Printer Friendly

Fossil associations from the middle and upper Eocene strata of the Pamplona basin and surrounding areas (Navarre, western Pyrenees).

1. Introduction

The current biogeographic distribution of species shows the existence of hotspots characterized by high biodiversity. In marine areas the highest biodiversity is centered in the so-called Indo-Australian Archipelago hotspot. According to Renema et al. (2008), this hotspot was preceded by at least two other marine biodiversity hotspots during the past 50 million years: the Early Miocene hotspot, centered at the Arabian region, and the Eocene hotspot, which was located in the West Tethyan region.

Near the West Tethyan region, in the Atlantic area, the marine fauna of the middle Eocene of the Paris Basin showed an extraordinary biodiversity during Lutetian times and can be regarded as an extension of the West Tethyan hotspot (Merle, 2008; Merle et al, 2008; Huyghe et al., 2012). Merle (2008, 2009) indicates the presence of species of Tethyan origin in the Paris Basin, which contributed to enrich the biodiversity of this region. During Bartonian, the Eastern Atlantic marine biodiversity fell, but the Paris Basin and the Loire-Atlantique (Britain) still correspond to very rich areas having a mollusc richness exceeding 1000 species (Merle, 2008; 2009, Lebrun et al., 2013). It is during the Priabonian when the biodiversity decreased significantly in both sides of the Atlantic Ocean.

Because of its paleogeographic position, the Pyrenean area could have played an important role as an Eocene paleobiogeographical crossover between the Tethyan and Northern Atlantic domains. Although Rouault (1850), Doncieux (1908) and Cossmann and O'Gorman (1923) described rich marine faunas from the early Eocene of Pau and the Corbieres, the Pyrenean marine faunas from the middle/late Eocene are still poorly documented. In the North Pyrenean area, the classical works made by d'Archiac (1846, 1850), de Bouille (1873, 1876), Boussac (1911) about the "Nummulitic" of the Basque Coast, have hardly been updated. In Aragon and Catalonia (South Pyrenean area) the works of Villalta (1956), De Renzi (1971, 1996), Abad (2001), Pisera and Busquets (2002), among others, on fossil molluscs and sponges, can be mentioned.

The Pamplona Basin is located to the south of the Basque Coast and to the west of Aragon and Catalonia. However, from a palaeontological point of view, the Pamplona Basin is less known than its neighbouring areas. The first data were published by the French geologist Carez (1881). For this author, the Pamplona marls (Pamplona Marl Formation) were identical to the "marls of Serpula spirulaea", which were continuations of the La Canal de Berdun marls (Zaragoza, Aragon). Many years later, Ruiz de Gaona (1947) and Ruiz de Gaona and Colom (1950) completed a more comprehensive study of these formations, describing their foraminiferal content and concluding that they were Bartonian in age. These authors also mentioned the occurrence of important macrofossil associations near the city of Pamplona. Local micropaleontological determinations were carried out later by Puigdefabregas (1975) and Alameda et al. (1993). Macropalaeontological works on the bivalve Dimya pamplonensis (Calzada and Astibia, 1996), turtles and sirenians (Astibia et al., 1999; 2005; 2006; Buffrenil et al., 2008), and sponges and corals (Astibia et al., 2014) have been published in the latest years. Avian ichnofossils from the Gendulain Formation were cited and described in Mangin (1959-1960), Raaf et al. (1965), Payros et al. (2000), Astibia et al. (2007), and Astibia et al. (in press).

The aim of this paper is to present updated data about the fossil associations from the Pamplona Basin, which includes new information on fossil molluscs. The results will further contribute to enlarge the database for a better understanding of the evolution of global marine biodiversity throughout the Eocene.

2. Geological setting

The study area is located in the central part of Navarre (South-western Pyrenees). The current distribution and characteristics of the Eocene rocks in the area show the geometry and evolution of the original sedimentary basin (Fig. 1; see Pujalte et al., 2002). In Eocene times, the South Pyrenean zone was a NW-trending foreland basin which formed adjacent to the tectonically uplifting orogen to the north. It remained as a narrow strip of sea entering from the Bay of Biscay at approximately 35[degrees]N palaeolatitude, but its palaeogeography changed in response to the increasing tectonic deformation. During early-middle Eocene (Ypresian-Lutetian) times the basin was essentially a deep-water trough, but siliciclastic sediments derived from the uplifting and denuding Pyrenees progressively filled the basin in. The main denudation area was first located in the emergent eastern Pyrenees, where large fluviodeltaic systems developed. However, this palaeogeographic configuration progressively encroached westwards, so that by middle-late Eocene (Bartonian-Priabonian) times denudation of the orogen began in the western Pyrenees and the fluviodeltaic sedimentary context became widespread throughout the foreland basin (Plaziat, 1981; Pujalte et al., 2002; Barnolas et al., 2004).

[FIGURE 1 OMITTED]

The later stage is well recorded in the central part of Navarre by alternating marly and sandy lithostratigraphic units (Fig. 2). The oldest Bartonian units (Erize Marl Formation, Ezkaba Sandstone Formation and Pamplona Marl Formation) still show sedimentological and palaeontological evidence of accumulation in relatively deep waters, and they were attributed to slope (Payros et al., 2010), turbiditic channel-levee (Payros et al., 1997) and prodelta (Astibia et al., 2005) environments, respectively. The overlying Ardanatz Sandstone Formation (also referred to as Gazolaz, Tajonar, Tabar and/or Gongolaz sandstone in the regional literature) has been thoroughly studied by Astibia et al. (1999, 2005, 2006, 2014). Silty marls are dominant in the locality of Ardanatz (central part of the study area), but they contain abundant tabular sandstone beds, which display sharp bases with occasional groove casts (indicating ENE palaeocurrent direction) and gradational upper boundaries; they are rich in carbonaceous plant remains, vertical and horizontal burrows (mainly Ophiomorphids, sensu Seilacher, 2007) and bioclasts (e.g. corals and nummulitids). On the basis of their sedimentological features, the sandstone beds were interpreted as deposits from non-confined, high-concentration turbulent flows. Given that the sandstone beds are arranged in several thickening and coarsening-upward sequences, they were further interpreted as sandy hyperpycnites accumulated in flood-generated delta-front lobes (sensu Mutti et al., 2000; 2003). In Arraitza (western part of the study area; Fig. lb), the Ardanatz Sandstone is typified by thinner and finer-grained sandstone beds, suggesting a distal or marginal area of the Ardanatz delta front. The Ardanatz Sandstone can also be traced further to the east, bordering the Itzaga syncline, where it shows different sedimentological features (Fig. lb). Here, laminated sandstone beds, which are normally graded and contain abundant mud clasts, are restricted to large-scale, lens-shaped lithosomes. According to these features, they were interpreted as Northwestward-directed turbiditic channels (Puigdefabregas, 1975; Leon Chirinos, 1985). However, from the general palaeogeographic layout outlined above, it is more likely that these features constituted delta-front channels across which fluvially-derived hyperpycnal flows entered the sea and eventually fed the flood-generated delta-front lobes.

[FIGURE 2 OMITTED]

The Ardanatz Sandstone Formation interfingers both laterally and vertically with the Ilundain Marl Formation (Astibia et al., 2014; Fig. 2). In Arraitza, the Ilundain Marl Formation is characterized by thick tabular levels of alternating dark and light grey marls with gradational boundaries. Their siliciclastic content mainly consists of clay, whereas the carbonate content mainly derives from the abundant calcareous skeletal remains, such as bryozoans and others. The fine-grained nature of the sediment, the absence of gravity-flow deposits and the absence of light-dependant organisms suggest that the marls accumulated in a flat, aphotic seabed located below stormwave base. This interpretation is further supported by the microforaminiferal content, similarly as common hexactinellid sponges and their preservation, which is indicative of outer-platform to upper-slope environments (Astibia et al., 2014).

The Eocene succession is topped by the Priabonian Gendulain Formation (Puigdefabregas, 1975), which is composed of different types of coastal deposits, allowing its subdivision into three distinct members: lower evaporites, middle marls, and upper sandstones (Liedena Sandstone Member) (Fig. 2). Lateral variations in facies and thicknesses record the synsedimentary tectonic deformation of the study area (Cendon et al., 1998; Payros et al., 2000), as it progressively became a detached piggy-back basin atop of southward displacing thrust sheets. Owing to the concomitant tectonic uplift, the Gendulain Formation records the last episode of deltaic progradation from the ESE, the closure of the South Pyrenean Sea, and its definite evolution into terrestrial conditions.

3. Material and methods

The studied fossils were mainly collected from several outcrops located between the towns of Uharte and Elkarte (Ezkaba Sandstone Formation), from the localities of Uztarrotz (Eguesibar, base of the Pamplona Marl Formation), Ardanatz-Eguesibar (transition from the Ardanatz Sandstone Formation to the overlying Ilundain Marl Formation), Arraitza (approximately 100 m above the base of the Ilundain Marl Formation), from two outcrops in the Itzagaondoa Valley (in the uppermost part of the Ilundain Marl Formation), and from five outcrops between the towns of Zabaltza and Ledea-Liedena (Liedena Sandstone Member of the Gendulain Formation) (Fig, lb). Precise locations of outcrops are not given for the protection of the fossil sites in accordance with Natural and Cultural Heritage legislation. Those who want to know further details are asked to contact the corresponding author.

A semi-quantitative study of foraminifera was carried out on two outcrops of the base of the Pamplona Marl Formation (Uztarrotz) and the uppermost part of the Ilundain Formation (Itzagaondoa Valley). These micropalaeontological data are added to those made in Arraitza (level ARRl.l), in Ardanatz (levels AD2.1 and AD3.1), and in the Liedena Sandstone (Liedena and other localities, facies Bl, B3 and B4) (in Payros et al., 2000; Astibia et al., 2014).

Most of the collected fossils are provisionally deposited in the Department of Stratigraphy and Palaeontology of the University of the Basque Country (Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, UPV/EHU). A few fossils from the locality of Arraitza are housed in the Museo de Ciencias Naturales de Alava/ Arabako Natur Zientzien Museoa (MCNA) of Vitoria-Gasteiz. Most trace fossils have been photographed and studied initially in the field and only a few samples have been collected and taken to the laboratory (UPV/EHU).

4. Taphonomic remarks

The Bartonian deposits of the study area are very rich in microfossils, but not in body macrofossils, which are only locally abundant. Ichnofossils are very abundant, mainly in sandy units and marls with high terrigenous content. In Ardanatz AD3 and Arraitza ARR1 sections fossils of sponges and erected bryozoans are abundant within the silty marls (Astibia et al., 2014). They usually present intense fragmentation, but often seem to correspond to complete or nearly complete specimens, without evidence of abrasion (Fig. 3a, b). From a palaeoecological point of view, they probably correspond to demic organisms, dwellers of relatively deep environments and autochthonous or parautochthonous taphonomic elements (sensu Fernandez Lopez, 1990; 1991), deposited during periods of reduced sedimentation in a low-energy environment. On the contrary, in several outcrops of the Ardanatz Sandstone fossils of nummulitids, corals, and many molluscs are associated mainly with levels of high terrigenous content and may have undergone taphonomic remotion processes (sensu Fernandez Lopez, 2000) (Fig. 3c, d).

Epibionts (small bivalves, annelid tubes and encrusting bryozoan colonies) on sponges, corals and shells of molluscs, as well as bioerosion (mainly bryozoan borings) on corals and mollusks, are frequent (Astibia et al., 2014). Peripheral zone of alteration with tunnel network structures, probably made by microbial activity, are observed in thin sections of fossil sirenian ribs (Astibia et al., 2005). Microfossils are often filled with pyrite. Body macrofossils are generally fragmentary, with evidence of dissolution and replacement by calcite and celestite in sponges, dissolution and aragonite-calcite neomorfism processes in corals and molluscs, and replacement by well crystallized francolite (carbonate-fluorapatite) in fossil vertebrates (Astibia et al., 2005; 2014) (Fig. 3e, f). Celestite may form as a result of a rapid decomposition of organic matter in a dysoxic microenvironment that produces hydrogen sulfide. The latter can be oxidized to sulfate by subsequent bacterial sulfoxidation, and this sulfate produces celestite with the mobile strontium, the latter coming either from the aragonite-to-calcite neomorphism (Taberner et al., 2002), or from other processes, such as decomposition of inherited sheet silicate mineral of continental origin with a decrease-acidification of the pH (Baker and Bloomer, 1988).

Microbial mats impressions have been identified as wrinkle marks preserved in ripple troughs and as retracted zones in the digit impressions of some bird tracks of the Liedena Sandstone (Gendulain Formation) (Fig. 3g, h) (Astibia et al., in press). Microbial mats can greatly enhance the preservation of surface traces (i.e., Marty et al., 2009; Carmona et al., 2012). The reducing chemical conditions beneath the microbial mats may have contributed to the formation of "anoxic" minerals, such as pyrite (Schieber, 1999, 2002), which has also been observed in the surface of some slabs of the Liedena Sandstone. These anoxic conditions could explain the scarcity and low diversity of invertebrate traces in the Liedena Sandstone. According to Carmona et al. (2012), the microbial mats acted as taphonomic bias favouring the preservation of vertebrate tracks and conditioning the presence of endofauna.

5. Fossil assemblages

This section describes the different fossil assemblages in relation to the respective lithologic units. All the taxa and ichnotaxa recorded in the study area can be consulted in Appendix I.

5.1. Ezkaba Sandstone Formation

Only some microfossils and ichnofossils have been determined so far in this formation. Body macrofossils are scarce and fragmentary and mainly consist of tests of macroforaminifers and spines of echinoids not yet studied.

The marly deposits of the Ezkaba Formation are rich in fossils of planktic foraminifera. Among them Orbulinoides beckmanni, the index species that defines the biozone E12, was identified for the first time in the Pyrenean Domain (Payros et al., 1997). Ichnofossils are very abundant in sandstones. The identified ichnoassemblage includes the ichnotaxa Belorhaphe isp., Ophiomorpha annulata, Ophiomorpha rudis, Phymatoderma isp., Pilichnus dichotomus, Planolites isp., Scolizia strozzii, and Scolizia vertebralis (Fig. 4a, c) (Astibia et al., in press).

[FIGURE 3 OMITTED]

In the Elkarte outcrop, a marly stretch with thin interbedded turbidites, there is a predominance of ophiomorphids and graphogliptids. The determined ichnotaxa are: Chondrites isp., Helminthoraphe flexuosa, Multina minima, Nereites irregularis, Ophiomorpha annulata, Ophiomorpha rudis, Paleodictyon strozzii, Planolites isp., ?Squamodictyon isp., and Taenidium crassum (Fig. 4b) (Astibia et al., in press).

5.2. Pamplona Marl Formation

Pamplona marls are rich in microfossils but the macrofauna is poor. In the Uztarrotz outcrop, an exposure in the lower part of this unit, the microassemblages are dominated by foraminifera which are associated whit common gastropods, serpulids, echinoid spines and smooth-valved ostracods. Benthic foraminifera are abundant and well preserved. Planktic foraminifera dominate the assemblages, the planktic/benthic (P/B) ratio being 75%. As for the benthic foraminiferal test composition, hyaline taxa dominate the assemblages (66%), agglutinated taxa are abundant (33%), and porcelaneous taxa are very scarce (<1%). The benthic foraminiferal assemblages are diverse (around 72 species), slightly dominated by infaunal taxa (57%). Eponides, Cibicidoides, Lenticulina, Uvigerina, Globobulimina species and nodosariids are the most common hyaline taxa, including Eponides ouachitaensis. The agglutinated taxa are dominated by trochamminids, astrorhizids (Bathysiphon species), Ammobaculites and Marssonella species.

Stem fragments of large isocrinid crinoids (Isselicrinidae: Isselicrinus sp.) are quite common throughout the lower part of the Pamplona Marl Formation. In Uztarrotz, postcranial elements of sirenian mammals have described as Dugongidae indet. (Astibia et al., 2006) (Fig. 5a-g). A few spines of echinoids have also been found there. In the east of the study area ichnofossils of Thalassinoides suevicus are observed in the thin sandy layers interspersed in the marls. Towards the top of the Pamplona Formation trace fossils of Ophiomorpha and Chondrites among others are common.

5.3. Ardanatz Sandstone Formation

This unit and the overlying Ilundain Marl Formation have yielded the richest concentrations of body macrofossils. The fossiliferous sites occur at the transition from the Ardanatz Sandstone Formation to the overlying Ilundain Marl Formation. In the Ardanatz outcrops the micropalaeontological content is high in the intercalate marls, being dominated by foraminifera with scarce ostracods and charophyte gyrogonites (Astibia et al., 2014). Benthic foraminifera strongly dominate the assemblages, the P/B ratio being 15% and 5%, respectively. Most benthic foraminifera correspond to hyaline taxa (up to 77%). Agglutinated taxa are common and porcelaneous taxa are less common. Benthic foraminiferal assemblages are moderately diverse (about 50 species), with similar proportions of epifaunal and infaunal taxa. The most common hyaline taxa are cibicidids, including Cibicides tenuimago, Cibicides lobatulus and Cibicides refulgens. Other benthic species present in the associations belong to Eponides, Cibicidoides, Oridorsalis and Gyroidinoides genera. Nodosariids are represented by Anomalinoides, Siphonina and Bulimina. The most common agglutinated taxa are calcareous-cemented taxa, including Gaudryina abuillonensis and Spiroplectammina alansis. Trochamminids and Ammobaculites species are common (Astibia et al., 2014).

The result of the study of nummulitids provided an association formed by the species Nummulites aff. cyrenaicus (precursor form), N. cf. beaumonti, N. ptukhiani, N. praegarnieri, Assilina schwageri, and Heterostegina reticulata cf. multifida in the locality of Ardanatz; N. aff. biedai (precursor form), N. cf. perforatus, and N. aff. cyrenaicus in the term of Zizari-Ezkoritz; and N. aff. biedai and N. aff. cyrenaicus in the term of Lezaun (Ardanatz-Eguesibar). All these nummulitid associations characterize the top of the shallow benthic foraminiferal biozone SBZ 17 of Serra-Kiel et al. (1998), corresponding to the lower Bartonian (Astibia et al., 1999).

In the Ardanatz outcrops body macrofossils are locally abundant. The macrofauna is mainly represented by hexactinellid and lithistid sponges, scleractinian corals, bryozoans, brachiopods, tube-dwelling polychaetes, molluscs (gastropods, bivalves, cephalopods--nautiloids--and scaphopods), arthropods (crab claw fragments), echinoderms (crinoid stalk fragments, plates--ossicles--of asteroids, and spines and test fragments of echinoids), shark teeth, turtle plates, as well as sirenian vertebrae and ribs (Figs. 5h-t, 6a-k). Sponges and corals have been described in Astibia et al. (2014). Among the former there are Laocoetis samueli, Guettardiscyphia thiolati and/or Pleuroguettardia iberica, cf. Rhizocheton robustus, and one indeterminate lithistid (Fig. 5h-j). Corals are represented by Stylocoenia taurinensis, Astrocoenia octopartita, Ceratotrochus bodellei, Placosmiliopsis bilobatus and Desmophyllum castellolense (Fig. 5k-m). Among bryozoans there are representatives of the Stenolaemata Lichenoporidae, Gymnolaemata Cupuladriidae and numerous erect forms, which are locally very abundant and well-preserved, but not yet studied (Figs. 3a, 5n). Micromorphic brachiopods (Terebratulina tenuistriata) are abundant in marly levels of the lower part of studied sections (Fig. 5o, p). Among the annelids, the polychaete Rotularia spirulaea is very abundant, being one of the most characteristic macrofossils of the middle and upper parts of the prospected sections (Fig. 5q). Scarce remains of vertebrates, including turtles and sirenians, have been assigned to indeterminate chelonians and dugongids, respectively (Astibia et al., 1999; 2005; 2006; Buffrenil et al., 2008) (Fig. 5t).

With the exception of a brief note on Dimya pamplonensis (Calzada and Astibia, 1996) nothing has been published to date about the fossil molluscs. A study on the molluscs (Gastropoda and Bivalvia) is ongoing. The gastropod association contains the following taxa: Leptomaria peresii, Ptychocerithium johannae, Diastoma costellatum, Haustator altavillensis, Haustator of. imbricatarius conoideus, Sigmesalia sp., Ampullinidae indet., ?Globularia sp., Cirsotrema (Elegantiscala) of. bouillei, Amaea sp., Clavilithes (Clavellofusus) of. parisiensis, Murioidae indet., Athleta (Volutospina) sp., Conidae indet., and Nihonia aff. transversaria (Figs. 3d, 6a-e). Ptychocerithium johannae is by far the most abundant speoies in the macrogastropod association. The provisional list of bivalves is as follows: Hyotissa martinsi, Ostreoidea indet., Chlamys of. biarritzensis, Chlamys sp., Spondylus of. bifrons, Spondylus of. caldesensis, Spondylus sp., Dimya pamplonensis, Chama pellati and Chama granulosa (Figs. 3c, e, 6f-h). Fossil scaphopods (Dentalium sp.) are abundant (Fig. 6i). Finally, rare cephalopods (Nautilolidea indet.) also occur (Fig. 6j, k).

[FIGURE 4 OMITTED]

The fossil ichnoassemblages of the Ardanatz Sandstone are dominated by ophiomorphids (sensu Seilacher, 2007), with abundance of the ichnospecies Ophiomorpha nodosa. Other ichnotaxa present, decreasing in abundance, are Ophiomorpha isp., Thalassinoides isp, Spongeliomorpha cf. oraviense, and Halopoa imbricata (Fig. 4d, e) (Astibia et al., in press).

5.4. Ilundain Marl Formation

At the west end of the study area, located approximately 100 m above the base of the Ilundain Formation, are the Arraitza outcrops (Fig. 1b). The microfossils are characterized by the abundance, good preservation and dominance of benthic foraminifera. Planktic foraminifera are scarce (P/B ratio 28%) and show low diversity; they are strongly dominated by chiloguembelinid taxa. As for the benthic foraminifera, hyaline taxa dominate the assemblages (80%), agglutinated taxa are common, and porcelaneous taxa are rare. The benthic foraminiferal assemblages are diverse (average 90 species), with similar proportions of infaunal and epifaunal taxa. Cibicidoides, Eponides, cibicidids, elongate uniserial taxa (nodosariids and stilostomellids), and buliminids are the most common hyaline taxa, and include Cibicidoides ungerianus, Eponides ouachitaensis and Cibicides lobatulus. The agglutinated taxa are dominated by trochamminids; the most characteristic are the tubular forms (Bathysiphon) (Astibia et al., 2014).

The body macrofossil assemblages from Arraitza include numerous fossils of the sponges Laocoetis samueli, cf. Rhizocheton robustus, cf. Phlyctia expansa, and two undeterminated lithistids (Fig. 3b). Further components of the association are undetermined corals (scarce), Lichenoporidae and other bryozoans, the brachiopods Terebratulina tenuistriata and IGryphus sp., the polychaete Rotularia spirulaea (rare), the bivalves Spondylus cf. bifrons, Dimya pamplonensis and indeterminate ostreoids, the barnacle Arcoscalpellum sp., echinoid spines and test fragments (Cidaridae and others), asteroid ossicles, and the chondrichthyans Hexanchus agassizi, Macrorhizodus praecursor, Anomotodon sp. and Woellsteinia kozlovi. Teleostean teeth (Enchodus sp.) and otoliths (Chaetodipterus sp. and others) are also common among the fossils of Arraitza (Fig. 5u-z).

In the uppermost part of the Ilundain Formation, towards the eastern part of the study area, in the Itzagaondoa Valley, the fossil association changes significantly. The microassemblage is dominated by foraminifera with common ostracods. The foraminifers are abundant and benthic foraminifera strongly dominate the assemblages, the P/B ratio being 11%. As for the benthic foraminifers, hyaline taxa dominate the assemblages (50%), agglutinated taxa are abundant (38%), and porcelaneous taxa are common (12%). Benthic foraminiferal are moderately diverse (around 41 species), with similar proportions of epifaunal and infaunal taxa. The most common hyaline taxa are Cibicidoides and Planulina species, and Marginulina behmi. The most common agglutinated taxa are calcareous-cemented taxa such as Ammobaculites pyrenaicus and Textularia species; rzehakinids are also common.

Macrofauna in the Itzagaondoa outcrops includes fossils of solitary corals (Ceratotrochus bodellei and others), bryozoans (Gymnolemata Cupuladriidae and erected forms), micromorphic brachiopods (Argyrotheca michelottina), tube-dwelling polychaetes (Rotularia spirulaea and others), and mollusc bivalves, gastropods and scaphopods. The mollusc assemblage includes the gastropods Ptychocerithium johannae, Diastoma costellatum, Moniquia sp., Haustator altavillensis, Haustator cf. imbricatarius conoideus, Sigmesalia sp., Sassia sp., Niso sp., Metula (Celatoconus) sp., Clavilithes (Clavellofusus) cf. parisiensis, Muricidae indet., Athleta (Volutospina) sp., Conidae indet. and Mathilda sp., among others (Fig. 6l-p). Diastoma costellatum and Haustator cf. imbricatarius conoideus are the most abundant macrogastropods. The provisional list of bivalves of the Itzagaondoa outcrops is as follow: Glycymeris jacquoti, Pycnodonte brongniarti, Chlamys sp., Spondylus sp. cf. S. cisalpinus-S. nysti, Spondylus planicostatus, Venericardia junctinova and Chama pellati. (Figs. 5f, 6q-v). Fossils of these taxa, except perhaps Spondylus planicostatus, which is common, are numerous. Scaphopods are also abundant.

As in the Ardanatz Sandstone unit, the ichnological analysis of the sandy levels intercalated in the lower part of the Ilundain marls shows abundant ophiomorphids, especially Ophiomorpha isp. (aff. O. nodosa-O. irregulaire). Other ichnotaxa found are Halopoa imbricata, Planolites isp., Spongeliomorpha cf. oraviense, Spongeliomorpha cf. sicula, and Thalassinoides isp., together with spreite burrows (IRhizocorallium) (Fig. 4d, e) (Astibia et al., in press).

5.5. Gendulain Formation (Liedena Sandstone Member)

The studied section culminates with the intertidal deposits of the Liedena Sandstone (Gendulain Formation) containing benthic microforaminifera of the Priabonian and abundant trace fossils of invertebrates and aquatic birds (Payros et al., 2000; Astibia et al., 2007). Identified invertebrate trace fossils in Liedena Sandstone are Cochlichnus isp., Palaeophycus tubularis and vertical tubes (Fig. 3g). The bird footprints are assigned to: Gruipeda isp., Koreanaornis isp., cf. Koreanaornis, Leptoptilostipus pyrenaicus and cf. Leptoptilostipus (Figs. 3h, 4f, g) (Astibia et al., in press).

6. Discussion. Palaeoenvironments and comparisons

The palaeoenvironmental information provided by the different fossil assemblages described above (foraminifers, body macrofossils and ichnofacies) is in line with the sedimentological evolution of the Pamplona Basin. Thus, both data sets record the transition from deep-sea conditions to deltaic progradation and, eventually, a definite emersion into terrestrial conditions, which was the result of overfilling the basin as a consequence of the progressive uplift and denudation of the Pyrenees. Furthermore, the fossil assemblages allow the general paleonvironmental evolution to be analyzed more in detail and comparisons with neighbouring areas to be made.

[FIGURE 5 OMITTED]

[FIGURE 6 OMITTED]

6.1. Ezkaba Sandstone Formation (Fig. 7)

The trace-fossil assemblage of the Ezkaba Sandstone Formation, the older unit considered in this work, is characteristic of the deep-sea Nereites ichnofacies, as revealed by the presence of graphoglyptids (Uchman and Wetzel, 2011; Wetzel and Uchman, 2012). This agrees with the richness in planktic foraminifers of the marly deposits of this unit and the sedimentological interpretation of the Ezkaba Sandstone as channel-fill deposits of a laterally migrating channel-levee turbidite system (Payros et al., 1997).

When sandstones predominate ichnoassemblages show a low diversity and are characterized by the dominance of Ophiomorpha (O. rudis and O. annulata) and the presence of Scolicia (S. strozzii and S. vertebralis), supporting the differentiation of the Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies. The Ophiomorpha rudis ichnosubfacies, as defined by Uchman (2009), occurs in channel and proximal lobe facies of deep-sea fans or in thick-bedded fans of deep-sea clastic ramps.

In the marly stretchs with thin interbedded turbidites (Elkarte outcrop) the presence of graphoglyptids (Paleodictyon strozzii, cf. Squamodictyon isp. and Helminthorhaphe flexuosa) suggests the Paleodictyon ichnosubfacies of the Nereites ichnofacies or a mixed Paleodictyon-Ophiomorpha rudis ichnosubfacies ichnoassemblage. The Paleodictyon ichnosubfacies was defined by Seilacher (1974) for more sandy and more muddy distal flysch deposits (Uchman, 2001; Uchman and Wetzel, 2011).

These ichnosubfacies are worldwide distributed and occur in geographically and geologically nearby systems of the Ezkaba Formation, such as the Early/Middle Eocene (Ypresian-Lutetian) deep-marine systems of the Hecho Group (Ainsa-Jaca Basin, Aragon, west-central South Pyrenean Area) (Uchman, 2001; Heard and Pickering, 2008) (Fig. 2). Ophiomorpha rudis and Paleodictyon ichnosubfacies are also present in the deep-marine Eocene of the Basque Basin (Rodriguez-Tovar et al., 2010; Cummings and Hodgson, 2011).

6.2. Pamplona Marl Formation (Figs. 7, 8)

Upwards in the sedimentary series of the study area, in the base of the Pamplona Marl Formation, the moderately high proportion of planktic foraminifera and the high diversity and composition of benthic foraminifera, including the presence of agglutinated tubular forms (astrorhizids; Murray et al., 2011), still are indicative of relatively deep-water, outer-platform to upper slope environments (Leckie and Olson, 2003; Murray, 2006). The stalked crinoid Isselicrinus is an extinct genus (Late Cretaceous-Miocene) of wide biogeographic distribution. Fujiwara et al. (2005) described the likely way of life for the individuals, which adopted a relay strategy in the muddy substrate using pre-existing upright columns as anchorage mechanism for the attachment to the sea bottom. Isselicrinus is regarded as a crinoid adapted to low energy muddy environments (Fujiwara et al., 2005). Malubian and Olivero (2005) have indicated that the species of this genus are mostly restricted to deep-water settings in the Cenozoic. Roux et al. (2006) propose a bathymetric zonation of the genus Isselicrinus in the Eocene marls of Miretrain (Aquitaine, North-Pyrenean Basin foreland), describing four (eco)phenothypes to be indicative of depths between 200 and 1000 m or more. Isselicrinus (I. didactylus) is a common crinoid in the Eocene (Bartonian) of Biarritz / Miarritze (Basque Coast, southwestern Aquitaine Basin) (Roux, 1978).

Uztarrotz sirenian fossils consist of disarticulated vertebrae and ribs. They presumably come from the same individual. The sedimentological features of the Pamplona Marl Formation in Uztarrotz and their palaeontological content (microforaminifera and crinoids) indicate a deep marine environment. Therefore, it is likely that the sirenian remains correspond to an ademic organism (sensu Fernandez Lopez, 1990; 2000). Thus, the sirenian bones could have been derived from a floating carcass swept into the open sea (Astibia et al., 2005).

Fossils of Sirenia are relatively abundant in the middle and late Eocene of the northern margin of the Tethys. In the Pyrenean Realm, sirenian remains have been described in a number of middle and upper Eocene localities from the Catalonian Basin (Pilleri et al., 1989; Galobart et al., 1992). These have generally been assigned to genus Prototherium. The sirenian fossil remains found in the central-western Pyrenees were still rather scarce and fragmentary (Bouille, 1876; Pilleri et al., 1989; Gomez, 1998; Astibia et al., 1999; 2005; 2006), but the most complete fossil collection of the oldest sea cow from Western Europe have been recently found in deltaic deposits of the Sobrarbe Formation (Ainsa Basin, Aragon) (Badiola et al., 2011; Diaz-Berenguer et al., 2014).

6.3. Ardanatz Sandstone and Ilundain Marl formations (Figs. 8, 9)

As noted above, the Ardanatz Sandstone and Ilundain Marl formations are the richest units with body macrofossils in the study area. In Ardanatz outcrops (Ardanatz Sandstone Formation) the low proportion of planktic foraminifera and the high abundance of benthic foraminifera, their composition (including common porcelaneous foraminifera) and moderate diversity suggest a shelfal depth of deposition (Murray, 2006).

By contrast, the palaeontological and stratigraphic data indicate that the Arraitza outcrop (Ilundain Marl Formation) may correspond to somewhat deeper environments (Astibia et al., 2014). The scarcity of planktic foraminifera in Arraitza, which is slightly higher than in Ardanatz, and the diversity and composition of benthic foraminifera, including the presence of agglutinated tubular forms (Jones and Charnock, 1985; Murray et al., 2011), are indicative of outer-platform to upper-slope environments. The peak in chiloguembelinid abundance and the high abundance of benthic foraminifera may be indicative of increased local productivity in this area.

There are clear differences between the faunal compositions of the Arraitza and Ardanatz outcrops. Among the sponges Guettardiscyphia/ Pleuroguettardia have been found only in the Ardanatz AD3 section, and cf. Phlyctia expansa and indetermined lithistid sp. 2 only occur in Arraitza (Astibia et al., 2014). Corals and molluscs are less abundant and diverse in Arraitza, unlike what happens with shark teeth fossils.

Eastward in the study area and in the uppermost part of the Ilundain Marl Formation, the scarcity of planktic foraminifera and the composition of the moderately diverse benthic foraminifera (including common porcelaneous foraminifera) suggest an inner shelfal depth of deposition (Leckie and Olson, 2003; Murray, 2006).

The comparison between fossil-invertebrate associations of Ardanatz and Itzagaondoa valley outcrops highlights the existence of notable differences wetween them. In the Itzagaondoa outcrops no sponges have been found. In Ardanatz (and Arraitza) hexactinellid and lithistid sponges occur. Most hexactinellids live in rather deep waters on soft substrates (Vacelet, 1988; Tabachnik, 1991; Charbonnier et al., 2007; Pisera et al., 2006). Accordingly, the shallower sedimentary environment of the Itzagaondoa outcrops could explain their absence. Regarding the mollusc associations, the most notable differences between fossil-invertebrate associations of Ardanatz and Itzagaondoa valley outcrops are: (1) the abundance of phytophagous gastropod Ptychocerithium joahannae in Ardanatz sections and its scarcity in the Itzagaondoa valley; (2) the presence in the Ardanatz sections of Ampullinidae indet., ?Globularia sp., Cirsotrema (Elegantiscala) cf. bouillei, Amaea sp., Clavilithes (Clavellofusus) cf. parisiensis, Nihonia aff. transversaria, Spondylus cf. caldesensis, Dimya pamplonensis and Chama granulosa, among others and its absence in the Itzagaondoa localities; on the contrary (3) the abundance of phytophagous gastropod Diastoma costellatum in the Itzagaondoa outcrops and its scarcity in the Ardanatz outcrops; and (4) the presence of Moniquia sp., Sassia sp., Niso sp., Metula (Celatoconus) sp., Mathilda sp., Pycnodonte brongniarti, Spondylus planicostatus, Spondylus sp. cf. Spondylus cisalpinus-S. nysti and Venericardia junctinova in the Itzagaondoa outcrops, which are absent in the Ardanatz sections. Although differences between the composition of these associations can be observed, they share numerous phytophagous gastropods (Ptychocerithium, Diastoma, Globularia and Ampullinidae indet) reflecting shallow waters in the euphotic zone.

Trace fossil assemblages at the Ardanatz Sandstone and Ilundain Marl formations, with dominance of Thalassinoides and Ophiomorpha, could be related to the Cruziana ichnofacies. The archetypal Cruziana ichnofacies occurs from just slightly above the fair-weather base to the storm wave base, from the lower shoreface to the lower offshore, under moderate--to low-energy conditions (i.e., MacEachern et al., 1999; 2007).

Palaeoichnological data of the Ardanatz Sandstone and the lower part of the Ilundain marls fit well with the shallowing processes that throughout the middle and late Eocene occur in the area, according to the sedimentological and stratigraphic data and the other palaeontological data (body fossils) (Pujalte et al., 2002; Barnolas et al., 2004; Astibia et al., 2014; Astibia et al., in press).

6.3.1. Comparisons with other areas

Globally considered, the body fossil assemblages of the Ardanatz Sandstone and Ilundain Marl formations are comparable with the Eocene associations of the Basque Coast, in the southwestern Aquitaine Basin (Nord Pyrenean area), studied since the nineteenth century (d' Archiac, 1846; 1850; Bouille, 1876; Boussac, 1911) and also with those of the Eocene (Bartonian) age of the west-central and eastern part of the South Pyrenean area, in Aragon (Jaca Basin) (Villalta, 1956; Puigdefabregas, 1975; Barnolas and Gil-Pena, 2001; Oms et al., 2003) and Catalonia (Igualada and Vic regions) (Abad, 2001; Busquets et al., 1994; Carrasco, 1994; Pisera and Busquets, 2002).

However, the studied associations of the Pamplona Basin seem to be less diverse than those from the above-mentioned areas. The lower palaeontological diversity may be due to the still preliminary nature of the studies carried out so far, which involves sampling biases (e.g. field collection of specimens which are only visible to the naked eye, the need to screen-wash sediment to study the microgastropods and micromorphic brachiopods), taphonomic biases and/or palaeoecological differences (more restricted environments).

The sponge associations seem similar to those of the Eocene of Biarritz/Miarritze (Basque Coast, Aquitanian Basin) described by d'Archiac (1846, 1850), where Laocoetis samueli and stellate forms such as Guettardiscyphia thiolati and Pleuroguettardia iberica are the most representative sponges of the fossil assemblage.

The gastropods Ptychocerithium johannae, Diastoma costellatum, Haustator imbricatarius, and the bivalves Spondylus bifrons, Spondylus nysti, Spondylus planicostatus and Chamapellati, among other molluscs, are present in the Paleogene series of the Basque Coast, in the surroundings of the town of Biarritz, specifically in the outcrops of Villa Marbella and of the upper part of the Cote des Basques (BartonianPriabonian, Cote des Basques Marls Formation, Mathelin and Sztrakos, 1993; Sztrakos et al., 1998) (Boussac, 1908, 1911). Spondylus nysti d'Archiac, 1846, Spondylus planicostatus d'Archiac, 1850, Chama granulosa d'Archiac, 1850 and Chamapellati Boussac, 1911 were defined in the Paleogene of Biarritz. Hyotissa martinsi was also erected by d'Archiac (1847) as "OstreaMartinsii" in the "Nummulitique" of Biarritz. Pycnodonte brongniarti is present in the upper part (lower Oligocene?) of the Paleogene series of Anglet/Angelu and Biarritz (Chambre d'Amour and other sites) ("Ostrea vesicularis" in d'Archiac, 1846; "Ostrea Brongniartf" in Bouille, 1876 and Boussac, 1908, 1911).

The Villa Marbella outcrop, in the lower part of the Cote des Basques blue marls, is the same site that Bouille (1876) named "Lady Bruce" (Boussac, 1911). Tournouer (in Bouille, 1876) described the "Cerites--Cerithiidae--des couches a Serpula spirulaed" in Lady Bruce. Bouille (1876) cited the presence of "Serpula spirulaed' (Rotularia spirulaea) in Lady Bruce and Cote des Basques outcrops. The presence of "Serpula spirulaea" had already been reported in Biarritz by d'Archiac (1846, 1850).

Other faunal assemblages, partially comparable, are the mollusc fossil assemblages from the Eocene (Bartonian) marls of the Basa Valley (Ballibasa) (Sobas, Yebra de Basa, San Roman de Basa and Isun sites, Pamplona marls sensu lato, Jaca Basin, west-central Pyrenean area, Puigdefabregas, 1975; Oms et al., 2003), situated in the neighbouring territory of Huesca (Aragon), about 120 km to southwest from our studied area. The fossil gastropods from these localities were studied by Villalta (1956). The faunal associations of the Pamplona and Jaca basins share close if not the same species of the genera Niso, Globularia, Clavilithes, Sassia, Moniquia (as Faunus in Villalta, 1956), some Epitoniidae and, at least, the species Haustator altavillensis and Diastoma costellatum. The Ballibasa levels are probably somewhat older that those of the Ardanatz Sandstone and Ilundain Marl Formation and their faunas (at least the molluscs) seem to be more diverse than those of Navarre. Fish otoliths of Yebra de Basa have recently been studied by Brzobohaty and Nolf (2011). The assemblage reflects a very shallow neritic environment, different of the one from the Villa Marbella in Biarritz, with a deep neritic-upper slope otolith association (Brzobohaty and Nolf, 2011).

Regarding to the Eocene of Catalonia, the Ardanatz AD3 level outcrops, with the stellate and conical siliceous sponges and erected bryozoan colonies, could be compared to the Bartonian shelf deposits from the Vic Marls Formation in the northeastern part of the Ebro Basin (Busquets et al., 1994; Pisera and Busquets, 2002; Astibia et al., 2014). Farres (1961) cited the presence of "Cerithium Johannes" in the Bartonian marls from Gurb (Vich region). Spondylus caldesensis, Spondylus bifrons and Spondylus nysti are present in several sites of Igualada, Manresa and Vic regions, in the Igualada Formation (late Bartonian, most likely Priabonian in age, Taberner et al., 1999; Costa et al., 2013) (Carrasco, 1994; Abad, 2001). Pycnodonte brongniarti has a wide biostratigraphic and palaeobiogeographic distribution (Paleocene-Miocene, through northern Africa and southern Eurasia) and is abundant in numerous Eocene localities of Igualada and Vic regions (Igualada Formation) (Abad, 2001).

Regarding the biogeographic relationships with the Western Europe, the mollusc associations found in the Pamplona basin share two elements found in the middle Eocene (Lutetian) of San Giovanni Ilarione (Verona basin, Italy): Clavilithes parisiensis and Diastoma costellatum (Quaggiotto and Mellini, 2008). These two faunal elements correspond to cosmopolitan species and have been also found in the Middle Eocene of the Paris Basin. Another species found in the Tethys is Leptomaria peresii occurring in the Priabonian of Alps (France). Species found in the North-West Atlantic are Haustator imbricatarius, Nihonia transversaria from the Paris Basin and Haustator altavillensis, originally described from the Middle Eocene of Normandy. As seen above, the rest of this association seems restricted of the Pyrenean area, so the existence of an endemic fauna or/and the beginning of a faunal differentiation between the Northern (Paris Basin, Normandy) and the southern faunas (Pyrenean and Aquitaine basins), which is observed since the Rupelian (Lozouet and Maestrati, 1986; Merle et al., 2002), can be proposed as a hypothesis. However, further research on this mollusc association is necessary.

6.4. Gendulain Formation (Liedena Sandstone Member) (Fig. 7)

Sedimentological evidence (synaeresis cracks, flat-topped wave ripples, halite moulds, etc.) indicates a relatively confined marginal marine environment for these deposits (Payros et al., 2000).

The Liedena Sandstone ichnofauna presents a low ichno-diversity. The vertebrate tracks are exclusively composed of bird ichnotaxa and two of them, Koreanaornis and Leptoptilostipus, have been related with shorebird trackmakers (i.e., Lockley and Harris, 2010). Lockley et al. (1994) proposed the shorebird ichnofacies, which comprises ichnocoenoses of shorebirds attributable to Charadriiformes, Anseriiformes and Ciconiiformes. Gibert and Saez (2009) considered the shorebird ichnofacies to be a subset of the Scoyenia ichnofacies (an ichnosubfacies sensu Melchor et al., 2006) that characterizes the subaerial part of low-energy shore areas. On the other hand, the presence of Cochlichnus in a non-marine setting is typical of the Mermia ichnofacies and suggests a low energy perennial freshwater environment (Hasiotis, 2002; Buatois and Mangano, 2002). The occurrence of characteristic ichnotaxa of more than one ichnofacies in a single ichnofauna, as the occurrence in Liedena deposits, could be interpreted as a consequence of the trace-fossil producers being environmentally tolerant animals that could inhabit and behave similarly in either setting. Overall, the palaeohydrological and palaeoenvironment scenario deduced from the bioturbation and other organic and sedimentary structures is consistent with extremely sensitive to water table oscillations, causing cyclic exposure and submersion of large areas, and to variations in salinity throughout the tidal cycle.

7. Conclusions

Fossil associations from the middle and late Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Liedena Sandstone Member, Gendulain Formation).

Palaeontological data of the studied sedimentary units fit well with shallowing processes that throughout the middle and late Eocene occur in the area, in accordance with the results obtained from sedimentological and stratigraphic data.

The studied units are very rich in microfossils and ichnofossils, but not in body macrofossils, which are only locally abundant. In some outcrops of the Ardanatz Sandstone and Ilundain Marl formations fossils of sponges and erected bryozoans seem to correspond to complete or nearly complete specimens, without evidence of abrasion. They probably correspond to demic organisms. In other outcrops fossils are fragmentary and associated mainly with levels of high terrigenous content and may have undergone some taphonomic remotion processes.

Epibiontic activity and bioerosion on fossil invertebrates and sirenian ribs are frequent. The fossil invertebrates are generally fragmentary, showing dissolution, replacement by calcite and celestite, and aragonite-calcite neomorfism processes. Replacement by francolite occurs in fossil vertebrates. Microbial mats impressions have been identified in the digit impressions of some bird tracks of the Liedena Sandstone. The microbial mats may have acted as taphonomic bias favouring the preservation of vertebrate tracks and conditioning the presence of endofauna.

At least 23 ichnogenera and 28 ichnospecies have been identified in the study area. Among the body macrofossils, 78 taxa of macroforaminifers, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been reliably identified. However, both the number of ichnotaxa and invertebrate species (e. g. bryozoans and molluscs) may be considerably higher.

In the older unit, the Ezkaba Sandstone Formation, only some microfossils and ichnofossils have been determined. There, body macrofossils are scarce and fragmentary. The trace-fossil assemblage is characteristic of the deep-sea Nereites ichnofacies. The Ophiomorpha rudis and the Paleodictyon ichnosubfacies can be differentiated in this unit, which are typical of channel axis and off-axis environments. They agree with the richness of planktic foraminifera of the marly deposits of this unit and the sedimentological interpretation of the Ezkaba Sandstone as channel-fill deposits of a laterally migrating channel-levee turbidite system.

The Pamplona marls are rich in microfossils but macrofossils are rare. In the base of this unit microfossils, with moderately high proportion of planktic foraminifera and high diversity and composition of benthic foraminifera, are indicative of relatively deep waters, outer-platform to upper slope environments. Stalk fragments of crinoids (Isselicrinus sp.) are quite common throughout the lower part of the Pamplona Formation. Postcranial elements of sirenian mammals (Dugongidae indet.) have also been described.

The Ardanatz Sandstone and Ilundain Marl formations are the richest sources of body macrofossils in the study area. In the Ardanatz outcrops (Ardanatz Sandstone Formation), the low proportion of planktic foraminifera and the high abundance of benthic foraminifera, their composition (including common porcelaneous foraminifera) and moderate diversity suggest a shelfal depth of deposition. Eastward, in the study area and in the uppermost part of the Ilundain Marl Formation, the scarcity of planktic foraminifera and the composition of the moderately diverse benthic foraminifera (including common porcelaneous foraminifera) suggest an inner shelfal depth of deposition.

The comparison of fossil-invertebrate associations of the locality of Ardanatz and the Itzagaondoa valley outcrops shows notable differences. In Itzagaondoa outcrops no fossil sponges have been found, and this can be explained because the Itzagaondoa outcrops represent a shallower sedimentary environment. Trace fossil assemblage at the Ardanatz Sandstone and Ilundain Marl formations could be related to the Cruziana ichnofacies.

Body fossil assemblages of Ardanatz Sandstone and Ilundain Marl formations are comparable with the Eocene (Bartonian-Priabonian) age associations of the Basque Coast (southwestern Aquitaine Basin, North Pyrenean area), specifically in the outcrops of the Cote des Basques Marls Formation. They are also comparable with those of Eocene (Bartonian-Priabonian) from the west-central and eastern part of the South Pyrenean area, in Aragon (Ballibasa, Jaca Basin) and Catalonia (Vic Marls and Igualada formations). At the Western Europe scale, the mollusc assemblages seem endemic for the Pyrenean area, although they share several cosmopolitan species with the Middle Eocene of the Tethys (Italy and France, Alps) and of the Nort-West Atlantic (Paris Basin and Normandy).

The studied associations seem to be less diverse than those from the above-mentioned areas. The lower palaeontological diversity of the Pamplona Basin may be due to the still preliminary nature of the studies carried out so far, which involves sampling and taphonomic biases and/or palaeoecological differences.

The ichnofauna of the Liedena Sandstone, in the upper part of the sedimentary succession, is composed of bird tracks, and both invertebrate horizontal and vertical structures. The assignation of this ichnofauna to a specific ichnofacies is tentative, and we regard it as showing a combination of the characteristics of the Mermia and Scoyenia ichnofacies.

In conclusion, the fossil associations found in the middle-upper Eocene succession of the Pamplona Basin were found to be rich and diverse enough to allow an integrated palaeoenvironmental analyses to be carried out herein for the first time. The fossil associations show similarities, but also differences, with coeval associations from neighbouring areas, such as the long-known, classic outcrops in the southwestern Aquitaine Basin, in Aragon and in Catalonia, and even in more distant areas, such as the Paris Basin. Such differences provide the Pamplona Basin a distinctive character and increase its interest for palaeobiodiversity studies. Consequently, future studies will focus on specific fossil groups.

http://dx.doi.org/10.5209/rev_JIGE.2016.v42.nl.51601

Acknowledgements

Comments by Dr. Kai Ingemann Schnetler and an anonymous reviewer considerably improved the manuscript. Thanks to Dr. Jone Mendicoa for her technical assistance with the figures. Financial support to H.A., A.Ba., A.Be., I.D.-M., J.E. and X.P.-S. was provided by the Project CGL2013-47521-P (Ministerio de Economia y Competitividad, MINECO, Spain), the European Regional Development Fund (ERDF/ FEDER), and the research group IT-834-13 (Eusko Jaurlaritza/ Gobierno Vasco, EJ/GV). Research work of I.D.-M. was supported by a postdoctoral grant provided by the Ministerio de Ciencia, Tecnologia e Innovacion Productiva, CONICET, Argentina. Financial support to F.J.R.-T. was provided by the Project CGL2012-33281 (MINECO), and the research group RNM-178 (Junta de Andalucia). A.P and S.O. were funded by project CGL 2011-23770 (MINECO) and the research group IT-215-07 (EJ/GV). This a palaeontological collaboration between the UPV/EHU, the CNRS and the MNHN (France).

References

Abad, A. (2001): Paleotaxodonta y Pteriomorphia del Eoceno del margen sur de la depresion Central Catalana. PhD thesis, Universitat Autonoma de Barcelona, 803 p.

Achiardi, A. d' (1868): Coralli fossili del terreno nummulitico dell'Alpi Venete. Memorie della Societa Italiana di Scienze Naturali, Milano, parte 2, 4(1):1-31.

Adnet, S. (2006): Nouvelles faunes de Selaciens (Elasmobranchii, Neoselachii) de l'Eocene moyen des Landes (Sud-Ouest, France). Implication dans la connaissance des communautes de selaciens d'eaux profondes. Palaeo Ichthyologica 10, 1-128.

Alameda, J., Blas, I., Cabra, P., Del Valle de Lersundi, J., Garcia, A., Martinez, A., Ramirez del Pozo, J., Sole, J. (1993): Hoja geologica num. 141-II (Pamplona). Cartografia Geologica de Navarra E. 1:25.000. Gobierno de Navarra, Departamento de Obras Publicas, Transportes y Comunicaciones, Pamplona.

Allman, G. (1856): A monograph of the fresh-water Polyzoa, including all the known species, both British and foreing. The Ray Society, London, 119 p.

Alvarez-Perez, G. (1997): New Eocene coral species from Igualada (Barcelona, NE of Spain). Boletin de la Real Sociedad Espanola de Historia Natural 91, 297-304.

Archiac, A.M. d' (1846): Description des fossiles recueillis par M. Thorent dans les couches a Nummulines des environs de Bayonne. Memoires de la Societe geologique de France, 2eme serie 2(4), 189-217.

Archiac, A.M., d' (1847): Extrait d'un Memoire sur les fossiles des conches a Nummulites des environs de Bayonne et de Dax. Bulletin de la Societe geologique de France, 2eme serie 2(4), 1006-1010.

Archiac, A.M. d' (1850): Description des fossiles du groupe nummulitique recueillis par M.S.-P. Pratt et M.J. Delbos aux environs de Bayonne et de Dax. Memoires de la Societe geologique de France, 2eme serie 3(6), 397-456.

Archiac, A. d', Haime, J. (1853): Description des animauxfossiles du groupe nummulitique de l'Inde. Gide et Baudry Eds., Paris, 164 p.

Astibia, H., Elorza, J., Pisera, A., Alvarez-Perez, G., Payros, A., Ortiz, S. (2014): Sponges and corals from the Middle Eocene (Bartonian) marly formations of the Pamplona Basin (Navarre, western Pyrenees): taphonomy, taxonomy and paleoenvironments. Facies 60, 91-110. doi:10.1007/s10347-013-0364-2.

Astibia, H., Murelaga, X., Payros, A., Pereda, X., Tosquella, J. (1999): Tortugas y Sirenios fosiles en el Eoceno marino de Navarra y Cuenca de Jaca. Geogaceta 25, 15-18.

Astibia, H., Payros, A., Pereda Suberbiola, X., Elorza, J., Berreteaga, A., Etxebarria, N., Badiola, A., Tosquella, J. (2005): Sedimentology and taphonomy of sirenian remains from the Middle Eocene of the Pamplona Basin (Navarre, western Pyrenees). Facies 50, 463-475. doi:10.1007/s10347-004-0026-5.

Astibia, H., Pereda Suberbiola, X., Bardet, N., Payros, A., Berreteaga, A., Badiola, A. (2006): Nuevos fosiles de sirenios en el Eoceno medio de la Cuenca de Pamplona (Navarra). Revista Espanola de Paleontologia 21, 79-91.

Astibia, H., Pereda Suberbiola, X., Payros, A., Murelaga, X., Berreteaga, A., Baceta, J.I., Badiola, A. (2007): Bird and mammal footprints from the Tertiary of Navarre (western Pyrenees). Ichnos 14, 175-184. doi:10.1080/10420940601049917.

Astibia, H., Rodriguez-Tovar, F.J., Diaz-Martinez, I., Payros, A., Ortiz, S. (in press): Trace fossils from the Middle and Upper Eocene (Bartonian-Priabonian) molasse deposits of the Pamplona Basin (Navarre, western Pyrenees): palaeoenvironmental implications. Geological Journal. doi: 10.1002/gj.2763.

Badiola, A., Pereda-Suberbiola, X., Bardet, N., Astibia, H., Berreteaga, A., Canudo, J. I., Cuenca-Bescos, G. (2011): Eocene mammalian fossil record and biodiversity from Iberia: New primate and sirenian discoveries and palaeobiogeographic implications. In: T. Lehmann, F.K. Schaal (eds.), The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference, 15th-19th November 2011, Frankfurt am Main, Germany. Conference Volume, pp. 27-28.

Baker, P.A., Bloomer, S.H. (1988): The origin of celestite in deep-sea carbonate sediments. Geochimica et Cosmochimica Acta 52(2), 335-339.

Barnolas, A., Gil-Pena, I. (2001): Ejemplos de relleno sedimentario multiepisodico en una cuenca de antepais fragmentada: La Cuenca Surpirenaica. Boletin Geologico y Minero 112(3), 17-38.

Barnolas, A., Payros, A., Samso, J.M., Serra-Kiel, J., Tosquella, J. (2004): La Cuenca surpirenaica desde el Ilerdiense medio al Priaboniense. In: J.A. Vera (ed.), Geologia de Espana. Instituto Geologico y Minero de Espana, Sociedad Geologica de Espana, Madrid, pp. 313-320.

Barta-Calmus, S. (1973): Revisions de collections de madreporaires provenant du Nummulitique du sud-est de la France, de l'Italie et de la Yougoslavie septentrionales. PhD thesis, Universite de Paris 6, 695 p.

Bieda, F. (1950): Sur quelques foraminiferes nouveaux ou peu connus du Flysch des Karpates polonaises. Rocznik Polskiego Towarzystwa Geologiczniego 18, 153-168.

Borg, F. (1926): Studies on Recent cyclostomatous Bryozoa. Zoologiska bidragfran Uppsala 10, 181-507.

Bouille, R. de (1873): Paleontologie de Biarritz et de quelques autres localites des Basses-Pyrenees. Memoires de la Premiere Section, Congres Scientifique de France, 39e Session 1, Pau, pp. 427-468.

Bouille, R. de (1876): Paleontologie de Biarritz et de quelques autres localites des Basses-Pyrenees. Imprimerie et Lithographie Veronese, Pau, 71 p.

Boussac, J. (1908): Note sur la succession des faunes nummulitiques a Biarritz. Bulletin de la Societe Geologique de France, 4eme serie 8(5), 237-255.

Boussac, J. (1911): Etudes stratigraphiques et paleontologiques sur le nummulitique de Biarritz. Annales Hebert 5, 1-95.

Bromley, R.G., Ekdale, A.A., Richter, B. (1999): New Taenidium (trace fossil) in the Upper Cretaceous chalk of northwestern Europe. Bulletin of the Geological Society of Denmark 46, 47-51.

Brongniart, A.T. (1823): Observations sur les Fucoides. Societe d'Historie Naturelle deParis, Memoire 1, 301-320.

Bronn, H.G. (1831): Ubersicht der Fossilen Uberreste in den tertiaren subappeninischen Gebirgen. Italiens Tertiar-Gebilde und deren organische Einschlusse. Heidelberg, xii + 176 p.

Bronn, H.G. (1862) (in 1862-1866): Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Dritter Band, Malacozoa. Erste Abtheilung. C. F. Winter'sche Verlagshandlung, Leipzig; Heidelberg, 1500 p. (1862: 523-650).

Bruguiere, J.G. (1791): Tableau encyclopedique et methodique de trois regnes de la nature, vol. 7. Contenant l'helminthologie, ou les vers infusoires, les vers intestins, les vers mollusques & c, Panckoucke, Paris.

Brzobohaty, R., Nolf, D. (2011): Fish otoliths from the Middle Eocene (Bartonian) of Yebra de Basa, province of Huesca, Spain. Bulletin de l'Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 81, 279-295.

Buatois, L.A., Mangano, M.G. (2002): Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeography, Palaeoclimatology, Palaeoecology 183(1), 71-86. doi:10.1016/ S0031-0182(01)00459-X.

Buffrenil, V. de, Astibia, H., Pereda Suberbiola, X., Berreteaga, A., Bardet, N. (2008): Variation in bone histology of middle Eocene sirenians from western Europe. Geodiversitas 30(2), 425-432.

Busquets, P., Alvarez, G., Sole de Porta, N., Urquiola, M. M. (1994): Low sedimentation rate aphotic shelves with Dendrophyllia and sponges--Bartonian of the easternmost sector of the Ebro Basin. Courier Forschungsinstitut Senckenberg 172, 265-273.

Calzada, S., Astibia, H. (1996): Sobre Plicatula pamplonensis Carez: revision. Bulletin de la Societe d'Histoire naturelle de Toulouse 132, 65-69.

Cappetta, H. (1976): Selaciens nouveaux du London Clay de l'Essex (Ypresien du Bassin de Londres). Geobios 9(5), 551-575.

Carez, L. (1881): Etude des Terrains cretaces et tertiaires du nord de l'Espagne. F. Savy, Paris, 327 p.

Carmona, N.B., Ponce, J.J., Wetzel, A., Bournod, C.N., Cuadrado, D.G. (2012): Microbially induced sedimentary structures in Neogene tidal flats from Argentina: Paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 353, 1-9. doi:10.1016/j.palaeo.2012.06.021.

Carrasco, J.F. (1994): El genero Spondylus en el Eoceno del Noroeste de la Peninsula Iberica. Scripta Musei Geologici Seminarii Barcinonensis 226, 3-24.

Cavalier-Smith, T. (2002): The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology 52, 297-354.

Cendon, D.I., Ayora, C., Pueyo, J.J. (1998): The origin of barren bodies in the Subiza potash deposit, Navarra, Spain: implications for sylvite formation. Journal of Sedimentary Research 68, 43-52.

Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J.P., Hantzpergue, P. (2007): The La Voulte Lagerstatte (Callovian): Evidence for a deep water setting from sponge and crinoids communities. Palaeogeography, Palaeoclimatology, Palaeoecology 250, 216-236. doi:10.1016/j. palaeo.2007.03.013.

Cossmann, M. (1897): Estudios de algunos moluscos eocenos del Pirineo Catalan. Boletin de la Comision del Mapa Geologico de Espana 23, 167-198.

Cossmann, M., O'Gorman, G. (1923): Le gisement cuisien de Gan (Basses-Pyrenees). Cossmann, Pau, 188 p.

Cossmann M., Pissarro G. (1902): Faune eocenique du Cotentin (Mollusques). 3e article. Bulletin de la Societe geologique de Normandie 21, 27-181.

Costa, E., Garces, M., Lopez-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L., Beamud, E. (2013): The Bartonian-Priabonian marine record of the eastern South Pyrenean Foreland Basin (NE Spain): A new calibration of the larger foraminifers and calcareous nannofossil biozonation. Geologica Acta 11(2), 177-193. doi:10.1344/105.000001779.

Cummings, J.P., Hodgson, D.M. (2011): Assessing controls on the distribution of ichnotaxa in submarine fan environments, the Basque Basin, Northern Spain. Sedimentary Geology 239, 162-187. doi:10.1016/j. sedgeo.2011.06.009.

Cuvier, G. (1795): Second Memoire sur l'organisation et les rapports des animaux a sang blanc, dans lequel on traite de la structure des Mollusques et de leur division en ordre, lu a la societe d'Histoire Naturelle de Paris, le 11 prairial an troisieme. Magazin Encyclopedique, ou Journal des Sciences, des Lettres et des Arts 2, 433-449.

Cuvier, G. (1797): Tableau elementaire de l'histoire naturelle des animaux. Baudouin, Paris, 710 p.

Dahl, E. (1956): On the differentiation of the topography of the Crustacean head. Acta Zoologica 37, 123-192.

Davidson, T. (1870): On Italian Tertiary Brachiopoda. Geological Magazine 7, 359-370, 399-408, 460-466.

De Renzi, M. (1971): Las faunas de moluscos fosiles del Eoceno inferior del Prepirineo de Lerida. PhD thesis, Universitat de Barcelona, 502 p.

De Renzi, M. (1996): La influencia de los factores tafonomicos y paleoecologicos en la distribucion de los moluscos en el area tipo del Ilerdiense (Conca de Tremp, Cataluna, Espana). Revista Espanola de Paleontologia, N[degrees] extraordinario, 204-214.

Diaz-Berenguer, E., Badiola, A., Canudo, J. I. (2014): First mention of sirenians (Mammalia) with functional hindlimbs in Europe (Lutetian, Southern Pyrenees, Spain). Society of Vertebrate Paleontology 75th Annual Meeting, October 14-17, Berlin, Program and Abstracts, p. 120.

Doncieux, L. (1908): Catalogue descriptif des fossiles nummulitiques de l'Aude et de l'Herault. 2eme partie: Corbieres septentrionales. Annales de l'Universite de Lyon, n. ser. I, 22, 1-250.

Dumeril, A.M.C. (1806): Zoologie analytique, ou methode naturelle de classification des animaux, rendue plus facile a l'aide de tableaux synoptiques. Allais, Paris, 344 p.

Ehrenberg, C.G. (1831): Symbolae physicae. Animalia Evertebrata exclusis insectis. Series prima cum tabularum decade prima. Mittler, Berolini, 135 p.

Ehrenberg, C.G. (1834): Beitrage zur physiologischen Kenntniss der Corallenthiere im allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abhandlungen der Koniglichen Akademie der Wissenschaften, Berlin. 1, 225-380.

Farres, F. (1961): Enumeracion de las especies halladas en el Eoceno de la Comarca de Vich. Revista Ausa 4(36), 44-69.

Fernandez Lopez, S. (1990): El significado de la autoctonia / aloctonia tafonomica. In: S. Fernandez Lopez (coord.), Comunicaciones de la Reunion Tafonomia y Fosilizacion. Universidad Complutense de Madrid, pp. 115-124.

Fernandez Lopez, S. (1991): Taphonomic concepts for a theoretical biochronology. Revista Espanola de Paleontologia 6(1), 37-49.

Fernandez Lopez, S.R. (2000): Temas de Tafonomia. Departamento de Paleontologia, Universidad Complutense de Madrid, 167 p.

Frey, H., Leuckart, R. (1847): Beitrage zur Kenntniss wirbelloser Thiere mit besonderer Berucksichtigung der Fauna des Norddeutschen Meeres, Braunschweig, 170 p. + 2 pis,

Fujiwara, S.-I., Oji, T., Tanaka, Y., Kondo, Y. (2005): Relay strategy and adaptation to a muddy environment in Isselicrinus (Isseiicrinidae; Crinoidea). Palaios 20, 241-248. doi:10.2110/palo.2004.p04-25.

Galobart, A., Maroto, J., Ros, J. (1992): Troballa d'un sireni de l'eoce a la vall del Llemena. Quaderns del Centre d'Estudis Comarcals de Banyoles 1990-91, 85-94.

Gibert, J.M. de, Saez, A. (2009): Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 272(3-4), 162-175. doi:10.1016/j.paiaeo.2008.10.030.

Goldfuss, A. (1840); Petrefacta Germaniae, 2. Arz & Co., Dusseldorf, 312 p.

Gomez, G. (1998): Dos sirenios del Eoceno en la formacion Belsue-Atares. Serrablo 28(110), 1 p.

Grant, R. E. (1836); Animal Kingdom. In; R.B. Todd (ed.), The Cyclopedia of Anatomy and Physiology 1, Sherwood, Gilbert and Piper, London, pp. 107-118.

Grube, A. E. (1850); Die Familien der Anneliden. Archiv fur Naturgeschichte 16(1), 249-364.

Haeckel, E. (1874); Anthropogenie, oder Entwickelungsgeschichte des Menschen. Verlag von Wilhelm Engelmann, Leipzig, 732 p.

Hall, J. (1847); Paleontology of New York, vol. 1. Containing descriptions of organic remains of the Lower Division of the New York System (equivalent to the Lower Silurian rocks of Europe). C. van Benthuysen, Albany, State of New York, 338 p.

Hasiotis, S.T. (2002); Continental Trace Fossils. SEPM (Society for Sedimentary Geology) Short Course Notes 51, Tulsa, Oklahoma, 132 p.

Heard, T.G., Pickering, K.T. (2008); Trace fossils as diagnostic indicators of deep-marine environments, Middle Eocene Ainsa-Jaca basin, Spanish Pyrenees. Sedimentology 55, 809-844. doi;10.1111/j.13653091.2007.00922.x.

Huxley, T.H. (1880): On the application of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of London 1880, 649-662.

Huyghe, D., Merle, D., Lartaud, F., Cheype, E., Emmanuel L. (2012); Middle Lutetian climate in the Paris Basin; implications for the hotspot of biodiversity. Facies 58, 587-604. doi:10.1007/s10347-0120307-3.

Jones, R.W., Charnock, M.A. (1985); "Morphogroups" of agglutinating foraminifera. Their life positions and feeding habits and potential applicability in (paleo)ecological studies. Revue de Paleobiologie 4(2), 311-320.

Kacharava, Z.D. (1969): On the phylogenetic sequence of the Nummulites fabianii Grup. Bulletin of the Academy of Sciences of the Georgian SSR, 55 (2), 497-500.

Klein, J.T. (1734); Naturalis disposition echinodermatium. Accesseit Lucubratiuncula des aculeis echinorum marinorum, cun Spicilegio de belemnitis. Liutteris Schreiberianis, Gedani, 78 p.

Klein, E. E. (1885); Beitrage zur Bildung des Schadels der Knochenfische. II. Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg 41, 107-261.

Ksiazkiewicz, M. (1977): Trace fossils in the Flysch of the Polish Carpathians. Palaeontologia Polonica 36, 1-208.

Lamarck, J.-B. de (1804a): Memoires sur les fossiles des environs de Paris, comprenant la determination des especes qui appartiennent aux animaux marins sans vertebres, et dont la plupart sans figures dans la collection des velins du museum. Annales du Museum National d'Histoire Naturelle 4, 46-55, 105-115, 212-222, 289-298, 429-436.

Lamarck, J.-B. de (1804b): Memoires sur les fossiles des environs de Paris. Annales du Museum National d'Histoire Naturelle 5, 28-36.

Lamarck, J.-B. de (1809); Philosophie zoologique; ou, Exposition des considerations relatives a l'histoire naturelle des animaux; a la diversite de leur organisation et des facultes qu'ils in obtiennent; aux causes physiques qui maintiennent en eux la vie et donnent lieu aux mouvemens qu'ils executent; enfin, a celles quiproduisent, les unes le sentiment, et les autres l'intelligence de ceux qui en sont doues. Dentu, Paris, 1, 428 p., 2, 475 p.

Lamarck, J.-B. de (1818); Histoire naturelle des animaux sans vertebres, presentant les caracteres generaux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres et la citation des principales especes qui s'y rapportent, precedee d'une introduction offrant la determination des caracteres essentiels de l'animal, sa distinction du vegetal et des autres corps naturels, enfin, l'exposition des principes fondamentaux de la zoologie, 5. Deterville et Verdiere, Paris, 612 p.

Latreille, P.A. (1802); Histoire naturelle, generale et particuliere des crustaces et des insectes. F. Dufart, Paris.

Laurenti, J.N. (1768); Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austracorum. Vienna, Joan. Thomae nob. de Trattnern, 214 p.

Lebrun, P., Courville, P, Pacaud J.-M. (2013); Les mollusques des sables eocenes du Bois-Gouet (Loire Atlantique). Fossiles, Revue franqaise de Paleontologie, vol. hors-serie 3 (2012), 57-7.

Leckie, R.M., Olson, H. (2003): Foraminifera as proxies of sea-level change on siliciclastic margins. In: H.C. Olson, R.M. Leckie (eds.), Micropaleontologic Proxies of Sea-Level Change and Stratigraphic Discontinuities. Tulsa, SEPM (Society of Sedimentary Geology), Special Publication 75, 5-19.

Leon Chirinos, I. (1985); Etude sedimentologique et reconstitution du cadre geodynamique de la sedimentation detritique fini-eocene-oligocene dans le bassin sud-pyreneen entre Sanguesa et Pamplona. PhD thesis, University of Pau, France, 247 p.

Leriche, M. (1905); Les poissons tertiaires de la Belgique. II. Les poissons eocenes. Memoires du Musee Royal d'Histoire Naturelle de Belgique 11(3), 49-228.

Leske, N.G. (1778); Jacobi TheodoriKlein naturalis dispositio echinodermatum. Accesserunt Lucubratiuncula de aculeis echinorum marinorum et Spicilegium de belemnitis. Edita et descriptionibus novisque inventis et synonomis auctorem aucta. Addimenta ad I. T. Klein naturalem dispositionem Echinodermatum. G. E. Beer, Leipzig, xxii + 278 p.

Leymerie, M.A. (1846): Memoire sur le terrain a Nummulites (Epicretace) des Corbieres et de la Montagne Noire. Memoires de la Societe Geologique de France, 2eme serie 1(8), 337-373.

Linnaeus, C. (1758); Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tenth edition. Laurentii Salvii, Holmiae (Stockholm), 824 p.

Lockley, M., Hunt, A., Meyer, C. (1994); Vertebrate tracks and the ichnofacies concept; implications for palaeoecology and palichnostratigraphy. In; S. K. Donovan (ed.), The Paleobiology of Trace Fossils. John Wiley and Sons, Chichester, pp. 241-268.

Lockley, M.G., Harris, J. (2010): On the trail of early birds: a review of the fossil footprint records of avian morphological and behavioral evolution. In; P.K. Ulrich, J. H. Willett (eds.), Trends in ornithology research. Nova Publishers, Hauppauge, NY, pp. 1-63.

Lozouet, P, Maestrati, P. (1986); Le Strombus granulatus Swainson, 1822 : une relique mesogeenne. Xenophora, 31, 11-15.

Lundgren, B. (1891); Studier ofver fossilforande losa block. Geologiska Foreningens i Stockholm Forhandlingar 13(2), 111-121.

MacEachern, J.A., Zaitlin, B.A., Pemberton, S.G. (1999); A sharp-based sandstone of the Vinking Formation, Joffre Field, Alberta, Canada; criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research 69, 876-892.

MacEachern, J.A., Bann, K.L., Pemberton, S.G. and Gingras, M.K. (2007); The Ichnofacies paradigm; High-resolution paleoenvironmental interpretation of the rock record. In; J.A. MacEachern, K.L. Bann, M.K. Gingras, S.G. Pemberton (eds.), AppliedIchnology. Society for Sedimentary Geology Short Course Notes, pp. 27-64.

Malubian, N., Olivero, E.B. (2005): Shallow-water lat middle Eocene crinoids from Tierra del Fuego: a new southern record of a retrograde community structure. ScientiaMarina 69 (Suppl. 2), 349-353.

Mangin, J.Ph. (1959-60): Le nummulitique sud-pyreneen a l'ouest de l'Aragon. Pirineos 51-58, 1-656.

Marty, D., Strasser, A., Meyer, C.A. (2009): Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos 16, 127-142. doi:10.1080/10420940802471027.

Mathelin, J.C., Sztrakos, K. (1993): L'Eocene de Biarritz (Pyrenees-Atlantiques, SW France). Stratigraphie et paleoenvironnement. Monographie des foraminiferes. Cahiers de Micropaleontologie (nouvelle serie) 8(1-2), 5-85.

Mayer-Eymar, K. (1876): Systematisches Verzeichniss der Versteinerungen des Parisian der Umgegend von Einsiedeln. Caesar Schmidt, 100 p., 4 pls.

Melchor, R.N., Bedatou, E., Valais, S. de, Genise, J.F. (2006). Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an Early Mesozoic ephemeral fluvio-lacustrine system from Argentina: implications for the Scoyenia ichnofacies: Palaeogeography, Palaeoclimatology, Palaeoecology 239, 253-285. doi:10.1016/j. palaeo.2006.01.011.

Merle, D. (2008): Le Lutetien : un exemple de point-chaud de la paleobiodiversite. In: D. Merle (ed.), Stratotype Lutetien. Collection Patrimoine geologique. Biotope, Meze; Museum national d'Histoire naturelle, Paris; BRGM, Orleans, pp. 174-181.

Merle, D., de Franceschi, D., Masure, E., Chaix, C., Roman, J., Dutheil, D., Lapierre, H., Gaudant, J., de Lapparent, F., Jouve, S., Rage, J.-C., Gheerbrant, E., Carriol, R.-P., Guernet, C., Pacaud, J.-M., Moissette, P. (2008): Le contenu paleontologique du Lutetien. In: D. Merle (ed.), Stratotype Lutetien. Collection Patrimoine geologique. Biotope, Meze; Museum national d'Histoire naturelle, Paris; BRGM, Orleans, Cdrom, 105 p.

Merle, D., (2009): Les grandes lignes de la biodiversite. Le milieu marin. Geochronique 109 (dossier Lutetien), 20-22.

Merle, D., Baut J.-P., Ginsburg, L., Sagne, S., Hervet, S., Carriol, R.-P., Venec-Peyre, M-T., Blanc-Valleron, M.-T., Mourer-Chauvire, C., Arambol, D., Viette, P (2002): Decouverte d'une faune de vertebres dans l'Oligocene inferieur de Vayres-sur-Essonne (bassin de Paris, France) : biodiversite et paleoenvironnement. Comptes Rendus Palevol 1, 111-116. doi:10.1016/S1631-0683(02)00018-0.

Michelin, J. L. H. (1842): Iconographie zoophytologique. Description par localites et terrains des polypiers fossiles de France, et pays environnants. P. Bertrand Eds., Paris, 348 p.

Miller, J.S. (1821): A natural history of the Crinoidea or lily-shaped animals, with observations on the genera Asteria, Euryale, Comatula, and Marsupites. C. Frost, Bristol, 150 p.

Montfort, D.P. de (1808): Conchyliologie systematique et classification methodique des coquilles. F. Schoell, Paris, 410 p.

Murray, J.W. (2006): Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, 426 p.

Murray, J. W., Alve, E., Jones, B. W. (2011): A new look at modern agglutinated benthic foraminiferal morphogroups: their value in palaeoecological interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 229-241. doi:10.1016/j.palaeo.2011.06.006.

Mutti, E., Tinterri, R., Benevelli, G., Di Biase, D., Cavanna, G. (2003): Deltaic, mixed and turbidite sedimentation of ancient foreland basin. Marine and Petroleum Geology 20, 733-755. doi:10.1016/j.marpetgeo.2003.09.001.

Mutti, E., Tinterri, R., Di Biase, D., Fava, L., Mavilla, N., Angella, S., Calabrese, L. (2000): Delta-front facies associations of ancient flood-dominated fluvio-deltaic systems. Revista de la Sociedad Geologica de Espana 13, 165-190.

Oms, O., Dinares-Turell, J., Remacha, E. (2003): Magnetic stratigraphy from deep clastic turbidites: an example from the Eocene Hecho Group (Southern Pyrenees). Studia Geophysica et Geodaetica 47, 275-288.

Oppenheim P. (1901): Uber einige alttertiare Faunen der Osterreichisch-Ungarischen Monarchie. Beitrage zurPalaontologie und Geologie Osterreich-Ungarns und des Orients 13, 145-277.

Orbigny, A. d' (1826): Tableau methodique de la classe des Cephalopodes. Annales des Sciences Naturelles 7, 245-314.

Orbigny, A. d' (1850): Prodrome de Paleontologie stratigraphique universelle des animaux mollusques et rayonnes, vol. 2. Masson, Paris, 427 p.

Payros, A., Astibia, H., Cearreta, A., Pereda-Suberbiola, X., Murelaga, X., Badiola, A. (2000): The Upper Eocene South Pyrenean Coastal Deposits (Liedena Sandstone, Navarre): Sedimentary Facies, Benthic Foraminifera and Avian Ichnology. Facies 42, 107-132. doi: 10.1007/ BF02562569.

Payros, A., Pujalte, V., Orue-Etxebarria, X., Baceta, J.I. (1997): Un sistema turbiditico Bartoniense de tipo "channel-levee" en la Cuenca de Pamplona: implicaciones tectonicas y paleogeograficas. Geogaceta 22, 145-148.

Payros, A., Pujalte, V, Tosquella, J., Orue-Etxebarria, X. (2010): The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): an analogue of future shallow-marine carbonate systems? Sedimentary Geology 228, 184-204. doi:10.1016/j. sedgeo.2010.04.010.

Pilleri, G., Biosca, J., Via, L. (1989): The Tertiary Sirenia of Catalonia. Brain Anatomy Institute, University of Berne, Ostermundigen, Berne, 98 p.

Pisera, A., Busquets, P. (2002): Eocene siliceous sponges from the Ebro Basin (Catalonia, Spain). Les eponges siliceuses de l'Eocene du Basin de l'Ebre (Catalogne, Espagne). Geobios 35, 321-346. doi:10.1016/ S0016-6995(02)00030-X.

Pisera, A., Cachao, M., Marques de Silva, C. (2006): Siliceous sponge spicules from the Miocene Mem Moniz marls (Portugal) and their environmental significance. Rivista Italiana di Paleontologia e Stratigrafia 112 (2), 287-299. doi: http://dx.doi.org/10.13130/20394942/6342.

Plaziat, J. C. (1981): Late Cretaceous to Late Eocene paleogeographic evolution of southwest Europe. Palaeogeography, Palaeoclimatolology, Palaeoecology 36, 263-320. doi:10.1016/0031-0182(81)90110-3.

Pomel, A. (1872): Paleontologie, ou Description des animaux fossiles de la province d'Oran, avec planches lithographiees. 5e fascicule. Spongiaires. A.D. Perrier, Oran, 256 p.

Puigdefabregas, C. (1975): La sedimentacion molasica en la cuenca de Jaca. Pirineos 104, 1-188.

Pujalte, V, Baceta, J.I., Payros, A. (2002): Tertiary: Western Pyrenees and Basque-Cantabrian region. In: W. Gibbons, T. Moreno (eds.), The Geology of Spain. Geological Society of London, London, pp. 293-301.

Quaggiotto, E., Mellini, A. (2008): Catalogo Aggiornato Dei Molluschi Fossili Eocenici Di San Giovanni Ilarione (Verona--Italia Settentrionale) Prima Parte: Mollusca, Gastropoda. Studi e Ricerche 15, 41-58.

Raaf, J. F. M. de, Beets, C., Kortenbout van der Sluijs, G. (1965): Lower Oligocene bird-tracks from northern Spain. Nature 207, 146-148.

Renema, W., Bellwood, D.R., Braga, J.C., Bromfield, K., Hall R., Johnson, K.G., Lunt, P., Meyer, C. P., McMonagle, L., Morley, R. J., O'dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J., Pandolfi, J. M. (2008): Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654-658. doi:10.1126/science.1155674.

Rieth, A. (1932): Neue Funde spongeliomorpher Fucoiden aus dem Jura Schwabens. Geologische und Palaontologische Abhandlungen N.F. 19, 257-294.

Rodriguez-Tovar, F.J., Uchman, A., Payros, A., Orue-Etxebarria, X., Apellaniz, E., Molina, E. (2010): Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 285, 50-65. doi:10.1016/j.palaeo.2009.10.022.

Rouault, A. (1850): Description des fossiles du terrain eocene des environs de Pau. Memoires de la Societe geologique de France, 2 eme serie, 3 (2), 457-502.

Roux, M. (1978): Les Crinoi'des pedoncules (Echinodermes) du genre Conocrinus provenant de l'Eocene des environs de Biarritz. Comptes Rendus de l'Academie des sciences, serie D 286, 265-268.

Roux, M., Cahuzac, B., Sztrakos, K. (2006): Les paleoenvironnements eocenes a crinoi'des pedoncules des mames de Miretrain (Angoume, SW France): interpretations paleobathymetriques. Comptes Rendus Geoscience 338(4), 262-271. doi:10.1016/j.crte.2006.01.001.

Ruiz de Gaona, M. (1947): El Bartoniense de la Cuenca de Pamplona. Notas y Comunicaciones del Instituto Geologico y Minero de Espana 17, 155-165.

Ruiz de Gaona, M., Colom, G. (1950): Estudios sobre las sinecias de los foraminiferos eocenicos de la vertiente meridional del Pirineo (Cataluna-Vizcaya). Estudios Geologicos 12, 293-434.

Savi, P., Meneghini, G.G. (1850): Osservazioni stratigrafiche e paleontologische concernati la geologia della Toscana e dei paesi limitrofi. Appendix. In: R. I. Murchison (ed.), Memoria sulla struttura geologica delle Alpi, degli Apennini e dei Carpazi. Stamperia granducale, Firenze, pp. 246-528.

Schaub, H. (1962): Uber einige stratigraphische wichtige Nummuliten-Arten. Eclogae Geologicae Helvetiae 55(2), 529-551.

Schaub, H. (1981): Nummulites et Assilines de la Tethys paleogene. Taxinomie, Phylogenese et Biostratigraphie. Memoires Suisses de Paleontologie 104, 1-236.

Schafhautl, K. E. von (1851): Geognostische Untersuchungen des sudbayerischen Alpengebirges. Literarisch-artistische Anstalt, Munich, 206 p.

Schieber, J. (1999): Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios 14, 3-12. doi:10.2307/3515357.

Schieber, J. (2002): Sedimentary pyrite: A window into the microbial past. Geology 30(6), 531-534. doi:10.1130/0091-7613(2002)030<0531:SP AWIT>2.0.CO;2.

Schmidt, O. (1870): Grundzuge einer Spongien-Fauna des atlantischen Gebietes. Wilhelm Engelmann, Leipzig, iii-iv + 88 p.

Seilacher, A. (1974): Flysch trace fossils: evolution of behavioural diversity in the deep sea. Neues Jahrbuch fur Geologie undPalaontologie Monatshefte 1974, 223-245.

Seilacher, A. (2007): Trace Fossil Analysis. Springer, Berlin, Heidelberg, 226 p.

Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Fernandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y, Tosquella, J., Zakrevskaya, E. (1998): Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societe geologique de France 169, 281-299.

Siebold, K.T. von (1848). Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. In: C.T. von Siebold, F.H. Stannius (eds.), Lehrbuch der vergleichenden Anatomie. Verlag von Veit and Comp., Berlin.

Silvestri, A. (1928): Di alcune facies Litho-Paleontologiche del Terziario di Derna, nella Cirenaica. Bolletino della Societa Geologica Italiana 37, 109-113.

Solias, W. J. (1875): Sponges. In: Encyclopedia Britannica, 9th ed., London, 451 p.

Sowerby, G. B. Jr. (1841): Conchological illustrations. Sowerby, London.

Sztrakos K., Gely J. P, Blondeau A., Muller, C. (1998): L'Eocene du Bassin sud-aquitain : lithostratigraphie, biostratigraphie et analyse sequentielle. Geologie de la France 4, 57-105.

Tabachnik, K. R. (1991): Adaptation of the hexactinellid sponges to deep-sea life. In: J. Reitner, H. Keupp (eds.), Fossil and Recent sponges. Springer Verlag, Berlin, pp. 378-386.

Taberner, C., Marshall, J. D., Hendry, J. P. Pierre C., Thirlwall, M. F. (2002): Celestite formation, bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada, NE Spain). Sedimentology 49, 171-190. doi:10.1046/j.13653091.2002.00437.x.

Taberner, C., Dinares-Turell, J., Gimenez, J., Docherty, C. (1999): Basin infill architecture and evolution from magnetostratigraphic cross-basin correlations in the southeastern Pyrenean foreland basin. Geological Society of America Bulletin 111(8), 1155-1174. doi:10.1130/00167606(1999)111<1155:BIAAEF>2.3.CO;2.

Torell, O. M. (1870): Petrifacta Suecana Formationis Cambricae. Lunds Universitet, Arsskrift. Lund 6: 1-14.

Uchman, A. (1995): Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15, 3-115.

Uchman, A. (1999): Ichnology of the Rhenodanubian Flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria 25, 65-171.

Uchman, A. (2001): Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria 28, 3-41.

Uchman, A. (2009): The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 107-119. doi:10.1016/j.palaeo.2009.03.003.

Uchman, A., Wetzel, A. (2011): Deep-sea ichnology: the relationships between depositional environment and endobenthic organisms. In: H. Huneke, T. Mulder (eds.), Deep-sea Sediments. Developments in Sedimentology 63, Elsevier, Amsterdam, pp. 517-556.

Vacelet, J. (1988): Indications de profondeur donnees par les Spongiaires dans les milieux benthiques actuels. Geologie Mediterraneenne 15, 13-26.

Villalta, F. de (1956): Los moluscos fosiles del Eoceno pirenaico. Boletin del Instituto Geologico y Minero de Espana 67, 119-235.

Wetzel, A., Uchman, A. (2012): Hemipelagic and pelagic basin plains. In: D. Knaust, R.G. Bromley (eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64, Elsevier, Amsterdam, pp. 673-702.

Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., Popov, L. (1996): A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society B 351, 1171-1193.

Appendix I

Ichnotaxa and macrofossil taxa recorded so far in the Eocene of the Pamplona Basin and surrounding areas (Navarre, western Pyrenees)

Ezkaba Sandstone Formation

Ichnotaxa

Belorhaphe isp. Chondrites isp. Helminthoraphe flexuosa Uchman, 1995 Multina minima (Uchman, 2001) Nereites irregularis (Schafhautl, 1851) Ophiomorpha annulata (Ksiazkiewicz, 1977) Ophiomorpha rudis (Ksiazkiewicz, 1977) Paleodictyon strozzii Meneghini in Savi and Meneghini, 1850 Phymatoderma isp. Pilichnus dichotomus Uchman, 1999 Planolites isp. Scolizia strozzii (Savi and Meneghini, 1850) Scolizia vertebralis Ksiazkiewicz, 1977 ?Squamodictyon isp. Taenidium crassum Bromley, Ekdale and Richter, 1999

Pamplona Marl Formation

Ichnotaxa

Chondrites isp. Ophiomorpha isp. Thalassinoides suevicus (Rieth, 1932)

Taxa

Echinodermata Klein, 1734 Crinoidea Miller, 1821 Isselicrinus sp.

Chordata Haeckel, 1874 Mammalia Linnaeus, 1758 Dugongidae indet.

Ardanatz Sandstone-Ilundain Marl formations

Ichnotaxa

Halopoa imbricate Torell, 1870 Ophiomorpha isp. Ophiomorpha isp. (aff. O. nodosa-O. irregulaire) Ophiomorpha nodosa Lundgren, 1891 Planolites isp. Spongeliomorpha cf. oraviense Spongeliomorpha cf. sicula Spreite burrows (IRhizocorallium) Thalassinoides isp.

Taxa

Rhizaria Cavalier-Smith, 2002 Foraminifera d'Orbigny, 1826 Assilina schwageri (Silvestri, 1928) Heterostegina reticulata cf. multifida (Bieda, 1950) Nummulites cf. beaumonti d'Archiac and Haime, 1853 Nummulites aff. biedai Schaub, 1962 Nummulites aff. cyrenaicus Schaub, 1981 Nummulites cf. perforatus (de Montfort, 1808) Nummulites ptukhiani Kacharava, 1969 Nummulites praegarnieri Schaub, 1981

Porifera Grant, 1836 Hexactinellida Schmidt, 1870 Laocoetis samueli (d'Archiac, 1850) cf. Rhizocheton robustus Pisera and Busquets, 2002 Guettardiscyphia thiolati (d'Archiac, 1846) and/or Pleuroguettardia iberica Pisera and Busquets, 2002

Demospongia Sollas, 1875 Cf. Phlyctia expansa Pomel, 1872 Lithistid indet. 1 Lithistid indet. 2

Coelenterata Frey and Leuckart, 1847 Anthozoa Ehrenberg, 1834 Stylocoenia taurinensis (Michelin, 1842) Astrocoenia octopartita (Oppenheim, 1901) Ceratotrochus bodellei Barta-Calmus, 1973 Placosmiliopsis bilobatus (d'Achiardi, 1868) Desmophyllum castellolense Alvarez-Perez, 1997

Bryozoa Ehrenberg, 1831 Stenolaemata Borg, 1926 Lichenoporidae indet.

Gymnolaemata Allman, 1856 Cupuladriidae indet.

Brachiopoda Dumeril, 1806 Rhynchonellata Williams, Carlson, Brunton, Holmer and Popov, 1996 Argyrotheca michelottina (Davidson, 1870) ?Gryphus sp. Terebratulina tenuistriata (Leymerie, 1846)

Annelida Lamarck, 1809 Polychaeta Grube, 1850 Rotularia spirulaea (Lamarck, 1818) Polychaeta indet. 1 Polychaeta indet. 2

Mollusca Linnaeus, 1758 Gastropoda Cuvier, 1795 Leptomariaperesii (d'Orbigny, 1850) Ptychocerithium johannae (Tournouer in Bouille, 1873) Diastoma costellatum (Lamarck, 1804) Moniquia sp. Haustator altavillensis (Cossmann and Pissarro, 1902) Haustator cf. imbricatarius conoideus (Sowerby J., 1814) Sigmesalia sp. Ampullinidae indet. ? Globularia sp. Sassia sp. Cirsotrema (.Elegantiscala) cf. bouillei (Tournouer in Bouille, 1873) Epitonium sp. Amaea sp. Niso sp. Metula (Celatoconus) sp. Clavilithes (Clavellofusus) cf. parisiensis Mayer-Eymar, 1876 Muricidae indet. Athleta (Volutospina) sp. Conus sp. Nihonia aff. transversaria (Lamarck, 1804) Mathilda sp.

Bivalvia Linnaeus, 1758 Glycymeris jacquoti (Tournouer in Bouille, 1873) Pycnodonte brongniarti (Bronn, 1831) Hyotissa martinsi (d'Archiac, 1850) Ostreiodea indet. Chlamys cf. biarritzensis (d'Archiac, 1846) Chlamys sp. Spondylus cf. bifrons Munster in Goldfuss, 1840 Spondylus cf. caldesensis Carez 1881 Spondylus planicostatus d'Archiac, 1850 Spondylus sp. cf. Spondylus cisalpinus Brongniart, 1823--S. nysti d'Archiac, 1846 Spondylus sp. Dimya pamplonensis (Carez, 1881) Venericardia junctinova Cossmann, 1897 Chama pellati Boussac, 1911 Chama granulosa d'Archiac, 1850

Scaphopoda Bronn, 1862 Dentalium sp.

Cephalopoda Cuvier, 1797 Nautiloidea indet.

Arthropoda von Siebold, 1848 Maxillopoda Dahl, 1956 Arcoscalpellum sp.

Malacostraca Latreille, 1802 Decapoda indet.

Echinodermata Bruguiere, 1791 (ex Klein, 1734) Crinoidea Miller, 1821 Crinoidea indet.

Echinoidea Leske, 1778 Asteroidea indet. Echinoidea indet.

Chordata Haeckel, 1874 Chondrichthyes Huxley, 1880 Hexanchus agassizi Cappetta, 1976 Macrorhizodus praecursor (Leriche, 1905) Woellsteinia kozlovi Adnet, 2006 Anomotodon sp.

Actinopterygii Klein, 1885 Enchodus sp. Chaetodipterus sp.

Reptilia Laurenti, 1768 Testudines indet.

Mammalia Linnaeus, 1758 Dugongidae indet.

Gendulain Formation (Liedena Sandstone Member)

Ichnotaxa

Cochlichnus isp. Palaeophycus tubularis Hall, 1847 Vertical tubes Gruipeda isp. Koreanaornis isp. cf. Koreanaornis Leptoptilostipus pyrenaicus Payros, Astibia, Cearreta, Pereda-Suberbiola, Murelaga and Badiola, 2000 cf. Leptoptilostipus

H. Astibia (1) *, A. Payros (1), S. Ortiz (2), J. Elorza (3), G. Alvarez-Perez (4), A. Badiola (1), N. Bardet (5), A. Berreteaga (1), M.A. Bitner (6), S. Calzada (7), J.C. Corral (8), I. Diaz-Martinez (9), D. Merle (5), J.-M. Pacaud (5), X. Pereda-Suberbiola (1), A. Pisera (6), FJ. Rodriguez-Tovar (10), J. Tosquella (11)

(1) Departamento de Estratigrafia y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado de correos 644, 48080 Bilbao, Spain.

(2) PetroStrat Ltd, Tan-y-Graig, Parc Caer Seion, Conwy, Wales, LL32 8FA, UK.

(3) Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado de correos 644, 48080 Bilbao, Spain.

(4) Departament dEstratigrafia, Paleontologia i Geociencies Marines. Universitat de Barcelona. Marti i Franques s/n. 08028 Barcelona, Spain.

(5) Centre de recherche sur la paleobiodiversite et les paleoenvironnements (CR2P), UMR 7207 du CNRS, Departement Histoire de la Terre, Museum National d'Histoire Naturelle, CP 38, 57rue Cuvier, 75005Paris, France.

(6) Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warsaw, Poland.

(7) Museu Geologic del Seminari de Barcelona. Diputacio 231. 08007Barcelona, Spain.

(8) Arabako Natur Zientzien Museoa/Museo de Ciencias Naturales de Alava, Siervas de Jesus, 01001 Vitoria-Gasteiz, Spain.

(9) CONICET-Instituto de Investigacion en Paleobiologia y Geologia, Universidad Nacional de Rio Negro, General Roca 1242, 8332 General Roca, Argentina.

(10) Departamento de Estratigrafia y Paleontologia, Facultad de Ciencias, Universidad de Granada, Campus Universitario de Fuentenueva s/n, 18071 Granada, Spain.

(11) Departamento de Geodinamica y Paleontologia, Facultad de Ciencias Experimentales, Campus del Carmen, Universidad de Huelva, Avenida de las Fuerzas Armadas 21071 Huelva, Spain.

e-mail addresses: humberto.astibia@ ehu.eus (*corresponding author); a.payros@ehu.eus (A.P.); silvia.ortiz@petrostrat.com (S.O.); josejavier. elorza@ehu.es (J.E.); galvarez@xtec.cat (G.A-P); ainara.badiola@ehu.eus (A.B.); bardet@mnhn.fr (N.B.); ana.berreteaga@ehu.eus (A.B.); bitner@twarda.pan.pl (M.A.B.); almeracomas@hotmail.com (S.C.); jc.corral@arrakis.es (J.C.C.); inaportu@hotmail.com (I.D-M.); dmerle@mnhn. fr (D.M.); pacaud@mnhn.fr (J-M.P); xabier.pereda@ehu.eus (X.P-S.); apis@twarda.pan.pl (A.P.); fjrtovar@ugr.es (FJ.R-T.); josep@uhu.es (J.T.)

Received: 22 December 2015 / Accepted: 13 March 2016 / Available online: 30 April 2016
Fig. 7.--Lithostratigraphic units of the Pamplona Basin (Navarre,

western Pyrenees) and vertical distribution of trace fossils. Solid
dots indicate the record of different ichnotaxa in each outcrop (large
dots indicate special abundance).

Lithological   Outcrops    Belorhaphe   Chondrites   Helminthorhaphe
units                         isp.         isp.         flexuosa

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,                      *
Fm.              Egues

Ezkaba         Elkarte,        *            *               *
Fm.             others

Lithological   Outcrops    Multina    Nereites     Ophiomorpha
units                      minima    irregularis    annulata

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,       *           *             *
Fm.             others

Lithological   Outcrops    Ophiomorpha    Paleodictyon   Phymatoderma
units                         rudis         strozzii         isp.

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,         **             **             *
Fm.             others

Lithological   Outcrops    Pilichnus    Planolites   Scolizia
units                      dichotomus      isp.      strozzii

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,                     *
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,        *            *           *

Fm.             others

Lithological   Outcrops     Scolizia     ?Squamodictyon    Taenidium
units                      vertebralis        isp.        cf. crassum

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,         *              *               *
Fm.             others

Lithological   Outcrops    Thalassinoides    Holopoa    Ophiomorpha
units                         suevicus      imbricata     nodosa

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,                         *
Fm.            Badoztain

Ardanatz       Ardanatz                         *           **
Sandstone

Pamplona         Grez,           *
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

Lithological   Outcrops    Ophiomorpha   Ophiomorpha   Spongeliomorpha
units                        isp. 1        isp. 2       cf. oraviense

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,         *                             *
Fm.            Badoztain

Ardanatz       Ardanatz                      **              **
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

Lithological   Outcrops    Spongeliomorpha   Spreite   Thalassinoides
units                        cf. sicula      burrow         isp.
                                             indet.

Liedena        Zabaltza,
Sandstone       Ledea,
                others

Ilundain        Zolina,           *             *
Fm.            Badoztain

Ardanatz       Ardanatz           *                          *
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

Lithological   Outcrops    Cochlichnus   Paleophycus   Vertical
units                         isp.        tubularis     tubes

Liedena        Zabaltza,        *             *           *
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

Lithological   Outcrops    Gruipeda   Koreanaornis       Cf.
units                        isp.         isp.       Koreanaornis

Liedena        Zabaltza,      *            **             *
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

Lithological   Outcrops    Leptoptilostipus         Cf.
units                         pyrenaicus      Leptoptilostipus

Liedena        Zabaltza,          **                 *
Sandstone       Ledea,
                others

Ilundain        Zolina,
Fm.            Badoztain

Ardanatz       Ardanatz
Sandstone

Pamplona         Grez,
Fm.              Egues

Ezkaba         Elkarte,
Fm.             others

* = Solid dots indicate the record of different taxa in each outcrop

** = Large dots indicate special abundance

Fig. 8.--Lithostratigraphic units of the Pamplona Basin (Navarre,
western Pyrenees) and vertical distribution of fossil invertebrates
(nonmolluscs). Solid dots indicate the record of different taxa in
each outcrop (large dots indicate special abundance).

Lithological   Outcrops     Laocoetis   Cf. Rhizocheton
units                        samueli       robustus

Ilundain      Itzagaondoa
Fm.
               Arraitza         *             **

Ardanatz       Ardanatz        **             **
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Guettardiscyphia.   Cf. Fhlyctia
units                          thiolati--         expansa
                               P. iberica

Ilundain      Itzagaondoa
Fm.
               Arraitza                              **

Ardanatz       Ardanatz            **                *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Lithistid   Lithistid   Stylocoenia
units                       indet. 1    indet. 2    taurinensis

Ilundain      Itzagaondoa
Fm.
               Arraitza         *          **

Ardanatz       Ardanatz                                  *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Astrocoenia   Ceratotrochus

units                       octopartita     bodellei

Ilundain      Itzagaondoa                       *
Fm.
               Arraitza

Ardanatz       Ardanatz          *              *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Placosmiliopsis   Desmophyllum
units                          bilobatus      castellolense

Ilundain      Itzagaondoa
Fm.
               Arraitza

Ardanatz       Ardanatz            *                *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Lichenoporidae   Cupuladriidae
units                           indet.          indet.

Ilundain      Itzagaondoa                         **
Fm.
               Arraitza           *

Ardanatz       Ardanatz           *                *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Argyrotheca    ?Gryphus   Terebratulina
units                       michelottina     sp.      tenuistriata

Ilundain      Itzagaondoa        *
Fm.
               Arraitza                       *            **

Ardanatz       Ardanatz                                    **
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Rotularia   Arcoscalpellum   Isselicrinus
units                       spirulaea        sp.             sp.

Ilundain      Itzagaondoa      **
Fm.
               Arraitza         *             *

Ardanatz       Ardanatz        **
Sandstone

Pamplona       Uztarrotz                                      **
Fm.

Lithological   Outcrops     Crinoidea   Asteroidea   Echinoidea
units                        indet.       indet.       indet.

Ilundain      Itzagaondoa                   *            *
Fm.
               Arraitza                     *            *

Ardanatz       Ardanatz         *           *            *
Sandstone

Pamplona       Uztarrotz                                 *
Fm.

Lithological   Outcrops     Hexanchus   Macrorhizodus   Woellsteinia
units                       agassizi     praecursor       kozlovi

Ilundain      Itzagaondoa
Fm.
               Arraitza         *             *              *

Ardanatz       Ardanatz                       *
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Anomotodon   Enchodus   Chaetodipterus
units                          sp.         sp.           sp.

Ilundain      Itzagaondoa
Fm.
               Arraitza         *           *             *

Ardanatz       Ardanatz
Sandstone

Pamplona       Uztarrotz
Fm.

Lithological   Outcrops     Testudines   Dugongidae
units                         indet.       indet.

Ilundain      Itzagaondoa

Fm.
               Arraitza

Ardanatz       Ardanatz         *            *
Sandstone

Pamplona       Uztarrotz                     *
Fm.

* = Solid dots indicate the record of different taxa in each outcrop

** = Large dots indicate special abundance

Fig. 9.--Lithostratigraphic units of the Pamplona Basin (Navarre,
western Pyrenees) and vertical distribution of fossil molluscs. Solid
dots indicate the record of different taxa in each outcrop (large dots
indicate special abundance).

Lithological    Outcrops     Leptomaria   Ptychocerithium    Diastoma
units                         peresii        johannae      costellatum

Ilundain Fm.   Itzagaondoa                       *              **

                Arraitza

Ardanatz        Ardanatz         *              **               *
Sandstone

Lithological    Outcrops     Moniquia     Haustator
units                          sp.      altavillensis

Ilundain Fm.   Itzagaondoa      *             *

                Arraitza

Ardanatz        Ardanatz                      *
Sandstone

Lithological    Outcrops         Haustator       Sigmesalia
units                        cf. imbricatarius      sp.
                                 conoideus

Ilundain Fm.   Itzagaondoa          **               *

                Arraitza

Ardanatz        Ardanatz             *               *
Sandstone

Lithological    Outcrops     Ampullinidae   ?Globularia   Sassia
units                           indet.          sp.        sp.

Ilundain Fm.   Itzagaondoa                                  *

                Arraitza

Ardanatz        Ardanatz          *              *
Sandstone

Lithological    Outcrops       Cirsotrema      Amaea   Niso
units                        (Elegantiscala)    sp.    sp.
                              cf. bouillei

Ilundain Fm.   Itzagaondoa                              *

                Arraitza

Ardanatz        Ardanatz            *            *
Sandstone

Lithological    Outcrops        Metula         Clavilithes
units                        (Celatoconus)   (Clavellofusus)
                                  sp.        cf. parisiensis

Ilundain Fm.   Itzagaondoa         *                *

                Arraitza

Ardanatz        Ardanatz                            *
Sandstone

Lithological    Outcrops     Muricidae   Athleta   Conidae
units                         indet.       sp.     indet.

Ilundain Fm.   Itzagaondoa       *          *         *

                Arraitza

Ardanatz        Ardanatz         *          *         *

Sandstone

Lithological    Outcrops        Nihonia      Mathilda   Glycymeris
units                            aff.          sp.       jacquoti
                             Transversaria

Ilundain Fm.   Itzagaondoa                      *           **

                Arraitza

Ardanatz        Ardanatz           *
Sandstone

Lithological    Outcrops     Pycnodonte    Hyotissa   Ostreoidea
units                        brongniarti   martinsi     indet.

Ilundain Fm.   Itzagaondoa       **                       *

                Arraitza                                  *

Ardanatz        Ardanatz                      *           *
Sandstone

Lithological    Outcrops        Chlamys      Chlamys   Spondylus
units                             cf.          sp.        cf.
                             biarritzensis              bifrons

Ilundain Fm.   Itzagaondoa                      *

                Arraitza                                   *

Ardanatz        Ardanatz           *            *          *
Sandstone

Lithological    Outcrops      Spondylus     Spondylus       Spondylus
units                            cf.        sp. cf. S.   planicostatus
                             caldesensis   cisalpinus--
                                             S. nysty

Ilundain Fm.   Itzagaondoa                      **              *

                Arraitza

Ardanatz        Ardanatz         **
Sandstone

Lithological    Outcrops     Spondylus      Dimya       Venericardia
units                           sp.      pamplonensis    junctinova

Ilundain Fm.   Itzagaondoa                                   **

                Arraitza                      *

Ardanatz        Ardanatz         *            *
Sandstone

Lithological    Outcrops      Chama      Chama     Dentalium
units                        pellati   granulose      sp.

Ilundain Fm.   Itzagaondoa     **                     **

                Arraitza

Ardanatz        Ardanatz        *          *          **
Sandstone

Lithological    Outcrops     Nautiloidea
units                          indet.

Ilundain Fm.   Itzagaondoa

                Arraitza

Ardanatz        Ardanatz          *
Sandstone

* = Solid dots indicate the record of different taxa in each outcrop

** = Large dots indicate special abundance
COPYRIGHT 2016 Universidad Complutense de Madrid
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2016 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:texto en ingles
Author:Astibia, H.; Payros, A.; Ortiz, S.; Elorza, J.; Alvarez-Perez, G.; Badiola, A.; Bardet, N.; Berretea
Publication:Journal of Iberian Geology
Date:Jan 1, 2016
Words:14431
Previous Article:First Triassic tetrapod (Sauropterygia, Nothosauridae) from Castilla y Leon: evidence of an unknown taxon for the Spanish record.
Next Article:Revisiting the late Jurassic-Early Cretaceous of the NW South Iberian Basin: new ages and sedimentary environments.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters