 1926                1949

  Symplocos kirstei            Kirchheimer,        No
  Kirchheimer 1939             1949

  Symplocos laurifolia         Kirchheimer,        No
  Hofmann 1926                 1949

  Symplocos lignitarum         Kirchheimer,        Yes
  (Quenstedt) Kirchheimer      1949
  1949

  Symplocos ludwigh            Kirchheimer,        Yes
  Kirchheimer 1949             1949

  Symplocos microcarpa         Kirchheimer,        No
  Reid 1920                    1949

  Symplocos minutula           Kirchheimer,        Yes
  (Sternberg) Kirchheimer      1949
  1949

  Symplocos n. sp.             Kirchheimer,        No
  Reid 1923                    1949

  Symplocos oleaceae           Kirchheimer,        Yes
  Ludwig 1858                  1949

  Symplocos oregona            Kirchheimer,        No
  Chaney et Sanbom 1933        1949

  Symplocos poppeana           Kirchheimer,        No
  Kirchheimer 1940             1949

  Symplocos pseudogregaria     Kirchheimer,        No
  Kirchheimer 1949             1949

  Symplocos quadrilocularis    Kirchheimer,        No
  Reid et Chandler 1933        1949

  Symplocos radobojana         Kirchheimer,        No
  Unger1866                    1949

  Symplocos salzhausenensis    Kirchheimer,        No
  (Ludwig) Kirchheimer         1949
  1949

  Symplocos schereri           Kirchheimer,        No
  Kirchheimer 1935             1949

  Symplocos smithii Florin     Kirchheimer,        No
  1920                         1949

  Symplocos SP.                Kirchheimer,        No
  Kirchheimer 1949             1949

  Symplocos subspicata         Kirchheimer,        Yes
  Friedrich 1883               1949

  Symplocos trilocularis       Kirchheimer,        No
  Reid et Chandler 1933        1949

  Symplocos urceolata          Kirchheimer,        No
  Reid 1920                    1949

  Symplocos wiesaensis         Kirchheimer,        No
  Kirchheimer 1949             1949

Table 5 Early Fossil Record of the Aquifoliales

Fossil taxon                 Organ    Age

Aquifoliaceae

  Ilex antiqua Knobloch et   Fruit    Maastrichtian
    Mai 1986
  Ilex gonnensis Mai 1970    Seed     Late Paleocene
  Ilex hercynica Mai 1970    Seed     Early Paleocene
  Ilex                       Pollen   Middle Oligocene
  Ilexpollenites             Pollen   Campanian

Fossil taxon                 Locality            Reference

Aquifoliaceae

  Ilex antiqua Knobloch et   Eisleben, Germany   Knobloch & Mai,
    Mai 1986                                       1986
  Ilex gonnensis Mai 1970    Gonna, Germany      Mai, 1987
  Ilex hercynica Mai 1970    Gonna, Germany      Mai, 1987
  Ilex                       San Sebastidn,      Graham & Jarzen,
                               Puerto Rico         1969
  Ilexpollenites             San Joaquin         Martin, 1977
                             Valley, CA, USA

Fossil taxon                 Ace.

Aquifoliaceae

  Ilex antiqua Knobloch et   No
    Mai 1986
  Ilex gonnensis Mai 1970    Yes
  Ilex hercynica Mai 1970    Yes
  Ilex                       No
  Ilexpollenites             No

Table 6 Early Fossil Record of the Apiales

Fossil taxon                  Organ      Age

Torricelliaceae

  Torricellia bonesii         Fruit      Early Miocene
  (Manchester) Manchester
  1999

  Torricellia bonesii         Fruit      Middle Eocene
  (Manchester) Manchester
  1999

  Torricellia bonesii         Fruit      Middle Eocene
  (Manchester) Manchester
  1999

  Torricellia bonesii         Fruit      Middle Eocene
  (Manchester) Manchester
  1999

  Araliaceae ("Apiaceae")

  Hydrocotyle sp Lancucka-    Fruit      Miocene
  Srodoniowa 1979

Araliaceae

  Aralia antiqua Knobloch     Endocarp   Maastrichtian
  et Mai 1986

  Aralia cf. ucrainica        Endocarp   Miocene
  Dorofeev 1963

  Aralia rugosa               Endocarp   Miocene
  Dorofeev 1963

  Aralia tertiaria            Endocarp   Miocene
  Dorofeev 1963

  Acanthopanax fiedrichii     Endocarp   Maastrichtian
  Knobloch et Mai 1986

  Acanthopanax                Endocarp   Maastrichtian
  gigantocarpus
  Knobloch et Mai 1986

  Acanthopanax                Endocarp   Maastrichtian
  mansfeldensis
  Knobloch et Mai 1986

  Acanthopanax                Endocarp   Maastrichtian
  obliquocostatus
  Knobloch et Mai 1986

  Dendropanax eocenensis      Leaf       Middle Eocene
  Dilcher et Dolph 1970

  Dendropanax                 Pollen     Middle
                                         Oligocene

  Oreopanax dakotensis        Fruit      Paleocene
  Melchior 1976

  Paleopanax oregonensis      Endocarp   Middle Eocene
  Manchester 1994

  Scheflera dorofeevii        Endocarp   Maastrichtian
  Laacucka-Srodoniowa
  1975

Fossil taxon                  Locality            Reference

Torricelliaceae

  Torricellia bonesii         Oberdorf,           Manchester,
  (Manchester) Manchester     Austria             1999
  1999

  Torricellia bonesii         Roslyn,             Manchester,
  (Manchester) Manchester     Washington          1999
  1999

  Torricellia bonesii         Clamo, OR, USA      Manchester,
  (Manchester) Manchester                         1999
  1999

  Torricellia bonesii         Messel, Germany     Manchester,
  (Manchester) Manchester                         1999
  1999

  Araliaceae ("Apiaceae")

  Hydrocotyle sp Lancucka-    Nowy Suez Basin,    Lancucka-
  Srodoniowa 1979             Poland              Srodoniowa,
                                                  1979
Araliaceae

  Aralia antiqua Knobloch     Eisleben,           Knobloch &
  et Mai 1986                 Germany             Mai, 1986

  Aralia cf. ucrainica        Nowy Suez Basin,    Laacucka-
  Dorofeev 1963               Poland              Srodoniowa,
                                                  1979

  Aralia rugosa               Nowy Suez Basin,    Laacucka-
  Dorofeev 1963               Poland              Srodoniowa,
                                                  1979

  Aralia tertiaria            Nowy Suez Basin,    Laacucka-
  Dorofeev 1963               Poland              Srodoniowa,
                                                  1979

  Acanthopanax fiedrichii     Eisleben, Germany   Knobloch &
  Knobloch et Mai 1986                            Mai, 1986

  Acanthopanax                Eisleben, Germany   Knobloch &
  gigantocarpus                                   Mai, 1986
  Knobloch et Mai 1986

  Acanthopanax                Eisleben, Germany   Knobloch &
  mansfeldensis                                   Mai, 1986
  Knobloch et Mai 1986

  Acanthopanax                Eisleben, Germany   Knobloch &
  obliquocostatus                                 Mai, 1986
  Knobloch et Mai 1986

  Dendropanax eocenensis      Claiborne, TN,      Dilcher &
  Dilcher et Dolph 1970       USA                 Dolph, 1970

  Dendropanax                 San Sebastidn,      Graham &
                              Puerto Rico         Jarzen, 1969

  Oreopanax dakotensis        Wannagan Creek      Melchior, 1976
  Melchior 1976               Flora, ND, USA

  Paleopanax oregonensis      Clamo, Oregon       Manchester,
  Manchester 1994                                 1994

  Scheflera dorofeevii        Eisleben, Germany   Knobloch &
  Laacucka-Srodoniowa                             Mai, 1986
    1975

Fossil taxon                  Acc.

Torricelliaceae

  Torricellia bonesii         Yes
  (Manchester) Manchester
  1999

  Torricellia bonesii         Yes
  (Manchester) Manchester
  1999

  Torricellia bonesii         Yes
  (Manchester) Manchester
  1999

  Torricellia bonesii         Yes
  (Manchester) Manchester
  1999

  Araliaceae ("Apiaceae")

  Hydrocotyle sp Lancucka-    Yes
  Srodoniowa 1979

Araliaceae

  Aralia antiqua Knobloch     No
  et Mai 1986

  Aralia cf. ucrainica        Yes
  Dorofeev 1963

  Aralia rugosa               Yes
  Dorofeev 1963

  Aralia tertiaria            Yes
  Dorofeev 1963

  Acanthopanax fiedrichii     No
  Knobloch et Mai 1986

  Acanthopanax                No
  gigantocarpus
  Knobloch et Mai 1986

  Acanthopanax                No
  mansfeldensis
  Knobloch et Mai 1986

  Acanthopanax                No
  obliquocostatus
  Knobloch et Mai 1986

  Dendropanax eocenensis      Yes
  Dilcher et Dolph 1970

  Dendropanax                 No

  Oreopanax dakotensis        No
  Melchior 1976

  Paleopanax oregonensis      Yes
  Manchester 1994

  Scheflera dorofeevii        No
  Laacucka-Srodoniowa
  1975

Table 7 Early Fossil Record of the Dipsacales

Fossil taxon                Organ        Age

Adoxaceae

  Sambucus                  Seed/fruit   Middle Eocene

  Sambucus                  Leaf         Late Eocene

Caprifoliaceae
("Diervillaceae")

  Diervilla echinata        Pollen       Oligocene
    Piel 1971

Caprifoliaceae

  "Caprifoliaceae"          Seed/fruit   Middle Eocene
  Symphoricarpos elegans    Leaf         Eocene
  (Lesquereux) Smith 1937

Linnaeaceae

  Dipelta europaea Reid     Fruit        Late Eocene-
  et Chandler 1926                       Early
                                         Oligocene

  Diplodipelta              Fruit        Miocene
  miocenica (Berry)
  Manchester et
  Donoghue 1995

  Diplodipelta              Fruit        Late Eocene-
  reniptera (Becker)                     Oligocene
  Manchester et
  Donoghue 1995

Fossil taxon                Locality            Reference        Acc.

Adoxaceae

  Sambucus                  Messel, Germany     Collinson,       No
                                                1988

  Sambucus                  Florissant,         Manchester,      No
                            CO, USA             2001
Caprifoliaceae
("Diervillaceae")

  Diervilla echinata        Fraser River, BC,   Piel, 1971       Yes
    Piel 1971               Canada

Caprifoliaceae

  "Caprifoliaceae"          Clamo, OR, USA      Bones, 1979      No
  Symphoricarpos elegans    Ruby River Basin,   Becker, 1961     No
  (Lesquereux) Smith 1937   MT, USA

Linnaeaceae

  Dipelta europaea Reid     Bembridge, UK       Reid &           Yes
  et Chandler 1926                              Chandler, 1926

  Diplodipelta              Succor Creek,       Manchester &     Yes
  miocenica (Berry)         WA, ID, OR, USA     Donoghue, 1995
  Manchester et
  Donoghue 1995

  Diplodipelta              Florissant,         Manchester &     Yes
  reniptera (Becker)        Mormon              Donoghue, 1995
  Manchester et             Cr, Ruby, CO,
  Donoghue 1995             MT, USA

Table 8 Early Fossil Record of the Asterales

Fossil taxon                 Organ    Age

Campanulaceae

  Campanula palaeopyrami-    Seed     Miocene
  dalis Laacucka-
  Srodoniowa 1977

  Campanula sp. Laacucka-    Seed     Miocene
  Srodoniowa 1979

Stylidiaceae

  Tricolpites stylidioides   Pollen   Early
  Macphail et Hill 1994               Oligocene

  Donatia novae-zelandiae    Stem     Pleistocene
  Hook f. 1853

Menyanthaceae

  Menyanthes cf.             Seed     Miocene
  trifoliata L 1753

  Striasyncolpites laxus     Pollen   Late
  Mildenhall et Pocknall              Oligocene-
  1989                                Middle
                                      Miocene
Goodeniaceae

  Poluspissusites            Pollen   Oligocene
  digitatus Salard-
  Cheboldaeff 1978

Asteraceae

  Cypselites aquensis        Fruit    Oligocene
  Saporta 1889

  Cypselites fractus         Fruit    Oligocene
  Saporta 1889

  Cypselites gypsorum        Fruit    Oligocene
  Saporta 1861

  Cypselites philiberti      Fruit    Oligocene
  Saporta 1872

  Cypselites spoliatus       Fruit    Oligocene
  Saporta 1889

  Cypselites stenocarpus     Fruit    Oligocene
  Saporta 1872

  Cypselites                 Fruit    Oligocene
  tenuirostratus
  Saporta 1889

  Cypselites trisulcatus     Fruit    Oligocene
  Saporta 1889

  Hieracites nudatus         Head     Oligocene
  Saporta 1889

  Hieracites salyorum        Leaf     Oligocene
  Saporta 1861

  Hieracites stellatus       Head     Oligocene
  Saporta 1889

  Mutisiapollis patersonii   Pollen   Early
  Macphail et Hill 1994               Oligocene

  Parthenites priscus        Leaf     Oligocene
  Saporta 1861

  Tubulilifloridites         Pollen   Late
  antipodica Cookson                  Paleocene-
  ex Potonie 1960                     Eocene

  Tubulifloridites           Pollen   Eocene
  viteauensis
  Barreda 1993

  Viguiera cronquistii       Head     Late
  Becker 1969                         Oligocene-
                                      Early Miocene

  "Asteraceae"               Fruit    Early-Middle
                                      Oligocene

Fossil taxon                 Locality             Reference

Campanulaceae

  Campanula palaeopyrami-    Nowy Sacz Basin,     Laacucka-
  dalis Laacucka-            Poland               Srodoniowa, 1977
  Srodoniowa 1977

  Campanula sp. Laacucka-    Nowy Sacz Basin,     Laacucka-
  Srodoniowa 1979            Poland               Srodoniowa, 1979

Stylidiaceae

  Tricolpites stylidioides   Lemonthyme Creek,    Macphail & Hill,
  Macphail et Hill 1994      NW Tasmania          1994

  Donatia novae-zelandiae    Comstock, King       Gibson et al.,
  Hook f. 1853               River Valley,        1987
                             Tasmania
Menyanthaceae

  Menyanthes cf.             Nowy Sacz Basin,     Laacucka-
  trifoliata L 1753          Poland               Srodoniowa, 1979

  Striasyncolpites laxus     Cullen, Tierra del   Zamaloa, 2000
  Mildenhall et Pocknall     Fuego, Argentina
  1989

Goodeniaceae

  Poluspissusites            Kwa-Kwa, Cameroon    Salard-Cheboldaeff,
  digitatus Salard-                               1978
  Cheboldaeff 1978

Asteraceae

  Cypselites aquensis        Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Cypselites fractus         Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Cypselites gypsorum        Aix-en-Provence,     Saporta, 1862
  Saporta 1861               France

  Cypselites philiberti      Aix-en-Provence,     Saporta, 1873
  Saporta 1872               France

  Cypselites spoliatus       Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Cypselites stenocarpus     Aix-en-Provence,     Saporta, 1873
  Saporta 1872               France

  Cypselites                 Aix-en-Provence,     Saporta, 1889
  tenuirostratus             France
  Saporta 1889

  Cypselites trisulcatus     Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Hieracites nudatus         Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Hieracites salyorum        Aix-en-Provence,     Saporta, 1862
  Saporta 1861               France

  Hieracites stellatus       Aix-en-Provence,     Saporta, 1889
  Saporta 1889               France

  Mutisiapollis patersonii   Lemonthyme Creek,    Macphail & Hill,
  Macphail et Hill 1994      NW Tasmania          1994

  Parthenites priscus        Aix-en-Provence,     Saporta, 1862
  Saporta 1861               France

  Tubulilifloridites         Koingnaas,           Zavada & de
  antipodica Cookson         South Africa         Villiers, 2000
  ex Potonie 1960

  Tubulifloridites           Shearwater Bay,      Zavada & de
  viteauensis                South Africa         Villiers, 2000
  Barreda 1993

  Viguiera cronquistii       Beaverhead Basin,    Crepet & Stuessy,
  Becker 1969                sw MT, USA           1978

  "Asteraceae"               Bembridge, England   Reid & Chandler,
                                                  1926

Fossil taxon                 Acc.

Campanulaceae

  Campanula palaeopyrami-    Yes
  dalis Laacucka-
  Srodoniowa 1977

  Campanula sp. Laacucka-    Yes
  Srodoniowa 1979

Stylidiaceae

  Tricolpites stylidioides   No
  Macphail et Hill 1994

  Donatia novae-zelandiae    Yes
  Hook f. 1853

Menyanthaceae

  Menyanthes cf.             Yes
  trifoliata L 1753

  Striasyncolpites laxus     No
  Mildenhall et Pocknall
  1989

Goodeniaceae

  Poluspissusites            Yes
  digitatus Salard-
  Cheboldaeff 1978

Asteraceae

  Cypselites aquensis        No
  Saporta 1889

  Cypselites fractus         No
  Saporta 1889

  Cypselites gypsorum        No
  Saporta 1861

  Cypselites philiberti      No
  Saporta 1872

  Cypselites spoliatus       No
  Saporta 1889

  Cypselites stenocarpus     No
  Saporta 1872

  Cypselites                 No
  tenuirostratus
  Saporta 1889

  Cypselites trisulcatus     No
  Saporta 1889

  Hieracites nudatus         No
  Saporta 1889

  Hieracites salyorum        No
  Saporta 1861

  Hieracites stellatus       No
  Saporta 1889

  Mutisiapollis patersonii   Yes
  Macphail et Hill 1994

  Parthenites priscus        No
  Saporta 1861

  Tubulilifloridites         Yes
  antipodica Cookson
  ex Potonie 1960

  Tubulifloridites           Yes
  viteauensis
  Barreda 1993

  Viguiera cronquistii       No
  Becker 1969

  "Asteraceae"               No

Table 9 Early Fossil Record of the Clades Oncotheca-Icacinaceae
and Icacinaceae

Fossil taxon                Organ      Age

Icacinaceae

  Calatoloides              Fruit      Eocene
  eocenicum Berry 1922

  Goweria bibaiensis        Leaf       Middle Eocene
  Tanai 1990

  Hosiea marchiaca          Endocarp   Middle Paleocene
  Mai 1987

  Hosiea pterojugata        Endocarp   Late Paleocene
  Mai 1987

  Huziokaea eoutilus        Leaf       Late Eocene
  (Endo) Tanai 1990

  Icacinicarya dictyota     Endocarp   Late Paleocene
  Pigg, Manchester
  et DeVore

  Icacinicarya              Endocarp   Late Paleocene
  collinsonae Pigg,
  Manchester et DeVore

  Icacinicaryites           Endocarp   Late Paleocene
  corruga (Brown)
  Pigg, Manchester
  et DeVore

  Icacinicaryites           Endocarp   Late Paleocene
  linchensis Pigg,
  Manchester et DeVore

  Icacinoxylon              Wood       Maastrichtian
  alternipunctata
  Wheeler, Lee et
  Marten 1987

  Icacinoxylon              Wood       Late Albian
  pittiense Thayn,
  Tidwell et Stokes 1985

  Iodes germanica           Endocarp   Maastrichtian
  Knobloch et Mai 1986

  Iodes multireticulata     Endocarp   Early Ypresian,
  Reid et Chandler 1933                Early Eocene

  Iodes multireticulata     Endocarp   Middle Eocene
  Reid et Chandler 1933

  Iodes multireticulata     Fruit      Early Eocene
  Reid et Chandler 1933

  Merrilliodendron          Leaf       Late Eocene
  ezoanum Tanai 1990

  Phytocrene microcarpa     Fruit      Early Late
  Scott et Barghoorn 1957              Cretaceous

  Phytocrene ozakii         Leaf       Late Eocene
  Tanai 1990

  Pyrenacantha sp           Leaf       Late Eocene

Fossil taxon                Locality          Reference         Acc.

Icacinaceae

  Calatoloides              Wilcox, TX, USA   Berry, 1922       No
  eocenicum Berry 1922

  Goweria bibaiensis        Hokkaido, Japan   Tanai, 1990       Yes
  Tanai 1990

  Hosiea marchiaca          Nanjemoy, VA,     Tiffney, 1999     Yes
  Mai 1987                  USA

  Hosiea pterojugata        Nanjemoy, VA,     Tiffney, 1999     Yes
  Mai 1987                  USA

  Huziokaea eoutilus        Hokkaido, Japan   Tanai, 1990       Yes
  (Endo) Tanai 1990

  Icacinicarya dictyota     Beicegel Creek,   Pigg et al.,      Yes
  Pigg, Manchester          ND, USA           2008
  et DeVore

  Icacinicarya              Almont, ND, USA   Pigg et al.,      Yes
  collinsonae Pigg,                           2008
  Manchester et DeVore

  Icacinicaryites           USGS 9492, CO,    Pigg et al.,      Yes
  corruga (Brown)           USA               2008
  Pigg, Manchester
  et DeVore

  Icacinicaryites           Linch WY, USA     Pigg et al.,      Yes
  linchensis Pigg,                            2008
  Manchester et DeVore

  Icacinoxylon              McNairy Fm, IL,   Wheeler et al.,   Yes
  alternipunctata           USA               1987
  Wheeler, Lee et
  Marten 1987

  Icacinoxylon              Cedar Mountain,   Thayn et al.,     No
  pittiense Thayn,          UT, USA           1985
  Tidwell et Stokes 1985

  Iodes germanica           Eisleben,         Knobloch & Mai,   Yes
  Knobloch et Mai 1986      Germany           1986

  Iodes multireticulata     Nanjemoy, VA,     Tiffney, 1999     Yes
  Reid et Chandler 1933     USA

  Iodes multireticulata     Clarno, Oregon,   Manchester,       Yes
  Reid et Chandler 1933     USA               1994

  Iodes multireticulata     London Clay,      Reid &            Yes
  Reid et Chandler 1933     England           Chandler, 1933

  Merrilliodendron          Hokkaido, Japan   Tanai, 1990       Yes
  ezoanum Tanai 1990

  Phytocrene microcarpa     Raritan, NY,      Scott &           Yes
  Scott et Barghoorn 1957   USA               Barghoom, 1957

  Phytocrene ozakii         Hokkaido, Japan   Tanai, 1990       Yes
  Tanai 1990

  Pyrenacantha sp           Hokkaido, Japan   Tanai, 1990       Yes

Table 10 Early Fossil Record of the Garryales

Fossil taxon                Organ    Age

Ganyaceae

  Garrya axelrodi           Leaf     Late Miocene
  Wolfe 1964

Eucommiaceae

  Eucommia cf. E.           Pollen   Late Eocene
  ulmoides Leopold
  and Clay-Poole 2001

  Eucommia constans         Fruit    Early Oligocene
  Magallon-Puebla et
  Cevallos-Ferriz 1994

  Eucommia eocenica         Fruit    Middle Eocene
  Brown 1940

  Eucommia jeffersonensis   Fruit    Late Eocene
  Call et Dilcher 1997

  Eucommia kobayashii       Fruit    Eocene
  Huzioka 1961

  Eucommia montana R. W.    Fruit    Late Eocene
  Brown 1940

  Eucommia montana R. W.    Fruit    Late Early Eocene
  Brown 1940

  Eucommia rolandii         Leaf     Middle Eocene
  Call et Dilcher 1997

  Eucommia ulmoides         Fruit    Late Miocene
  Oliv 1890                          (Tortonian)

  Tricolpites sp. cf.       Pollen   Late Paleocene
  Eucommia

Fossil taxon                Locality

Ganyaceae

  Garrya axelrodi           Stewart Spr,
  Wolfe 1964                NV, USA

Eucommiaceae

  Eucommia cf. E.           Florissant, CO,
  ulmoides Leopold          USA
  and Clay-Poole 2001

  Eucommia constans         Pie de Vaca, Pue,
  Magallon-Puebla et        Mexico
  Cevallos-Ferriz 1994

  Eucommia eocenica         Claiborne, Tenn,
  Brown 1940                USA

  Eucommia jeffersonensis   Lower John Day
  Call et Dilcher 1997      OR USA

  Eucommia kobayashii       Yubari, Hokkaido,
  Huzioka 1961              Japan

  Eucommia montana R. W.    Florissant, CO,
  Brown 1940                USA

  Eucommia montana R. W.    Republic, WA, USA
  Brown 1940

  Eucommia rolandii         Talahatta, Holly Spr,
  Call et Dilcher 1997      MS, USA

  Eucommia ulmoides         Poland
  Oliv 1890

  Tricolpites sp. cf.       Powder River Basin,
  Eucommia                  WY, MT, USA

Fossil taxon                Reference              Acc.

Ganyaceae

  Garrya axelrodi           Wolfe, 1964            Yes
  Wolfe 1964

Eucommiaceae

  Eucommia cf. E.           Leopold and Clay-      Yes
  ulmoides Leopold          Poole, 2001
  and Clay-Poole 2001

  Eucommia constans         Magall6n-Puebla        Yes
  Magallon-Puebla et        and Cevallos-Ferriz,
  Cevallos-Ferriz 1994      1994

  Eucommia eocenica         Call & Dilcher, 1997   Yes
  Brown 1940

  Eucommia jeffersonensis   Call & Dilcher, 1997   Yes
  Call et Dilcher 1997

  Eucommia kobayashii       Huzioka, 1961          Yes
  Huzioka 1961

  Eucommia montana R. W.    Manchester, 2001       No
  Brown 1940

  Eucommia montana R. W.    Call & Dilcher, 1997   Yes
  Brown 1940

  Eucommia rolandii         Call & Dilcher, 1997   Yes
  Call et Dilcher 1997

  Eucommia ulmoides         Szafer, 1961           Yes
  Oliv 1890

  Tricolpites sp. cf.       Pocknall, 1987         No
  Eucommia

Table 11 Early Fossil Record of the Gentianales

Fossil taxon                     Organ    Age

Rubiaceae

  Emmenopterys dilcheri          Fruit    Middle Eocene
  Manchester 1994

  Faramea                        Pollen   Middle Oligocene

  Remijia tenuiflorifolia        Leaf     Lutetian (Middle
  Berry 1938                              Eocene)

  Retitricolporites annulatus    Pollen   Oligocene-Early
  Salard-Cheboldaeff                      Miocene
  1978

  "Rubiaceae"                    Wood     Paleocene

Loganiaceae

  "Loganiaceae"                  Pollen   Pliocene

  Gentianaceae

  Pistillipollenites             Pollen   Early Eocene
  mcgregorii Rouse

  Voyrioseminites magnus         Seed     Eocene
  Trivedi and Chaturvedi
  1972

  "Gentianaceae"                 Flower   Early Eocene

Apocynaceae

  Apocynophyllum helveticum      Leaf     Middle Eocene
  Beer 1859

  Apocynospermum dubium          Seed     Early-Middle
  Reid et Chandler 1926                   Oligocene

  Apocynospermum elegans         Seed     Early-Middle
  Reid et Chandler 1926                   Oligocene

  Apocynospermum rostratum       Seed     Early-Middle
  Reid et Chandler 1926                   Oligocene

  Apocynospermum striatum        Seed     Early-Middle
  Reid et Chandler 1926                   Oligocene

  Apocynospermum                 Seed     Late Eocene

  Brevicolporites molinae        Pollen   Oligocene-Early
  (Schuler et Doubinger)                  Miocene
  Salard-Cheboldaeff 1978

  Echitonium ashczisaicum        Leaf     Early Tertiary
  Vassiljev 1976

  Echitonium sophiae             Leaf     Early Tertiary
  O. Web 1852

  Euholarrhenoxylon aisnense     Wood     Lutetian
  Gros 1993

  Pamapocynaceoxylon             Wood     Maastrichtian
  barghoorni Wheeler,
  Lee et Marten 1987

  Phyllantera vectensis Reid     Seed     Early-Middle
  et Chandler 1926                        Oligocene

  Rauwolfia                      Pollen   Middle
                                          Oligocene

  Tabernaemontana cf.            Pollen   Late Eocene
  T coronaria Leopold
  and Clay-Poole 2001

Apocynaceae ("Asclepiadaceae")

  Polyporotetradites             Pollen   Oligocene-Early
  laevigatus Salard-                      Miocene
  Cheboldaeff 1978

Fossil taxon                     Locality

Rubiaceae

  Emmenopterys dilcheri          Clamo, OR, USA
  Manchester 1994

  Faramea                        San Sebastian,
                                 Puerto Rico

  Remijia tenuiflorifolia        Laguna del Hunco,
  Berry 1938                     Argentina

  Retitricolporites annulatus    Kwa-Kwa,
  Salard-Cheboldaeff             Cameroon
  1978

  "Rubiaceae"                    Black Peaks Fm,
                                 TX, USA

Loganiaceae

  "Loganiaceae"                  Cerro In Popa,
                                 Colombia

  Gentianaceae

  Pistillipollenites             Wasatch Fm,
  mcgregorii Rouse               WY, USA

  Voyrioseminites magnus         Kuala Lumpur,
  Trivedi and Chaturvedi         Malaysia
  1972

  "Gentianaceae"                 Wilcox, TX, USA

Apocynaceae

  Apocynophyllum helveticum      Messel, Germany
  Beer 1859

  Apocynospermum dubium          Bembridge,
  Reid et Chandler 1926          England

  Apocynospermum elegans         Bembridge,
  Reid et Chandler 1926          England

  Apocynospermum rostratum       Bembridge,
  Reid et Chandler 1926          England

  Apocynospermum striatum        Bembridge,
  Reid et Chandler 1926          England

  Apocynospermum                 Florissant,
                                 CO, USA

  Brevicolporites molinae        Kwa-Kwa,
  (Schuler et Doubinger)         Cameroon
  Salard-Cheboldaeff 1978

  Echitonium ashczisaicum        Aktyubinsk,
  Vassiljev 1976                 Kazakhstan

  Echitonium sophiae             Aktyubinsk,
  O. Web 1852                    Kazakhstan

  Euholarrhenoxylon aisnense     Aisne valley,
  Gros 1993                      France

  Pamapocynaceoxylon             McNairy Fm, Illinois
  barghoorni Wheeler,
  Lee et Marten 1987

  Phyllantera vectensis Reid     Bembridge,
  et Chandler 1926               England

  Rauwolfia                      San Sebastidn,
                                 Puerto Rico

  Tabernaemontana cf.            Florissant,
  T coronaria Leopold            CO, USA
  and Clay-Poole 2001

Apocynaceae ("Asclepiadaceae")

  Polyporotetradites             Kwa-Kwa,
  laevigatus Salard-             Cameroon
  Cheboldaeff 1978

Fossil taxon                     Reference             Acc.

Rubiaceae

  Emmenopterys dilcheri          Manchester, 1994      Yes
  Manchester 1994

  Faramea                        Graham & Jarzen,      No
                                 1969

  Remijia tenuiflorifolia        Rodriguez de          No
  Berry 1938                     Sarmiento and
                                 Durango de
                                 Cabrera, 1995

  Retitricolporites annulatus    Salard-Cheboldaeff,   Yes
  Salard-Cheboldaeff             1978
  1978

  "Rubiaceae"                    Abbott, 1986          No

Loganiaceae

  "Loganiaceae"                  Sole de Porta, 1960   No

  Gentianaceae

  Pistillipollenites             Pocknall, 1987        No
  mcgregorii Rouse

  Voyrioseminites magnus         Trivedi and           Yes
  Trivedi and Chaturvedi         Chaturvedi, 1972
  1972

  "Gentianaceae"                 Crepet & Daghlian,    Yes
                                 1981

Apocynaceae

  Apocynophyllum helveticum      Wilde, 1989           Yes
  Beer 1859

  Apocynospermum dubium          Reid & Chandler,      Yes
  Reid et Chandler 1926          1926

  Apocynospermum elegans         Reid & Chandler,      Yes
  Reid et Chandler 1926          1926

  Apocynospermum rostratum       Reid & Chandler,      Yes
  Reid et Chandler 1926          1926

  Apocynospermum striatum        Reid & Chandler,      Yes
  Reid et Chandler 1926          1926

  Apocynospermum                 Manchester, 2001      No

  Brevicolporites molinae        Salard-Cheboldaeff,   Yes
  (Schuler et Doubinger)         1978
  Salard-Cheboldaeff 1978

  Echitonium ashczisaicum        Vassiljev, 1976       Yes
  Vassiljev 1976

  Echitonium sophiae             Vassiljev, 1976       Yes
  O. Web 1852

  Euholarrhenoxylon aisnense     Gros, 1993            Yes
  Gros 1993

  Pamapocynaceoxylon             Wheeler et al.,       Yes
  barghoorni Wheeler,            1987
  Lee et Marten 1987

  Phyllantera vectensis Reid     Reid & Chandler,      Yes
  et Chandler 1926               1926

  Rauwolfia                      Graham & Jarzen,      No
                                 1969

  Tabernaemontana cf.            Leopold and           Yes
  T coronaria Leopold            Clay-Poole, 2001
  and Clay-Poole 2001

Apocynaceae ("Asclepiadaceae")

  Polyporotetradites             Salard-Cheboldaeff,   Yes
  laevigatus Salard-             1978
  Cheboldaeff 1978

Table 12 Early Fossil Record of the Vahliaceae-Boraginaceae Clade

Fossil taxon                      Organ    Age

Vahliaceae

  Scandianthus costatus Friis     Flower   Late Santonian-Early
  et Skarby 1982                           Campanian

  Scandianthus major Friis        Flower   Late Santonian-Early
  et Skarby 1982                           Campanian

Boraginaceae

  Cordia amurensis                Leaf     Paleogene
  (Kryshtofovich et Baikovskaya)
  Chelebayeva 1984

  Cordia congerminalis (Hollick)  Leaf     Paleogene
  Chelebayeva 1984

  Cordia kamtschatica             Leaf     Paleogene
  Chelebayeva 1984

  Cordia ochotensis               Leaf     Paleogene
  Chelebajeva 1984

  Cordia platanifolia (Ward)      Leaf     Paleogene
  Chelebayeva 1984

  Ehretia clausentia Chandler     Fruit    Early Eocene
  1961

  Lithospermum dakotense          Fruit    Late Miocene
  Gabel 1987

  Tournefortia                    Pollen   Middle Oligocene

  "Boraginaceae"                  Seed     Paleocene?

Fossil taxon                      Locality

Vahliaceae

  Scandianthus costatus Friis     Asen, Scania,
  et Skarby 1982                  S Sweden

  Scandianthus major Friis        Asen, Scania,
  et Skarby 1982                  S Sweden

Boraginaceae

  Cordia amurensis                Kamchatka, Russia
  (Kryshtofovich et Baikovskaya)
  Chelebayeva 1984

  Cordia congerminalis (Hollick)  Kamchatka, Russia
  Chelebayeva 1984

  Cordia kamtschatica             Kamchatka, Russia
  Chelebayeva 1984

  Cordia ochotensis               Kamchatka, Russia
  Chelebajeva 1984

  Cordia platanifolia (Ward)      Kamchatka, Russia
  Chelebayeva 1984

  Ehretia clausentia Chandler     London clay,
  1961                            England

  Lithospermum dakotense          Ash Hollow, Bennett,
  Gabel 1987                      SD, USA

  Tournefortia                    San Sebastian
                                  Puerto Rico

  "Boraginaceae"                  Lameta Beds of
                                  Gujarat, India

Fossil taxon                      Reference           Acc.

Vahliaceae

  Scandianthus costatus Friis     Friis & Skarby,     Yes
  et Skarby 1982                  1982

  Scandianthus major Friis        Friis & Skarby,     Yes
  et Skarby 1982                  1982

Boraginaceae

  Cordia amurensis                Chelebayeva, 1984   Yes
  (Kryshtofovich et Baikovskaya)
  Chelebayeva 1984

  Cordia congerminalis (Hollick)  Chelebayeva, 1984   Yes
  Chelebayeva 1984

  Cordia kamtschatica             Chelebayeva, 1984   Yes
  Chelebayeva 1984

  Cordia ochotensis               Chelebayeva, 1984   Yes
  Chelebajeva 1984

  Cordia platanifolia (Ward)      Chelebayeva, 1984   Yes
  Chelebayeva 1984

  Ehretia clausentia Chandler     Chandler, 1964      Yes
  1961

  Lithospermum dakotense          Gabel, 1987         Yes
  Gabel 1987

  Tournefortia                    Graham & Jarzen,    No
                                  1969

  "Boraginaceae"                  Mathur & Mathur,    No
                                  1985

Table 13 Early Fossil Record of the Solanales

Fossil taxon                      Organ    Age

Convolvulaceae

  Convulvulites orichitus         Leaf     Late Eocene
  MacGinitie 1953

  Merremia                        Pollen   Middle
                                           Oligocene

  Tricolpites trioblatus          Pollen   Early-Middle
  Mildenhall et Pocknall 1989              Miocene

Solanaceae

  Cantisolanum daturoides         Fruit    Early Eocene
  Reid et Chandler 1933

  Datura cf. D. discolor          Pollen   Late Eocene
  Leopold and Clay-Poole 2001

  Physalis pliocaenica            Fruit    Late Miocene
  Szafer 1947                              (Tortonian)

  Solanites brongniartii          Flower   Oligocene
  Saporta 1862

  Solanites crassus Berry 1930    Flower   Early Eocene

  Solanitess pusillus             Flower   Early Eocene
  Berry 1930

  Solanites saportanus            Flower   Early Eocene
  Berry 1916

  Solanites sarachaformis         Flower   Early Eocene
  Berry 1930

  Solanispermum reniforme         Seed     Eocene
  Chandler 1957

  Solanum arnense Chandler 1962   Seed     Eocene

  Solandra haeliadum              Leaf     Eocene
  Massalongo 1851

Fossil taxon                      Locality

Convolvulaceae

  Convulvulites orichitus         Florissant, CO, USA
  MacGinitie 1953

  Merremia                        San Sebastian Puerto
                                  Rico

  Tricolpites trioblatus          Etadunna, Lake
  Mildenhall et Pocknall 1989     Hydra, Australia

Solanaceae

  Cantisolanum daturoides         London clay, England
  Reid et Chandler 1933

  Datura cf. D. discolor          Florissant, CO, USA
  Leopold and Clay-Poole 2001

  Physalis pliocaenica            Stare Gliwice, Poland
  Szafer 1947

  Solanites brongniartii          Aix-en-Provence,
  Saporta 1862                    France

  Solanites crassus Berry 1930    Claiborne, TN, USA

  Solanitess pusillus             Claiborne, TN, USA
  Berry 1930

  Solanites saportanus            Claiborne, TN, USA
  Berry 1916

  Solanites sarachaformis         Claiborne, TN, USA
  Berry 1930

  Solanispermum reniforme         Lower Bagshot, UK
  Chandler 1957

  Solanum arnense Chandler 1962   Lower Bagshot, UK

  Solandra haeliadum              Salcedo, Italy
  Massalongo 1851

Fossil taxon                      Reference           Acc.

Convolvulaceae

  Convulvulites orichitus         MacGinitie, 1953    Yes
  MacGinitie 1953

  Merremia                        Graham & Jarzen,    No
                                  1969

  Tricolpites trioblatus          Martin, 2000        Yes
  Mildenhall et Pocknall 1989

Solanaceae

  Cantisolanum daturoides         Reid & Chandler,    No
  Reid et Chandler 1933           1933

  Datura cf. D. discolor          Leopold and Clay-   Yes
  Leopold and Clay-Poole 2001     Poole, 2001

  Physalis pliocaenica            Szafer, 1961        No
  Szafer 1947

  Solanites brongniartii          Saporta, 1862       No
  Saporta 1862

  Solanites crassus Berry 1930    Berry, 1930         No

  Solanitess pusillus             Berry, 1930         No
  Berry 1930

  Solanites saportanus            Berry, 1916         No
  Berry 1916

  Solanites sarachaformis         Berry, 1930         No
  Berry 1930

  Solanispermum reniforme         Chandler, 1962      Yes
  Chandler 1957

  Solanum arnense Chandler 1962   Chandler, 1962      Yes

  Solandra haeliadum              Massalongo, 1851    No
  Massalongo 1851

Table 14 Early Fossil Record of the Lamiales

Fossil taxon                          Organ        Age

Oleaceae

  Fraxinus cf. rupinarum              Fruit        Middle Eocene
  Becker 1961

  Fraxinus excelsior L                Leaf/fruit   Late Miocene

  Fraxinus leii Berry 1934            Leaf         Maastrichtian

  Fraxinus rupinarum                  Fruit        Oligocene
  Becker 1961

Plantaginaceae ("Scrophulariaceae")

  Gratiola tertiaria Lancucka-        Seed         Miocene
  Srodoniowa 1977

Acanthaceae

  Acanthus rugatus Reid               Seed         Early-Middle
  et Chandler 1926                                 Oligocene

Bignoniaceae

  Catalpa coloradensis (Axelrod)      Leaf         Oligocene
  Wolfe et Schom 1990

  Catalpa rugosa Reid et              Seed         Early-Middle
  Chandler 1926                                    Oligocene

  Catalpa sp                          Leaf         Oligocene

  Incarvillea pristina Reid et        Seed         Early-Middle
  Chandler 1926                                    Oligocene

  Jacaranda                           Pollen       Middle Oligocene

  Radermachera pulchra Reid           Seed         Early-Middle
  et Chandler 1926                                 Oligocene

  Tecoma                              Pollen       Middle
                                                   Oligocene

Verbenaceae

  Gmelina tertiara Bande              Wood         Paleogene
  1986

  Holmskioldia quilchenensis          Calyx        Middle Eocene
  Mathewes et Brooke 1971

  Holmskioldia speiri (Lesquereux)    Leaf/fruit   Oligocene
  MacGinitie 1953

  "Verbenaceae"                       Wood         Paleocene

Pedaliaceae

  Trapella cf. antennifera            Fruit        Pliocene
  (Leveille) Ghick

  Trapella weylandi (Thomson          Fruit        Pliocene
  et Grebe) Tralau 1964

Lamiaceae

  Ajuginucula smithii Reid et         Fruit        Early-Middle
  Chandler 1926                                    Oligocene

  Lycopus cf. antiquus                Fruit        Miocene
  Reid 1926

  Melissa parva Reid et               Fruit        Early-Middle
  Chandler 1926                                    Oligocene

  Menthites eocenicus                 Calyx        Eocene
  Cockerell 1926

  Nepeta? pseudaeluri                 Leaf         Miocene
  Cockerell 1927

Fossil taxon                          Locality

Oleaceae

  Fraxinus cf. rupinarum              Quilchena, BC,
  Becker 1961                         Canada

  Fraxinus excelsior L                Depresion Ceretana,
                                      Spain

  Fraxinus leii Berry 1934            Lance Flora,
                                      SD, USA

  Fraxinus rupinarum                  Ruby River Basin,
  Becker 1961                         MT, USA

Plantaginaceae ("Scrophulariaceae")

  Gratiola tertiaria Lancucka-        Nowy Sacz Basin,
  Srodoniowa 1977                     Poland

Acanthaceae

  Acanthus rugatus Reid               Bembridge,
  et Chandler 1926                    England

Bignoniaceae

  Catalpa coloradensis (Axelrod)      Creede Flora,
  Wolfe et Schom 1990                 CO, USA

  Catalpa rugosa Reid et              Bembridge,
  Chandler 1926                       England

  Catalpa sp                          Creede Flora,
                                      CO, USA

  Incarvillea pristina Reid et        Bembridge,
  Chandler 1926                       England

  Jacaranda                           San Sebastian
                                      Puerto Rico

  Radermachera pulchra Reid           Bembridge,
  et Chandler 1926                    England

  Tecoma                              San Sebastian
                                      Puerto Rico

Verbenaceae

  Gmelina tertiara Bande              Deccan Intertrappean
  1986                                Beds, India

  Holmskioldia quilchenensis          Quilchena, BC,
  Mathewes et Brooke 1971             Canada

  Holmskioldia speiri (Lesquereux)    Ruby River Basin,
  MacGinitie 1953                     MT, USA

  "Verbenaceae"                       Black Peaks Fm,
                                      TX, USA

Pedaliaceae

  Trapella cf. antennifera            Swisterberg,
  (Leveille) Ghick                    Germany

  Trapella weylandi (Thomson          Swisterberg/
  et Grebe) Tralau 1964               Weilerswist,
                                      Germany

Lamiaceae

  Ajuginucula smithii Reid et         Bembridge,
  Chandler 1926                       England

  Lycopus cf. antiquus                Nowy Sacz Basin,
  Reid 1926                           Poland

  Melissa parva Reid et               Bembridge,
  Chandler 1926                       England

  Menthites eocenicus                 Green River, CO,
  Cockerell 1926                      USA

  Nepeta? pseudaeluri                 Florissant, CO,
  Cockerell 1927                      USA

Fossil taxon                          Reference

Oleaceae

  Fraxinus cf. rupinarum              Mathewes & Brooke,
  Becker 1961                         1971

  Fraxinus excelsior L                Barron, 1992

  Fraxinus leii Berry 1934            Berry, 1934

  Fraxinus rupinarum                  Becker, 1961
  Becker 1961

Plantaginaceae ("Scrophulariaceae")

  Gratiola tertiaria Lancucka-        Lancucka-
  Srodoniowa 1977                     Srodoniowa,
                                      1977

Acanthaceae

  Acanthus rugatus Reid               Reid & Chandler,
  et Chandler 1926                    1926

Bignoniaceae

  Catalpa coloradensis (Axelrod)      Wolfe & Schom,
  Wolfe et Schom 1990                 1990

  Catalpa rugosa Reid et              Reid & Chandler,
  Chandler 1926                       1926

  Catalpa sp                          Wolfe & Schom,
                                      1989

  Incarvillea pristina Reid et        Reid & Chandler,
  Chandler 1926                       1926

  Jacaranda                           Graham & Jarzen,
                                      1969

  Radermachera pulchra Reid           Reid & Chandler,
  et Chandler 1926                    1926

  Tecoma                              Graham & Jarzen,
                                      1969

Verbenaceae

  Gmelina tertiara Bande              Bande, 1986
  1986

  Holmskioldia quilchenensis          Mathewes &
  Mathewes et Brooke 1971             Brooke, 1971

  Holmskioldia speiri (Lesquereux)    Becker, 1961
  MacGinitie 1953

  "Verbenaceae"                       Abbott, 1986

Pedaliaceae

  Trapella cf. antennifera            Tralau, 1965
  (LeveiII6) Ghick

  Trapella weylandi (Thomson          Tralau, 1964
  et Grebe) Tralau 1964

Lamiaceae

  Ajuginucula smithii Reid et         Reid & Chandler,
  Chandler 1926                       1926

  Lycopus cf. antiquus                Lancucka-
  Reid 1926                           Srodoniowa, 1979

  Melissa parva Reid et               Reid & Chandler,
  Chandler 1926                       1926

  Menthites eocenicus                 Cockerell, 1926
  Cockerell 1926

  Nepeta? pseudaeluri                 Cockerell, 1927
  Cockerell 1927

Fossil taxon                          Acc.

Oleaceae

  Fraxinus cf. rupinarum              No
  Becker 1961

  Fraxinus excelsior L                Yes

  Fraxinus leii Berry 1934            No

  Fraxinus rupinarum                  No
  Becker 1961

Plantaginaceae ("Scrophulariaceae")

  Gratiola tertiaria Lancucka-        Yes
  Srodoniowa 1977

Acanthaceae

  Acanthus rugatus Reid               Yes
  et Chandler 1926

Bignoniaceae

  Catalpa coloradensis (Axelrod)      No
  Wolfe et Schom 1990

  Catalpa rugosa Reid et              Yes
  Chandler 1926

  Catalpa sp                          No

  Incarvillea pristina Reid et        Yes
  Chandler 1926

  Jacaranda                           No

  Radermachera pulchra Reid           Yes
  et Chandler 1926

  Tecoma                              No

Verbenaceae

  Gmelina tertiara Bande              Yes
  1986

  Holmskioldia quilchenensis          No
  Mathewes et Brooke 1971

  Holmskioldia speiri (Lesquereux)    No
  MacGinitie 1953

  "Verbenaceae"                       No

Pedaliaceae

  Trapella cf. antennifera            Yes
  (Leveille) Ghick

  Trapella weylandi (Thomson          Yes
  et Grebe) Tralau 1964

Lamiaceae

  Ajuginucula smithii Reid et         Yes
  Chandler 1926

  Lycopus cf. antiquus                Yes
  Reid 1926

  Melissa parva Reid et               Yes
  Chandler 1926

  Menthites eocenicus                 No
  Cockerell 1926

  Nepeta? pseudaeluri                 No
  Cockerell 1927

Table 15 Estimated Times of Divergence of Relevant Angiosperm
Groups Based on Fossil Estimates and Molecular Dating, Ages are
Given in Millions of Years Before Present (MYBP)

Clade            Magallon et al.,   Wikstrom et al.,   Bremer et al.,
                 1999               2001               2004

Estimate         Fossil             Molecular          Molecular

Angiosperms      --                 158-179            --
Eudicots         --                 131-147            --
Asterids         --                 112-122            --
Comales          69.5               106-114            128
Ericales         89.5               106-114            127
Euasterids       --                 107-117            127
Campanulids      --                 102-112            123
Aquifoliales     69.5               99-107             121
Apiales          69.5               85-90              113
Dipsacales       53.2               85-90              111
Asterales        29.3               101-94             112
Lamiids          --                 102-112            123
Garryales        45.9               100-107            114
Gentianales      53.2               83-89              108
Solanales        53.2               82-86              106
Lamiales         37                 71-74              106

Clade            Crepet et al.,   This work
                 2004

Estimate         Fossil           Fossil

Angiosperms      113              --
Eudicots         100              --
Asterids         90               89.3
Comales          --               89.3
Ericales         90               89.3
Euasterids       --               83.5
Campanulids      --               83.5
Aquifoliales     --               61.7
Apiales          --               40.4
Dipsacales       --               33.9
Asterales        --               37.2
Lamiids          --               83.5
Garryales        --               48.6
Gentianales      --               40.4
Solanales        --               33.9
Lamiales         --               28.4

Table 16 Circumscription of Asterids Under Three Classification
Systems. Placement by Cronquist and Takhtajan of Families that
Today are Considered To Be Asterids are Also Given

Cronquist (1981)

Subclass Asteridae

Order Gentianales
  Loganiaceae
  Retziaceae
  Gentianaceae
  Saccifoliaceae
  Apocynaceae
  Asclepiadaceae
Order Solanales
  Duckeodendraceae
  Nolanaceae
  Solanaceae
  Convolvulaceae
  Cuscutaceae
  Menyanthaceae
  Polemoniaceae
  Hydrophyllaceae
Order Lamiales
  Lennoaceae
  Boraginaceae
  Verbenaceae
  Lamiaceae
Order Callitrichales
  Hippuridaceae
  Callitrichaceae
  Hydrostachyaceae
  Order Plantaginales
  Plantaginaceae
Order Scrophulariales
  Buddlejaceae
  Oleaceae
  Scrophulariaceae
  Globulariaceae
  Orobanchaceae
  Gesneriaceae
  Acanthaceae
  Pedaliaceae
  Bignoniaceae
  Mendonciaceae
  Myoporaceae
  Lentibulariaceae
Order Campanulales
  Pentaphragmataceae
  Sphenocleaceae
  Campanulaceae
  Stylidiaceae
  Donatiaceae
  Brunoniaceae
  Goodeniaceae
Order Rubiales
  Rubiaceae
  Theligonaceae
Order Dipsacales
  Caprifoliaceae
  Adoxaceae
  Valerianaceae
  Dipsacaceae
Order Calycerales
  Calyceraceae
Order Asterales
  Asteraceae

in APG's Asteridae
Subclass Dillenidae

Order Theales
  Theaceae
  Actinidiaceae
  Pentaphylacaceae
  Scytopetalaceae
  Pellicieraceae
  Tetrameristaceae
  Oncothecaceae
  Marcgraviaceae
  Paracryphiaceae
Order Lecythidales
  Lecythidaceae
Order Nepenthales
  Sarraceniaceae
Order Violales
  Fouqueriaceae
  Loasaceae
Order Ericales
  Cyrillaceae
  Clethraceae

               Takhtajan (1997)

             Subclass Asteridae

           Superorder Campanulanae

Order Campanulales        Order Goodeniales
  Pentaphragmataceae        Brunoniaceae
  Sphenocleaceae            Goodeniaceae
  Campanulaceae           Order Stylidiales
  Cyphocarpaceae            Donatiaceae
  Nemacladaceae             Stylidiaceae
  Cyphiaceae              Order Menyanthales
  Lobeliaceae               Menyanthaceae

              Superorder Asteranae

Order Calycerales         Order Asterales
  Calyceraceae              Asteraceae

               Subclass Lamiidae

             Superorder Gentiananae

Order Gentianales           Plocospermataceae
  Gentianaceae            Order Rubiales
  Gelsemiaceae              Dialypetalanthaceae
  Loganiaceae               Rubiaceae
  Strychnaceae              Theligonaceae
  Antoniaceae               Carlemanniaceae
  Spigeliaceae            Order Apocynales
  Saccifoliaceae            Apocynaceae
  Geniostomaceae

              Superorder Solananae

Order Solanales             Cuscutaceae
  Solanaceae              Order Boraginales
  Sclerophylacaceae         Boraginaceae
  Duckeodendraceae          Hydrophyllaceae
  Goetzeaceae               Tetrachondraceae
Order Polemoniales          Hoplestigmataceae
  Polemoniaceae             Lennoaceae
Order Convolvulales       Order Limnanthales
  Convolvulaceae            Limnanthaceae

             Superorder Loasanae

Order Loasales
  Loasaceae

              Superorder Oleanae

Order Oleales
  Oleaceae

              Superorder Lamianae

Order Scrophulariales       Lentibulariaceae
  Scrophulariaceae        Order Lamiales
  Buddlejaceae              Verbenaceae
  Retziaceae                Lamiaceae
  Stilbaceae                Phrymaceae
  Oftiaceae                 Cyclochilaceae
  Globulariaceae            Avicenniaceae
  Gesneriaceae              Symphoremataceae
  Plantaginaceae            Viticaceae
  Bignoniaceae            Order Callitrichales
  Pedaliaceae               Callitrichaceae
  Martyniaceae            Order Hydrostachyales
  Trapellaceae              Hydrostrachyaceae
  Myoporaceae             Order Hippuridales
  Acanthaceae               Hippuridaceae

               Subclass Cornidae

              Superorder Cornanae

Order Hydrangeales        Order Comales
  Hydrangeaceae             Davidiaceae
  Escalloniaceae            Nyssaceae
  Abrophyllaceae            Mastixiaceae
  Argophyllaceae            Curtisiaceae
  Corokiaceae               Comaceae
  Alseuosmiaceae            Alangiaceae
  Carpodetaceae             Order Garryales
  Phyllonomaceae            Garryaceae
  Pottingeriaceae         Order Aucubales
  Tribelaceae               Aucubaceae
  Melanophyllaceae        Order Griseliniales
  Montiniaceae              Griseliniaceae
  Kaliphoraceae           Order Euconuniales
  Columelliaceae            Eucommiaceae
Order Desfontainiales     Order Aralidiales
  Desfontainiaceae          Aralidiaceae
Order Roridulales         Order Torriceliales
  Roridulaceae              Torriceliaceae

               Superorder Aralianae

Order Helwingiales          Apiaceae
  Helwingiaceae           Order Pittosporales
Order Araliales             Pittosporaceae
  Araliaceae              Order Byblidales
  Hydrocotylaceae           Byblidaceae

             Superorder Dipsacanae

Order Dipsacales          Order Viburnales

APG (1998, 2003)

Asterids

Order Cornales
  Curtisiaceae
  Grubbiaceae
  Hydrangeaceac
  Hydrostachyaceae
  Loasaceae
Order Ericales
  Actinidiaceae
  Balsaminaceae
  Clethraceae
  Cyrilliaceae
  Diapensiaceae
  Ebenaceae
  Ericaceae
  Fouqueriaceae
  Lecythidaceae
  Maesaceae
  Marcgraviaceae
  Myrsinaceae
  Pentaphylacaceae
  Polemoniaceae
  Primulaceae
  Roridulaceae
  Sapotaceae
  Sarraceniaceae
  Styracaceae
  Symplocaceae
  Tetrameristaceae
  Theaceae
  Teophrastaceae
  Euasterids I
Boraginaceae
  Icacinaceae
  Oncothecaceae
  Vahliaceae
Order Garryales
  Euconuniaceae
  Garryaceae
Order Gentianales
  Apocynaceae
  Gelsemiaceae
  Gentianaceae
  Loganiaceae
  Rubiaceae
  Order Lamiales
  Acanthaceae
  Bignoniaceae
  Byblidaceae
  Calceolariaceae
  Carlemanniaceae
  Gesneriaceae
  Lamiaceae
  Lentibulariaceae
  Martyniaceae
  Oleaceae
  Orobanchaceae
  Pawloniaceae
  Pedaliaceae
  Phrymaceae
  Plantaginaceae
  Plocospermataceae
  Schlegeliaceae
  Scrophulariaceae
  Stilbaceae
  Tetrachondraceae
  Verbenaceae
Order Solanales
  Convolvulaceae
  Hydroleaceae
  Montiniaceae
  Solanaceae
  Sphenocleaceae
Euasterids 11
  Bruniaceae
  Columelliaceae
  Eremosynaceae
  Escalloniaceae
  Paracryphiaceae
  Polyosmaceae
  Sphenostemonaceae
  Tribelaceae
Order Apiales
  Apiaceae
  Araliaceae

Table 17 Characters 32 to 60 of the Backlund and Donoghue (1996)
Matrix of Morphological Characters with Silvianthemum suecicum
Friis, 1990

Taxa/characters     32     33   34   35    36    37   38   39   40

Silvianthemum       0      2    ?    1     3     --   --   1    1
Adoxa               0      1    0    2     12    0    0    1    0
Sinadoxa            0      1    0    2     012   0    0    1    0
Tetradoxa           0      01   0    2     2     0    0    1    0
Abelia              0      2    1    2     3     1    3    1    0
Diervilla           0      2    1    2     3     01   0    1    0
Dipelta             0      2    1    2     3     1    0    1    0
Heptacodium         0      2    1    2     3     1    0    1    0
Kolkwitzia          0      2    1    2     3     1    0    1    0
Leycesteria         0      2    1    2     3     1    0    1    0
Linnaea             0      2    1    2     3     1    0    1    0
Lonicera            0      2    1    2     3     1    0    1    0
Symphoricarpos      0      2    1    2     3     1    0    1    0
Triosteum           0      2    1    2     3     1    0    1    0
Weigela             0      2    1    2     3     1    0    1    0
Zabelia             0      2    1    2     23    01   3    1    0
Dipsacus            0      2    1    1     4     2    2    1    0
Knautia             1      2    1    1     24    1    2    1    0
Pterocephalus       0      2    1    12    24    2    1    1    0
Scabiosa            0      2    1    1     3     1    2    1    0
Succisa             0      2    1    1     23    12   2    1    0
Acanthocalyx        0      2    1    2     2     1    0    1    0
Cryptothladia       0      2    1    2     2     1    0    1    0
Morina              0      2    1    2     2     2    0    1    0
Sambucus            0      12   1    1     123   0    0    01   0
Triplostegia        0      2    1    1     2     0    0    1    0
Belonanthus         23     2    1    1     1     1    0    1    0
Centranthus         0      2    1    1     3     0    1    1    0
Nardostachys        0      2    1    2     3     1    3    1    0
Patrinia            0      2    1    01    3     0    03   1    0
Phyllactis          0123   2    1    0     0     0    0    1    0
Plectritis          0      2    1    1     3     0    0    1    0
Stangea             0      2    1    1     4     0    1    1    0
V_clematitis (a)    2      2    1    1     4     0    1    1    0
V_dioica (a)        1      2    1    1     4     0    1    1    0
V_hirtella (a)      0      2    1    1     4     0    1    1    0
V_officinalis (a)   0      2    1    1     3     0    1    1    0
Valerianella        0      2    1    2     3     0    0    1    0
Viburnum            01     1    1    1     3     0    0    1    0
Apium               0      2    0    012   3     0    0    0    1
Staganotaenia       0      2    0    2     3     0    0    0    1
Aralia              01     2    1    1     23    0    0    1    01
Aralidium           1      2    1    1     3     0    0    1    0
Audouinia           0      1    1    2     3     0    0    1    1
Berzelia            0      1    1    2     3     0    0    1    1
Brunia              0      1    1    2     3     0    0    1    1
Columellia          0      1    1    2     3     0    0    1    0
Desfontainia        0      0    1    2     3     1    0    1    0
Eremosyne           02     1    0    2     3     0    0    0    1
Anopterus           0      0    0    2     4     1    0    1    1
Escallonia          0      1    0    2     3     13   0    0    01
Forgesia            0      1    0    2     3     0    0    0    1
Quintinia           0      1    0    2     3     0    0    1    1
Griselinia          1      2    ?    01    3     ?    0    1    1
Melanophylla        0      2    1    2     3     0    0    1    1
Pittosporum         01     0    1    2     3     0    0    1    01
Polyosma            0      2    ?    2     2     13   0    0    1
Torricellia         1      2    1    2     3     0    0    0    1
Tribeles            0      0    ?    2     3     0    0    1    1

Taxa/characters     41    42    43    44   45   46   47    48   49

Silvianthemum       2     0     0     1    0    --   6     0    0
Adoxa               12    1     01    2    1    01   45    0    0
Sinadoxa            01    1     1     2    1    0    34    0    0
Tetradoxa           1     1     0     2    1    01   4     0    0
Abelia              2     2     12    3    0    1    4     2    1
Diervilla           2     2     12    3    0    1    5     0    1
Dipelta             2     2     12    3    0    1    4     2    1
Heptacodium         2     2     12    3    0    1    5     0    0
Kolkwitzia          2     2     2     3    0    1    4     2    1
Leycesteria         2     2     01    3    1    1    5     0    01
Linnaea             2     2     1     3    0    1    4     2    0
Lonicera            2     2     012   3    1    1    5     01   01
Symphoricarpos      12    2     01    3    0    1    45    0    0
Triosteum           2     2     2     3    0    1    5     0    1
Weigela             2     2     12    3    0    1    5     0    01
Zabelia             12    2     12    3    0    1    45    2    1
Dipsacus            1     2     2     3    0    1    4     0    2
Knautia             1     2     2     3    0    1    4     0    1
Pterocephalus       12    2     12    3    0    1    4     0    2
Scabiosa            2     2     2     3    0    1    4     0    2
Succisa             1     2     1     3    0    1    4     0    2
Acanthocalyx        2     2     2     3    0    1    4     2    2
Cryptothladia       2     2     2     3    0    1    4     2    1
Morina              2     2     2     3    0    1    4     2    1
Sambucus            012   1     0     1    0    1    345   0    0
Triplostegia        2     2     1     3    0    1    4     0    0
Belonanthus         0     2     1     3    0    1    3     0    0
Centranthus         2     2     2     3    0    1    1     0    0
Nardostachys        2     2     1     3    0    1    145   0    0
Patrinia            2     2     1     3    0    1    145   0    0
Phyllactis          012   2     12    0    0    1    3     0    0
Plectritis          2     2     2     3    0    1    3     1    0
Stangea             2     2     1     3    0    01   3     0    0
V_clematitis (a)    2     2     1     3    0    1    3     0    0
V_dioica (a)        2     2     1     3    0    1    3     0    0
V_hirtella (a)      2     2     1     3    0    1    3     0    0
V_officinalis (a)   2     2     1     3    0    1    3     0    0
Valerianella        2     2     12    3    0    0    3     0    0
Viburnum            2     12    0     1    0    0    5     02   0
Apium               2     0     01    1    0    0    5     0    0
Staganotaenia       2     0     0     1    0    0    5     0    0
Aralia              12    0     0     1    0    0    5     0    0
Aralidium           2     0     0     1    0    0    5     0    0
Audouinia           2     0     0     1    0    0    5     0    0
Berzelia            2     0     0     0    0    0    5     0    0
Brunia              2     0     0     0    0    0    5     1    0
Columellia          2     2     1     1    0    0    5     0    0
Desfontainia        2     2     1     1    0    1    5     0    0
Eremosyne           2     0     0     1    0    0    5     0    0
Anopterus           4     0     0     0    ?    0    5     0    0
Escallonia          2     012   0     1    0    0    5     0    0
Forgesia            2     0     0     1    0    0    5     0    1
Quintinia           2     0     0     1    0    0    5     0    0
Griselinia          2     0     0     1    0    0    5     0    0
Melanophylla        2     0     0     1    0    0    5     0    0
Pittosporum         2     012   0     0    0    0    5     0    0
Polyosma            1     2     0     1    0    0    4     0    1
Torricellia         2     0     0     1    0    0    5     0    0
Tribeles            2     0     0     1    0    0    5     0    0

Taxa/characters     50   51   52   53   54    55     56   57   58

Silvianthemum       0    0    0    ?    1     3      0    0    ?
Adoxa               1    0    0    0    1     45     0    0    0
Sinadoxa            1    0    0    0    1     4      0    0    ?
Tetradoxa           1    0    0    0    1     4      0    0    ?
Abelia              2    0    2    1    1     3      2    0    2
Diervilla           2    0    2    1    1     2      0    0    2
Dipelta             2    0    02   1    1     4      2    0    2
Heptacodium         2    0    0    1    1     3      2    2    2
Kolkwitzia          2    0    2    1    1     3      2    12   2
Leycesteria         2    0    2    1    1     45     0    0    2
Linnaea             2    0    2    1    1     3      2    0    2
Lonicera            2    0    2    1    1     23     0    0    2
Symphoricarpos      2    0    2    1    1     4      4    0    2
Triosteum           2    0    2    1    1     4      1    0    2
Weigela             2    0    2    1    1     2      0    0    2
Zabelia             2    0    2    1    1     3      2    0    2
Dipsacus            2    0    0    1    1     3      2    01   2
Knautia             2    0    0    1    1     3      2    01   2
Pterocephalus       2    0    0    1    1     3      2    01   2
Scabiosa            2    0    0    1    1     3      2    01   2
Succisa             2    0    0    1    1     3      2    01   2
Acanthocalyx        2    0    0    1    1     3      2    1    2
Cryptothladia       2    1    0    1    1     3      2    1    2
Morina              2    1    0    0    1     3      2    1    2
Sambucus            1    0    1    1    1     345    0    0    0
Triplostegia        2    0    0    1    1     3      2    1    2
Belonanthus         2    0    1    1    0     3      2    01   1
Centranthus         2    0    0    1    1     3      2    01   2
Nardostachys        2    0    0    1    1     3      2    2    2
Patrinia            2    0    0    1    1     3      2    2    2
Phyllactis          2    0    0    1    0     3      2    01   2
Plectritis          2    0    0    1    1     3      2    12   2
Stangea             2    0    01   1    0     3      2    01   2
V_clematitis (a)    2    0    1    1    1     3      2    1    2
V_dioica (a)        2    0    0    1    1     3      2    1    2
V_hirtella (a)      2    0    1    1    1     3      2    1    2
V_officinalis (a)   2    0    0    1    1     3      2    0    2
Valerianella        2    0    0    1    1     3      2    2    2
Viburnum            12   0    1    1    1     3      3    1    0
Apium               0    0    1    1    1     2      0    0    0
Staganotaenia       0    0    1    1    1     2      0    0    0
Aralia              0    0    1    1    1     2345   0    2    0
Aralidium           0    0    0    1    1     3      2    0    0
Audouinia           0    0    2    1    1     3      2    2    0
Berzelia            0    0    2    0    1     1      0    0    2
Brunia              0    0    2    0    1     12     01   02   2
Columellia          2    0    1    0    1     2      0    0    0
Desfontainia        2    0    1    1    1     5      0    0    0
Eremosyne           0    0    0    1    1     2      0    0    ?
Anopterus           0    0    2    1    1     2      0    0    2
Escallonia          0    0    0    1    1     2      0    01   02
Forgesia            0    0    2    1    1     2      0    0    0
Quintinia           0    0    0    1    1     345    0    0    0
Griselinia          0    0    0    1    1     3      2    01   2
Melanophylla        0    0    2    1    1     23     01   0    2
Pittosporum         2    0    1    1    1     2      0    0    0
Polyosma            0    0    1    1    1     1      0    0    0
Torricellia         0    0    1    1    1     3      2    2    ?
Tribeles            0    0    1    1    1     3      0    0    2

Taxa/characters     59     60

Silvianthemum       1      ?
Adoxa               1      3
Sinadoxa            0      ?
Tetradoxa           1      ?
Abelia              1      4
Diervilla           1      1
Dipelta             1      4
Heptacodium         1      3
Kolkwitzia          1      4
Leycesteria         1      2
Linnaea             1      4
Lonicera            1      2
Symphoricarpos      1      3
Triosteum           1      3
Weigela             1      1
Zabelia             1      4
Dipsacus            01     6
Knautia             23     5
Pterocephalus       1      4
Scabiosa            2      4
Succisa             12     4
Acanthocalyx        1      4
Cryptothladia       1      4
Morina              1      4
Sambucus            34     3
Triplostegia        1      4
Belonanthus         23     4
Centranthus         13     4
Nardostachys        1      4
Patrinia            1      4
Phyllactis          3      5
Plectritis          23     5
Stangea             2      4
V_clematitis (a)    3      4
V_dioica (a)        2      4
V_hirtella (a)      3      4
V_officinalis (a)   3      4
Valerianella        3      5
Viburnum            3      3
Apium               2      6
Staganotaenia       2      6
Aralia              0      23
Aralidium           3      3
Audouinia           3      0
Berzelia            0      5
Brunia              0      45
Columellia          2      1
Desfontainia        12     2
Eremosyne           1      0
Anopterus           0      1
Escallonia          1234   1
Forgesia            1      1
Quintinia           0      1
Griselinia          3      3
Melanophylla        0      3
Pittosporum         02     0
Polyosma            1      2
Torricellia         3      3
Tribeles            3      1

(a) Valeriana

Table 18 Data Matrix of Morphological Characters Derived From the
Table Presented By Friis and Skarby (1982)

Taxa/Characters     1    2     3    4     5    6   7    8    9    10

Cunoniaceae         01   2     0    1     01   1   1    0    01   0
Davidsoniaceae      0    2     1    3     0    1   1    1    1    0
Eucryphiaceae       0    2     0    3     1    0   --   --   ?    0
Paracryphiaceae     1    2     ?    3     1    1   1    ?    0    0
Crypteroniaceae     01   12    01   2     01   1   1    0    0    0
Brunelliaceae       1    2     01   0     01   0   --   --   ?    0
Escalloniaceae      0    12    01   2     01   1   01   01   01   0
Tribelaceae         0    2     01   2     1    1   1    ?    0    0
Tetracarpaceae      0    2     01   1     1    0   --   --   ?    0
Iteaceae            0    12    0    2     01   1   1    01   0    0
Brexiaceae          0    2     01   2     1    1   1    ?    01   0
Phyllonomaceae      0    0     0    2     0    1   01   1    1    0
Pterostemonaceae    0    0     0    1     1    1   1    ?    0    0
Grossulariaceae     0    0     0    2     0    1   0    1    I    0
Flydrangeaceae      01   01    01   013   01   1   01   01   0    0
Montiniaceae        1    0     01   2     0    1   1    0    0    0
Roridulaceae        0    2     0    2     1    1   1    ?    0    0
Pittosporaceae      01   2     01   2     01   1   01   0    01   0
Byblidaceae         0    2     1    2     0    1   1    0    0    0
Bruniaceae          0    2     01   2     ?    ?   0    ?    1    0
Penthoraceae        0    2     0    1     1    0   --   --   ?    0
Crassulaceae        0    2     0    12    1    0   --   --   ?    0
Cephalotaceae       0    12    0    1     1    0   --   --   ?    0
Saxifragaceae       0    12    0    12    01   1   01   01   01   1
Vahliaceae          0    0     0    2     0    1   0    1    0    1
Francoaceae         0    02    01   12    01   1   0    0    0    0
Eremosynaceae       0    012   01   2     0    1   0    1    0    0
Pamassiaceae        0    12    0    1     0    1   0    1    0    0
Scandianthus        0    0     0    0     0    1   0    1    0    1

Taxa/Characters     11   12

Cunoniaceae         1    1
Davidsoniaceae      0    1
Eucryphiaceae       1    0
Paracryphiaceae     0    0
Crypteroniaceae     01   0
Brunelliaceae       0    1
Escalloniaceae      1    1
Tribelaceae         1    0
Tetracarpaceae      1    0
Iteaceae            01   1
Brexiaceae          01   1
Phyllonomaceae      1    1
Pterostemonaceae    0    0
Grossulariaceae     1    0
Flydrangeaceae      1    1
Montiniaceae        0    1
Roridulaceae        0    0
Pittosporaceae      1    0
Byblidaceae         1    0
Bruniaceae          0    1
Penthoraceae        1    0
Crassulaceae        1    0
Cephalotaceae       0    1
Saxifragaceae       1    0
Vahliaceae          1    1
Francoaceae         1    0
Eremosynaceae       0    0
Pamassiaceae        1    0
Scandianthus        1    1
COPYRIGHT 2010 New York Botanical Garden
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Author:Martinez-Millan, Marcela
Publication:The Botanical Review
Article Type:Report
Geographic Code:1USA
Date:Mar 1, 2010
Words:23350
Previous Article:Phylogenetic distribution and identification of fin-winged fruits.
Next Article:Protecting orchids in nature reserves: research and restoration needs.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters