Printer Friendly

Forensic analysis branch.

The Forensic Analysis Branch (FAB) is the destination for most items of evidence submitted to the Laboratory for analysis. The Evidence Control Unit manages the flow of evidence through the Laboratory, tracking items as they move from unit to unit and providing status reports to contributors and Laboratory management along the way. A single item of evidence may be subject to many examinations in several units. For example, depending on the circumstances surrounding the case, a handwritten letter and the envelope it was mailed in would be examined in Questioned Documents, Trace Evidence, DNA, Chemistry, and Latent Prints. If written in code, the letter would also be examined by the Cryptanalysis and Racketeering Records Unit.

The variety and sheer number of examinations required for each item of evidence keep the FAB evidence-examining units extremely busy. In addition to examining evidence and issuing detailed, comprehensive reports on their findings, they also testify in court, provide training, conduct research, publish in and serve as referees for peer-reviewed journals, and remain proficient and knowledgeable in their areas of expertise.

The FAB's Quality Assurance and Training Unit (QATU) assists the caseworking units in their mission by ensuring compliance with quality-control guidelines, proficiency-testing protocols, and accreditation-board requirements. The QATU also manages the Specialized Forensic Training Program, facilitates meetings for Laboratory-sponsored scientific working groups, and sponsors the annual Crime Laboratory Development Symposium.

The Forensic Analysis Branch is divided into two sections: Forensic Analysis, which encompasses the Cryptanalysis and Racketeering Records Unit, the Firearms-Toolmarks Unit, the Latent Print Operations Unit, the Latent Print Support Unit, and the Questioned Documents Unit; and Scientific Analysis, which contains the Chemistry Unit, the Combined DNA Index System Unit, the DNA Analysis Unit-1, the DNA Analysis Unit-2, and the Trace Evidence Unit.

Evidence Control Unit

The Evidence Control Unit (ECU) serves a fundamental role in supporting FBI operations by managing and tracking all evidence collected from crime scenes and sent to the FBI Laboratory for forensic examination.

The FBI Laboratory receives thousands of cases annually. Each case received has the potential of including from one to several thousand items of evidence. The ECU provides a central base for receiving and managing this evidence and is essential to communicating information to law enforcement contributors. ECU personnel establish and maintain liaison with contributors to acknowledge receipt of the evidence and to discuss pertinent case issues, as well as to provide status checks and advice and guidance in areas such as packaging and transporting evidence.

At the field level, the ECU provides advice and guidance to evidence-handling personnel through its Field Evidence Program. Nationwide, FBI field offices collect and store thousands of items of evidence from crime scene investigations. To help manage this function, evidence items are bar-coded and recorded using handheld inventory scanners. In 2007 the ECU purchased new handheld evidence scanners with updated technology for all FBI field offices to more effectively and efficiently manage the thousands of items of evidence that are collected, tracked, and stored. Ensuring efficiency and accountability in the proper handling, storage, and tracking of evidence is essential to FBI evidence collection and ultimate prosecution.

The ECU's role in the management of cases submitted to the FBI Laboratory as well as in providing guidance and direction at the field level through the Field Evidence Program ensures accountability in the administration of evidence and builds positive working relationships with all contributors of evidence to the FBI Laboratory.

Quality Assurance and Training Unit

The Quality Assurance and Training Unit provides numerous services to the FBI Laboratory and the forensic community. Quality Assurance (QA) staff members ensure that the Laboratory maintains its American Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/ LAB) accreditation by monitoring the caseworking units for compliance with the accrediting body's requirements. The Training staff organizes specialized forensic classes for law enforcement and crime laboratory employees throughout the world. The Library publishes relevant literature on the FBI Laboratory and researches scientific literary resources for forensic scientists. The Health and Safety Group (HSG) promotes and maintains the health and safety of Laboratory personnel and provides health and safety guidance, particularly regarding the safe handling of hazardous materials, to other law enforcement organizations and forensic laboratories.

Quality Assurance

The QA staff is preparing the FBI Laboratory to undergo an ASCLD/LAB-International accreditation assessment in 2008 by providing guidance on the FBI Laboratory quality system, conducting audits, and distributing proficiency tests. Each caseworking unit's quality documents are reviewed by QA personnel to ensure compliance with the accrediting body's criteria. Additionally, QA staff members conduct audits to ensure that the established policies and procedures are followed by caseworking examiners and technicians. All QA members are trained ASCLD/LAB-International assessors. The QA staff distributed more than 300 proficiency tests to FBI Laboratory employees in 2007. Proficiency tests are administered to demonstrate that examiners and technicians performing forensic examinations produce reliable work. The QA staff also implemented a Customer Satisfaction Assessment to give evidence contributors a means to provide feedback for the Laboratory services they receive.

Training

The Training staff organizes and coordinates the Specialized Forensic Science Training Program, which offers forensic science courses not only to FBI employees but also to law enforcement agencies, government crime laboratories, other federal agencies, military personnel, and the international community. This program offers one-to three-week training courses with instruction provided by Laboratory personnel. In addition, Training personnel facilitate scientific working group (SWG) meetings by locating prospective meeting sites and coordinating travel arrangements for attendees through FBI field offices. SWGs create and publish guideline documents to improve forensic science discipline practices and build consensus with federal, state, and local community partners. The Training staff also manages the annual Crime Laboratory Development Symposium. This conference affords the public crime laboratory community with an opportunity to receive high-level leadership and management training.

Library

The FBI Laboratory Library provides scientific literature reference services to Laboratory staff in addition to state and local forensic crime laboratories. This information is provided as monographs, print journals, electronic resources, and other documents that provide a theoretical foundation for the examination of evidence or prepare an examiner for courtroom testimony. The Library houses more than 8,000 scientific books and 400 periodical subscriptions. Several publications--including Forensic Science Communications (FSC), the Handbook of Forensic Services, and the Laboratory annual report--are produced by the Library staff. FSC is a peer-reviewed forensic science journal that is available on the Internet, and the Handbook of Forensic Services provides guidelines and protocols for the collection and submission of evidence to the FBI Laboratory. The handbook was updated by Laboratory staff in 2007.

Health and Safety

In 2007 the QATU welcomed Health and Safety Group (HSG) personnel to the unit, after facilities personnel in the Laboratory's Facility Services Unit were reassigned to FBI Headquarters. The HSG manages and resolves health, safety, environmental, and radiation inquiries from Laboratory employees; FBI Headquarters, field offices, and legal attaches; and other law enforcement agencies. The HSG also works through extensive regulations governing the safe transportation of hazardous materials when multiple forensic laboratories and law enforcement agencies are required to examine items of evidence. Additionally, the HSG offers on-site physicals for FBI agents and care to Laboratory employees with chronic or acute health conditions.

Annual Crime Laboratory Development Symposium

On June 12-14, 2007, the 35th Annual Crime Laboratory Development Symposium was held in Columbus, Ohio, at The Ohio State University, in association with the Fisher College of Business. The 250 selected attendees learned about achieving balance as laboratory managers through workshops and breakout sessions on improving decision-making skills, understanding generations in the workplace, and developing effective mentoring programs. A few of the presenters were Dr. Roy Lewicki, leading scholar in the study of trust development, negotiation, and conflict-management processes; Dr. Larry Inks, who specializes in organizational behavior and talent management; and author and international speaker Lillian ZarZar, who focuses on effective communication, conflict resolution, and personal and professional productivity and development. Additionally, the symposium gives participants the chance to interact with managers of public forensic crime laboratories and to develop solutions to challenges facing the forensic science community. Cryptanalysis and Racketeering Records Unit

The mission of the Cryptanalysis and Racketeering Records Unit (CRRU) is to examine both manually encrypted documents and records of illegal enterprises, as well as to provide expert testimony and other forensic assistance to further identify terrorism, foreign intelligence, and criminal activities in support of local, state, federal, and international law enforcement investigations and prosecutions. The CRRU comprises three forensic examination teams, each with a different specialization.

Cryptanalysis Team

The Cryptanalysis Team examines and decrypts manually encoded and enciphered communications. Most examinations involve handwritten notes or letters from domestic and international terrorists, street and prison gangs, or violent criminals. The Cryptanalysis Team works closely with FBI Headquarters, the National Gang Intelligence Center, and other federal agencies to disseminate actionable intelligence derived from CRRU decryptions.

Racketeering Team

The Racketeering Team examines clandestine ledgers and records from illicit businesses engaging in loan-sharking, prostitution, and illegal bookmaking, including Internet gambling operations. The examinations seek to determine the type of illicit activity, the number and roles of participants, dates of operation, and the amount of revenue generated.

Drug Records Analysis Team

The Drug Records Analysis Team supports FBI and other federal drug-trafficking investigations by examining records and ledgers from suspected drug businesses. Drug-record examinations can determine the type and quantity of drugs trafficked, prices, and the number and roles of participants. Drug-record examinations often play a critical role in influencing federal sentencing guidelines.

Cryptic Documents Provide "Smoking Gun"

In January 2006, U.S. Immigration and Customs Enforcement agents executed a search warrant at the residence of suspected drug trafficker Jamie Torres. No drugs were found, and the search would have been considered unfruitful had an agent not thought to look behind the pictures on the wall. Concealed behind a painting in the foyer were two pieces of paper containing cryptic numbers and letters. The documents were immediately sent to the CRRU for decryption.

[ILLUSTRATION OMITTED]

Cryptanalysts in the CRRU examined the numbers and notations on the documents. At first the numbers appeared to be small dollar amounts, but closer scrutiny revealed that the "money" was actually marijuana. Drug sales were disguised by adding fictitious decimal points. For example, a pound of marijuana valued at $350 was recorded as $3.50.

On August 23, 2007, a forensic examiner testified in federal court in Del Rio, Texas, that the documents contained records of the distribution of more than 1400 pounds of marijuana to four separate individuals. The testimony was critical to the case because no actual drugs were seized. The federal jury returned a guilty verdict on all counts: marijuana smuggling of more than 1000 kilograms, conspiracy to smuggle marijuana, and money laundering. Additionally, the government was able to seize several properties and numerous vehicles.

Firearms-Toolmarks Unit

Forensic firearms examinations often can determine whether a bullet, cartridge case, or other ammunition component was fired from a particular firearm or not. Similarly, forensic toolmark examinations often can determine whether a specific tool produced a particular mark or not.

Other examinations and tests commonly performed in the Firearms-Toolmarks Unit (FTU) include trigger-pull tests, function tests, unintentional-discharge tests, shot-pattern examinations, serial-number restorations, silencer testing, and others, such as bullet trajectory reconstructions and the determination from gunshot residues of the distance from a gun's muzzle to a victim's clothing. A hypothetical scenario may demonstrate the life cycle of a simple evidence submission of numerous bullets and a revolver into the Laboratory.

An incident occurs in Missouri, and because domestic terrorism is suspected, the regional resources of the FBI are engaged. In cooperation with local authorities, the Evidence Response Team recovers several bullets from the siding of a St. Louis house and several more inside the house. Later investigation results in the recovery of a suspect revolver from a local residence. The St. Louis Police Department takes custody of this evidence and sends it to the FBI Laboratory's Evidence Control Unit (ECU).

Experts in the ECU communicate with St. Louis authorities and acknowledge receipt of the bullets and revolver. They inventory these items, produce administrative documents and records, and ensure that an FTU examiner is assigned to the case. Once the case has been assigned, the evidence is promptly sent to the assigned FTU examiner.

The FTU examiner in turn contacts the St. Louis contributors to ensure complete understanding of the examination requests made--in this case to learn if the submitted bullets were fired from the revolver. The examiner begins by examining both the bullets and revolver, function-testing the revolver, and next determining if the bullets can be eliminated as having been fired from this specific firearm. If a determination cannot be made, then further microscopic examinations occur.

Assuming that the FTU examiner definitively links the bullets to the revolver, the results are documented in a formal Laboratory report, reviewed multiple times for quality assurance purposes, and then sent to the St. Louis Police Department. The department informs prosecutors, who schedule and prepare for trial. The FTU examiner may be called to testify at this trial, ending the chain of events that leads from a criminal act to adjudication.

Latent Print Operations Unit

Fingerprint evidence represents one of the most prevalent and, when handled properly, reliable forms of evidence. Accordingly, collecting, examining, and analyzing fingerprint evidence remain important functions in the Laboratory. The Latent Print Operations Unit (LPOU) comprises six teams of forensic examiners, an Administrative Review Program, and a Case Flow Management Program. Forensic examiners process evidence for latent prints, conduct friction ridge comparisons with known prints, produce written reports of their findings, present expert testimony in legal proceedings, and provide training and field support to national and international law enforcement personnel. Employees of the LPOU also serve on the FBI Disaster Squad, which assists in the identification of victims from natural disasters, such as Hurricane Katrina, as well as airplane crashes and mass killings and suicides. Members are currently supporting the mortuary at Dover Air Force Base by aiding with the identification of casualties from military actions overseas.

Identifying a Child Pornographer

In May 2005, local law enforcement officers from the Hillsborough County Sheriff's Office in Tampa, Florida, were investigating an individual after discovering child pornography on his personal computer. One of these images, which depicted an approximately 6-year-old child, also captured the friction ridge detail from the edge of an adult's finger. The digital image and a printout of the photo were submitted to the LPOU. The examiner, using digital imaging software on the Latent Print Digital Imaging System (LPDIS), was able to digitally process the image and enhance the fingerprint. A comparison of the digitally enhanced print with known prints of the individual resulted in a positive identification. This identification supported the elevation of charges from possession of child pornography to capital sexual battery, proving this individual was involved in the creation of the images. Charted enlargements of the identification were prepared for the trial, which was scheduled to take place in June 2007; however, the suspect ultimately pleaded guilty and is currently serving a life sentence without parole.

Latent Print Support Unit

The Latent Print Support Unit (LPSU) supports the FBI's fingerprint program both inside and outside the Laboratory. The unit manages the Integrated Automated Fingerprint Identification System (IAFIS) Program, coordinating, testing, evaluating, and implementing new IAFIS hardware and software from the latent print perspective and maintaining liaison with the FBI's Criminal Justice Information Services Division and the criminal justice community on all latent-print-related IAFIS issues. The unit also deploys the Disaster Squad and other special operations teams; manages the quality assurance program for the LPOU and the LPSU; coordinates, tests, evaluates, and implements relevant biometric technology for application in friction ridge analysis; and manages the operation of the Latent Print Digital Imaging System. The unit's Training Program facilitates every aspect of training in both the LPOU and the LPSU.

Latent Print Digital Imaging System

The Latent Print Digital Imaging System (LPDIS) is a state-of-the-art suite of hardware and software that can digitally improve the visual appearance of latent and known print images. The LPDIS has broadened the Laboratory's ability to identify previously unusable latent prints and has increased the ability to conduct searches of the IAFIS databases, which include the prints of more than 60 million individuals. Image quality plays a critical role in generating IAFIS matches; using the LPDIS to improve the visual appearance of poor-quality latent and known prints has resulted in more leads for field investigators. Also, because of its effectiveness, the LPDIS has become a major factor in the exchange of latent and known images between the military in Iraq and Afghanistan, the Terrorist Explosive Device Analysis Center (TEDAC), and the U.S. government's international partners. The TEDAC has increasingly relied on digital imaging as a means of handling latent prints developed on improvised explosive devices. As a result, the LPDIS is an important part of the war on terror.

[ILLUSTRATION OMITTED]

Questioned Documents Unit

The Questioned Documents Unit (QDU) provides forensic support to federal, state, and local law enforcement agencies by conducting forensic examinations on evidence collected during investigations. These include examinations of handwriting, typewriting, shoe prints, tire treads, alterations, obliterations, rubber stamps, plastic bags, and reconstructed shredded paper. The unit also provides training and field support to the FBI and federal, state, and local law enforcement.

[ILLUSTRATION OMITTED]

MatchMaker

MatchMaker is a computer-assisted reconstruction system used to facilitate the reassembly of cross-cut shredded documents. A basic version of MatchMaker was brought online in January 2007 and already has significantly improved the speed of information recovery in cases involving shredded paper and saved the FBI considerable labor costs in the process.

A typical commercially available cross-cut shredder renders an 8 1/2-by 11-inch sheet of paper into approximately 400 to 600 paper fragments. The document examiner then must reconstruct these paper puzzles into readable documents. Prior to the development of MatchMaker, these cases were completed manually, consuming countless work hours and diminishing the value of the information even when the documents were reconstructed. Manual reconstruction of one sheet of paper would take the document examiner approximately one week.

[ILLUSTRATION OMITTED]

Reconstruction time has substantially improved with the use of MatchMaker. In 2007 MatchMaker was used to reconstruct 50 pages of cross-cut shredded documents consisting of 7000 fragments. Reconstructing these documents manually would have taken approximately one year, but using the MatchMaker system, the job was completed in only two months.

[ILLUSTRATION OMITTED]

The final electronically reconstructed document can be printed and sent to the investigator at a fraction of the time and cost of previous techniques. In addition to performing the reconstruction, the system records case statistics, enabling management to track reassembly information.

Continued development of the system will ensure that larger cases can be handled by the system with enhanced algorithms that will further speed reconstruction.

Chemistry Unit

The Chemistry Unit is composed of five subunits: General Chemistry, Paints and Polymers, Toxicology, Metallurgy, and Instrument Operation and Support. The personnel in each subunit have specialized, formal education, training, and experience and examine such evidence as writing inks, lubricants, self-defense sprays, general chemical unknowns, paint, adhesives, tapes, dyes from bank security devices, metals for elemental composition, materials for failure analysis, biological specimens for drugs and poisons, and commercial products for evidence of tampering. Approximately $6 million worth of analytical instrumentation allows the unit to provide this wide range of services to its customers and support the missions of the Laboratory and the FBI.

Forensic Paint and Glass Examinations

[ILLUSTRATION OMITTED]

In support of and in preparation for the International Criminal Police Organization (INTERPOL) International Forensic Science Symposium held every three years, FBI Laboratory personnel were responsible for writing a review of advancements and research studies on topics of interest in forensic paint and glass examinations over the period from 2004 through 2007. A presentation of this review was given at the INTERPOL symposium held in October 2007 in Lyon, France. The INTERPOL symposium provides a forum for managers of forensic laboratories to exchange information, discuss issues facing forensic laboratories and forensic science, and receive updates about different types of forensic examinations and evidence since the last meeting. Fire debris, toolmarks, DNA, impression evidence, and digital evidence are just a few examples of other topics that were presented.

In addition to the presentations given at the symposium, reviews of the advancements in each discipline were written and compiled into one document, which is available on the INTERPOL Web site at http:// www.interpol.int/public/Forensics/IFSS/Default.asp.

The National Automotive Paint File

The Chemistry Unit houses and maintains the National Automotive Paint File (NAPF), a reference collection of automotive paint-color panels that can be searched by make, model, and year (MMY) to assist in identifying vehicles involved in crimes. These color panels represent vehicles manufactured for sale in North America. Each year, automotive manufacturers send newly introduced colors to the FBI Laboratory via a color-standard panel.

The FBI Laboratory also uses a second database, the Paint Data Query (PDQ), in MMY searches. Unlike the NAPF database, the PDQ uses the layer structure (number of layers, color of each layer, and order in which they are applied) and the chemical composition of the individual layers of paint on a factory-applied automotive finish.

The Royal Canadian Mounted Police (RCMP) maintains the PDQ. In recent years, the RCMP has expanded the database beyond the North American market to include Japan and the European Union. As part of this effort, the laboratory of the Federal Criminal Police Office (Bundeskriminalamt, BKA), in Wiesbaden, Germany, has sent thousands of panels from the European Collection of Automotive Paints (EUCAP) to the RCMP for inclusion in the PDQ.

[ILLUSTRATION OMITTED]

A recent inventory of the NAPF found that the collection was incomplete for a number of automobile manufacturers. The RCMP agreed to send the EUCAP panels to the FBI Laboratory in order to fill the gaps identified in the NAPF.

At this writing, more than 400 of the panels supplied by the BKA have filled gaps in the NAPF. For example, prior to adding the EUCAP panels, only 76 percent of the colors available on North American Audi vehicles were present in the NAPF. With the EUCAP panels, 97 percent of the North American Audi colors are now represented. This collaborative effort means that fewer suspects will get away with their crimes.

A Completely Automated Method for Analyzing Cocaine and Metabolites in Urine and Blood

Worldwide, cocaine is the most widely abused recreational drug and thus is commonly encountered in many forensic and clinical toxicology cases. Cocaine is extensively metabolized, forming the metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine. Additionally, when cocaine is ingested with ethanol, cocaethylene is produced. This metabolite causes intensified euphoric effects but is also highly toxic. Most toxicology laboratories employ immunoassay screening followed by confirmation with off-line solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS). As laboratories are constantly called upon to develop new, fast, and inexpensive methods, the Chemistry Unit of the FBI Laboratory has now developed a new, completely automated method for the analysis of cocaine and its major metabolites.

This automated method is unique in that it interfaces an in-line extraction liquid chromatography (LC) system with a very sensitive tandem mass spectrometer (MS/MS) so that these two instruments function as a single unified system. The in-line extraction system consists of a storage compartment, autosampler, two pumps, and an extraction unit. This system allows direct extraction, chromatographic separation, and mass spectral identification, bypassing the need for the timely and costly manual extraction techniques typically used on blood and urine samples. Using this combined system, the Chemistry Unit developed a method to analyze cocaine, benzoylecgonine, cocaethylene, ecgonine methyl ester, and ecgonine in urine and blood. Based on the current literature, this is the first fully automated SPE-LC-MS/MS method for detecting cocaine and its major metabolites in a single analysis.

Sensitive Test Detects Toxin

In July 2006 Kathy Augustine, a local politician in Nevada, died under suspicious circumstances. The local medical examiner could not determine Augustine's cause of death. Chaz Higgs--Augustine's husband and a nurse--was reported to have told a colleague that the best way to kill someone was with a drug known as succinylcholine, because it was undetectable. Because the local laboratory in Nevada did not have the instrumentation needed to test for succinylcholine, the FBI Laboratory was asked to assist in the investigation. Analysis identified succinylcholine, a paralytic agent, and its metabolite in Augustine's urine. Following the release of the FBI Laboratory's toxicology report, Higgs was charged with homicide. He was tried by the State of Nevada in June 2007. The testimony of an FBI Laboratory toxicologist was the key in the presentation of the State's case. A jury of Higgs' peers found him guilty, and he was sentenced to life in prison.

Combined DNA Index System Unit

[ILLUSTRATION OMITTED]

Eighty-year-old Alice Virginia Mosconi was bludgeoned to death in her home in Verdi, Nevada, in June 2001. Her case remained unsolved until October 2005, when DNA found on a pair of panty hose linked Joaquin B. Hill, also known as Kiven Johnson, to her slaying. Hill was an inmate in a California prison serving a nine-year sentence on stolen vehicle and drug charges when the DNA database hit occurred. For years, the Mosconi family had worked to keep their mother's case alive. They were very happy when notified that a suspect had been positively identified. Five years after Virginia's murder, Hill was sentenced to two life sentences without parole. Thanks to the Combined DNA Index System (CODIS), DNA evidence identified Virginia's killer when she could not.

The FBI Laboratory's CODIS Unit directs both the CODIS Program and the National DNA Index System (NDIS). The CODIS Program allows forensic DNA laboratories to store, maintain, and search DNA profiles from crime scenes, offenders, and missing persons. The CODIS Unit provides to partner agencies the CODIS software, as well as enhancements, support, training, help-desk services, and biannual national meetings for CODIS administrators. International law enforcement laboratories also receive CODIS software to assist with establishing a DNA database program. Forty-two law enforcement laboratories in 28 countries now have the CODIS software.

CODIS' three-tiered hierarchy of databases includes NDIS, which is the highest, followed by the State DNA Index System (SDIS) and the Local DNA Index System (LDIS). There are currently 178 NDIS-participating sites consisting of 126 local laboratories and 52 state laboratories, including the FBI Laboratory and the U.S. Army Criminal Investigation Laboratory. NDIS contains DNA profiles contributed by participating federal, state, and local forensic DNA laboratories and currently contains more than 5 million profiles of samples taken from offenders, crime scenes, and missing persons.

The success of CODIS depends on maintaining a database of a state's offender profiles and using it to solve crimes for which there are no suspects. Today all 50 states have laws requiring that offenders convicted of sexual offenses and other violent crimes provide DNA samples. These DNA samples are analyzed and entered into the state and national DNA databases.

CODIS uses several indexes to generate investigative leads in cases where biological evidence is recovered from the crime scene. The Convicted Offender Index contains profiles of individuals convicted of felony offenses and other crimes. Some states have an Arrestee Index that contains profiles from persons arrested for certain crimes. The Forensic Index contains DNA profiles developed from crime scene evidence, such as semen stains and blood. There are also three missing-person-related indexes. The Relatives of Missing Persons Index contains DNA samples voluntarily contributed from the relatives of missing persons that are searched against samples in the Unidentified Human Remains Index and the Missing Persons Index.

When a DNA profile is developed from crime scene evidence, the laboratory searches the DNA profile against the Forensic and Convicted Offender Indexes. If a match occurs with the Convicted Offender Index, the laboratory will confirm the sample and release the identity of the suspected perpetrator. If a match occurs with the Forensic Index, the laboratory has linked two or more crimes, and the law enforcement agencies involved in the cases can pool investigative information and resources.

The charts below depict the statistics tallied by CODIS through the 2007 calendar year.

DNA Analysis Unit-1

The DNA Analysis Unit-1 (DNAAU-1) provides serological and nuclear DNA testing services to support criminal and counterterrorism investigations, the Federal Convicted Offender Program, and the National Missing Person Database Program. The unit also provides expert witness testimony in criminal judicial proceedings on both a national and international level.

Serological analysis involves the examination of evidentiary items to detect and identify biological fluid stains, such as from blood and semen. This testing facilitates the determination of stains that may be suitable for DNA testing. Nearly all biological materials contain DNA. Thus, evidentiary items such as cigarette butts, drinking vessels, envelopes, and clothing are other potential sources of DNA. DNA profiles obtained from evidentiary items are compared to DNA profiles obtained from known individuals. The power of the testing done by the DNAAU-1 lies in its ability to potentially identify an individual as the source of the DNA obtained from an evidence item to a reasonable degree of scientific certainty, as well as to definitively exclude an individual as being the source of the DNA. Where appropriate, the DNA-typing results from evidence items examined in the DNAAU-1 are uploaded into the NDIS to enable nationwide comparison of DNA profiles among law enforcement agencies. Such comparison aids investigations by identifying potential perpetrators or linking serial violent crimes. In fiscal year (FY) 2007 (October 2006-September 2007), DNAAU-1 received 1620 evidence submissions and completed work on 1574 cases. DNAAU-1 examiners provided expert witness testimony in 36 criminal trials.

[ILLUSTRATION OMITTED]

The DNAAU-1 Federal Convicted Offender (FCO) Program uses nuclear DNA profiling techniques to type known samples from federal convicted offenders and federal arrestees, which are entered into NDIS. Comparison of these DNA profiles with those from forensic samples maintained in NDIS may effectively identify to investigators potential unknown perpetrators of unsolved crimes. Since the FCO Program's inception in June 2001, more than 226,000 samples have been received from more than 500 collection sites, with a current average of 6500 samples received per month. In FY 2007 alone, 79,325 samples were received, 23,341 convicted offender profiles were completed, and 113 hits were generated between convicted offender DNA profiles and forensic DNA profiles. The implementation of high-throughput robotics and sample-tracking software has significantly increased the number of DNA profiles generated for NDIS entry and thus increased the potential number of investigations aided through DNA database hits. In addition, this high-throughput capacity serves other investigational areas such as mass disasters and body identifications to support intelligence-based applications. An emerging demand also has been identified regarding missing-person investigations. The DNAAU-1 supports the National Missing Person DNA Database Program by conducting nuclear DNA analyses of unidentified human remains, as well as reference samples of missing persons and their biological relatives. In FY 2007, evidence from more than 250 missing-person cases was submitted to the DNAAU-1.

In FY 2007, DNAAU-1 personnel provided training to 3400 law enforcement and forensic laboratory personnel at 50 training sessions, seminars, conferences, and scientific working group meetings. Additionally, more than 440 members of the forensic DNA community received DNA auditor instruction from DNAAU-1 personnel on the quality assurance standards for DNA testing laboratories and convicted offender DNA databasing laboratories.

Civil Rights Investigation in Virginia

In 2004, members of the South Nazarene Church in Chesterfield, Virginia, began receiving threatening letters containing racial slurs aimed at church member and custodian Franz Cadet. Some of the letters contained threats to kill Cadet, whose vehicle had been stolen and was later found to have been destroyed by fire. Members of the church provided Cadet with a new vehicle. In fact, the congregation provided substantial monetary aid as well as numerous products and services to assist him and his family through a multitude of financial, physical, and legal crises. Cadet named several individuals who he believed could be the source of the threats: women with whom he had had extramarital affairs, as well as a former coworker who had filed a sexual harassment suit against him. Cadet and his wife complied with a request to provide buccal (cheek) samples to serve as references for DNA analysis. More than 100 envelopes, each having moisture-activated flaps, also were submitted to the Laboratory. DNA analysis revealed that Cadet himself was the source of the DNA on several envelopes, suggesting that he had carried out the threats against himself in order to gain the sympathy and financial aid of fellow church members. The DNA recovered from some of the envelope flaps was consistent with that of the biological children of Cadet and his wife, suggesting that Cadet had also enlisted his children in the scam.

[ILLUSTRATION OMITTED]

Uncovered Evidence Links Convicted Offender to Several Bank Robberies

[ILLUSTRATION OMITTED]

Two armed men entered the BB&T Bank in Gainesville, Virginia, and ordered everyone to the ground at gunpoint. Within five minutes, the men had obtained substantial sums of cash and departed the bank in a van that had been stolen in Alexandria, Virginia. Two years after the robbery, a pair of black goggles, similar to those worn by one of the perpetrators during the robbery, was uncovered during an evidentiary inventory. The goggles were submitted to the Laboratory, and a complete DNA profile of the wearer of the goggles was obtained. After the DNA profile was entered into the National DNA Index System, a hit was returned, linking the DNA profile from the goggles to that of a convicted offender sample within the FBI's Federal Convicted Offender Database. The hit was confirmed within days, and the name of the offender was provided to the FBI's Washington Field Office. The bank robber was linked to at least 10 other bank robberies in the Northern Virginia area and possibly three others in Montgomery and Calvert County, Maryland.

Six Members of an International Kidnapping Ring Brought to Justice

The FBI's Los Angeles and New York dive teams recovered four bodies from a reservoir located about 500 miles north of Los Angeles. An additional body, which had been recovered by the local sheriff's department, was linked to the same crime. All were identified as Russian businessmen or their associates, who had been kidnapped for ransom or used to lure other targets. Regardless of whether the ransom had been paid, the victims were gagged, their hands and feet bound, and their bodies weighted down with weight plates before being dumped into the reservoir. Investigation led to a Russian international kidnapping ring, and six subjects were charged with hostage taking resulting in the deaths of five people.

[ILLUSTRATION OMITTED]

Serological and nuclear DNA examinations were conducted on approximately 65 items of evidence. DNA recovered from bloodstains from a bridge near the reservoir and from two different pairs of handcuffs matched the victims. Additional handcuffs yielded DNA that did not match the victims, suggesting that there are other unknown victims. Furthermore, DNA profiles developed from several cigarette butts linked the defendants to relevant locales.

Three defendants pleaded guilty to federal and state charges and cooperated with the government during the trial. A fourth defendant was sentenced to life in prison without the possibility of release. Following a 10-hour jury deliberation, the two ring leaders were sentenced to death.

The judge commented that this was the most compelling case he had ever witnessed in 30 years on the bench and that, in his opinion, the case was proven "beyond all possible doubt." The federal death-penalty verdicts were the first handed out in California since the post-World War II era.

DNA Analysis Unit-2

Mitochondrial DNA (mtDNA) is typically found in such evidence as naturally shed hairs, hair fragments, bones, and teeth, which contain minute amounts of degraded DNA. With its high sensitivity, mtDNA analysis allows personnel in the DNA Analysis Unit-2 (DNAAU-2) to obtain information from items of evidence with little biological material, as well as old evidence from cold cases and highly degraded samples from mass disasters. Although unique identifications are not possible using mtDNA, the ability to associate an mtDNA profile with the maternal relative of an individual can narrow down the pool of possible candidates and increase the odds of identifying the source of the DNA. Mitochondrial DNA samples are also uploaded into the CODIS database.

[ILLUSTRATION OMITTED]

Suspected Atlanta Child Killer Revealed

In 1982, Wayne Williams was convicted for the murders of two men. At the trial, evidence from 10 other murders was also introduced, although charges for these killings were never filed. Following his conviction, Williams was widely believed to be the Atlanta child killer responsible for the slaying of 29 children and young adults between 1979 and 1981, even though Williams has always maintained his innocence. Hoping for a retrial for the 1982 convictions, in January 2007, Williams' lawyer requested DNA testing of the hairs in the case. The court granted the request, based on a Georgia statute allowing postconviction testing using technology not available at the time of the trial.

Patrick Baltazar was an 11-year-old boy who disappeared in 1981. His body was found a few days later, an apparent victim of the Atlanta child killer. Three hairs recovered from Baltazar's body were examined microscopically and found to match Williams'. The microscopic comparison of these hairs had been presented in the 1982 trial. Mitochondrial DNA analysis of these hairs was part of the requested postconviction testing.

The hairs were submitted to the FBI Laboratory in 2007, and one was selected for mtDNA analysis. The comparison of the mtDNA sequences from the hair and the saliva sample taken from Wayne Williams determined that Williams could not be excluded as the source of the hair. Although he was never charged with the additional murders, the DNA results prevented him from receiving a new trial for the 1982 convictions.

Improving DNA Analysis Methods

In an effort to improve the analysis of evidence in support of the mission of the Terrorist Explosive Device Analytical Center, DNAAU-2 is validating an innovative method for analyzing mtDNA through base-composition analysis by mass spectrometry. Mass spectrometry is a quantitative method based on the separation of ionized particles according to the intrinsic mass-to-charge (m/z) ratio. Based on this information, the mass of the ionized particles can be determined.

[ILLUSTRATION OMITTED]

For mtDNA examinations, fragments of mtDNA are ionized and detected. The weight of these fragments is calculated and a list of possible base compositions is derived, with an overall base-composition profile being determined for each double-stranded mtDNA fragment. Because each ionized particle is detected independently, base-composition analysis is capable of detecting and resolving mixtures of mtDNA types. Using the current sequencing method, mixtures of mtDNA types are uninterpretable. Base-composition analysis uses robotics, resulting in a highly automated, high-throughput process capable of generating large volumes of data with minimal manual operation. This method will allow DNAAU-2 to analyze new evidence types, obtain results from challenging samples, and rapidly generate high-quality data.

[ILLUSTRATION OMITTED]

The National Missing Person DNA Database Program

In 2000, the Laboratory began developing the National Missing Person DNA Database (NMPDD) Program for the identification of missing and unidentified persons using CODIS. The NMPDD contains three indexes in which missing-and unidentified-person DNA profiles can be entered: Biological Relatives of Missing Persons, Unidentified Human Remains, and Missing Persons.

In the FBI Laboratory, the DNAAU-1 (which analyzes nuclear DNA) and DNAAU-2 (which analyzes mitochondrial DNA) perform DNA analysis on samples from unidentified human remains and biological relatives of missing persons. The NMPDD provides investigators with an opportunity to identify missing and unidentified persons on a national level.

Since 2000, the DNAAU-2 has completed 1590 missing-person cases submitted by local, state, and federal agencies. There have been 190 mitochondrial DNA associations for unidentified human remains samples and samples from biological relatives of missing persons. In 2007, 383 cases were submitted to the NMPDD for analysis, and the DNAAU-2 processed 461 cases for mitochondrial DNA analysis.

[ILLUSTRATION OMITTED]

In addition to processing cases, in 2007, members of the NMPDD were active in educating the forensic and law enforcement communities about the value of the program to investigators of missing-person cases. Presentations detailing the purpose of the program and submission guidelines were provided to various local, state, and federal agencies and organizations. The NMPDD has participated with the National Institute of Justice in a number of workshops and meetings concerning the identification of missing persons. These meetings provide information to assist law enforcement, forensic scientists, coroners, medical examiners, and the relatives of missing family members.

A Tooth Reveals the Truth

In June 2004, human body parts were found in the trunk of a vehicle that had been abandoned and seized after a police pursuit in Fairbanks, Alaska. The remains were believed to be those of David J. Mason. A dental examination was inconclusive, and the state crime laboratory was unable to obtain a nuclear DNA profile from the degraded remains. In August 2004, a tooth was sent to the FBI Laboratory for mitochondrial DNA analysis. Because Mason had previously served in the military, a sample of his blood was housed in the Armed Forces DNA Repository of the Armed Forces Institute of Pathology. The mtDNA sequence from the tooth was compared to the mtDNA sequence from Mason's blood sample. The mtDNA sequences were concordant, so Mason could not be excluded as the source of the human remains recovered in the trunk of the vehicle.

An investigation by the Alaska State Police developed Jason S. Fisher as the prime suspect, and in October 2005, Fisher was apprehended and charged with Mason's murder. On November 5, 2007, he pleaded guilty. This case illustrates how cooperation between federal agencies can assist coroners, medical examiners, and law enforcement agencies in determining the identity of unidentified human remains and bringing closure to family members.

Regional Mitochondrial Laboratories Up and Running

Four regional crime laboratories partnered with the FBI Laboratory in 2003 to augment the nation's capacity to perform mtDNA analysis in forensic and missing-person cases. This analysis is conducted free for state and local law enforcement agencies. Partner laboratories are responsible for mtDNA and hair analysis, reporting results, and testifying, if necessary.

[ILLUSTRATION OMITTED]

By 2007, all four regional laboratories--the Arizona Department of Public Safety Central Crime Laboratory in Phoenix, the Connecticut Department of Public Safety Forensic Science Laboratory in Meriden, the Minnesota Bureau of Criminal Apprehension Forensic Science Laboratory in St. Paul, and the New Jersey State Police Office of Forensic Sciences in Hamilton--had been approved to upload mtDNA profiles into the National Missing Person DNA Database. This database is an increasingly valuable resource with the potential to identify missing persons by linking them to DNA profiles of relatives or unidentified human remains.

Since the regional laboratories began accepting casework in late 2005, more than 550 cases have been assigned to them. The work they provide has developed investigative leads for local law enforcement and aided in the identification of unidentified human remains. The ability of the regional laboratories to conduct analysis on this number of cases has enabled the FBI Laboratory to significantly decrease turnaround time in both criminal and missing-person mtDNA cases, providing additional benefits to local law enforcement. The first testimony by a regional laboratory analyst took place in New Hampshire in 2006, and since then, testimony has been given more than 20 times in cases across the United States.

The FBI Laboratory remains committed to building long-term partnerships with state and local forensic laboratories to provide critical forensic services as well as to develop and implement new technologies. The FBI and the criminal justice community continue to benefit from the work of the talented and dedicated employees from these regional crime laboratories as well as from international, national, state, and local laboratories.

Trace Evidence Unit

[ILLUSTRATION OMITTED]

The Trace Evidence Unit (TEU) identifies and compares specific types of trace materials that can be transferred during a crime. The collection of these evidentiary materials is typically conducted by Evidence Response Team personnel for FBI cases or by the state or local law enforcement agency submitting the case to the Laboratory. The types of materials that are routinely analyzed and compared in the TEU are hairs, fibers, fabric, cordage, soil, glass, building materials, gemstones, feathers, and wood. The physical contact between two people or between a person and an object can result in the transfer of these materials. The analysis and comparison of these materials often can link a suspect to a victim or a crime scene. In addition, the TEU provides scientific examinations in the area of forensic anthropology.

[ILLUSTRATION OMITTED]

[ILLUSTRATION OMITTED]

After analyzing evidence submissions, TEU examiners issue a report, which is the mechanism to disseminate the scientific results to the contributor. In 2007 the TEU completed analysis on approximately 10,000 items of evidence in 2300 cases. Approximately 1300 of these cases involved improvised explosive devices examined for hairs and fibers in support of the Terrorist Explosive Device Analytical Center.

Other significant aspects of the TEU's mission are testifying in legal proceedings on the results of its examinations, training members of the law enforcement community, providing forensic field support in FBI cases, and developing and implementing new technologies to enhance scientific examinations. To support the Laboratory's training mission, the TEU sponsored or participated in numerous ventures. One--to two-week courses were given in the areas of hair and fiber examinations and Indian Country Crime Scene Analysis to audiences in Montana, Arizona, Colorado, and Oklahoma and at the FBI Academy in Quantico. In support of the Regional Mitochondrial DNA Laboratory initiative, the TEU trained two hair examiners who will work in two of these regional laboratories.

[ILLUSTRATION OMITTED]

Trace Evidence Symposium

[ILLUSTRATION OMITTED]

In August 2007 the FBI Laboratory and the U.S. Department of Justice's National Institute of Justice cosponsored a Trace Evidence Symposium. The purpose of the symposium was to foster increased awareness among forensic scientists, law enforcement, and the legal community on the value of trace evidence. It had been more than 10 years since the last trace evidence symposium had been conducted. This symposium served as an educational forum for trace evidence examiners as well as an avenue to identify new areas of research and technological needs within the various subdisciplines of trace evidence.

Trace evidence is considered one of the most diverse of the forensic disciplines because it can include the analysis of hair, fiber, paint, glass, soil, and other particulate matter using a variety of microscopes and analytical instrumentation. Because of the diverse nature of this field, the symposium represented a broad range of issues, from technological foundations and research methods to applied practices and policy considerations that impact the field of trace evidence analysis. Papers presented at the symposium included such topics as elemental analysis of glass, fiber transfer and persistence, paint analysis in graffiti cases, admissibility issues such as Daubert, and the role of establishing probative value to trace evidence. Workshops focused on more in-depth analysis and interpretation of such techniques as feather identification, microspectrophotometry, Fourier transform infrared spectroscopy, and elemental analysis, as well as other instrumental analysis methods.

[ILLUSTRATION OMITTED]

The symposium was a tremendous success, with more than 300 people from 17 countries attending. The attendees had diverse backgrounds and included personnel from forensic and nonforensic laboratories, universities, private companies, and the legal community. In addition to the educational opportunity provided, the symposium gave participants a chance to build relationships with members of all of these groups, which can only serve to both strengthen the trace evidence community and foster new developments for the future.

[ILLUSTRATION OMITTED]
CODIS Statistics Through 2007

Category Total Number

Investigations Aided 62,059
Forensic Index Hits 11,750
Offender Index Hits 49,813 (43,305 at
 SDIS and
 6,508 at NDIS)

NDIS Statistics Through 2007

Category Total Samples

Offender Index 5,372,773
Forensic Index 203,401

Participants

Domestic 178 state and local
 Laboratories laboratories plus NDIS
International 42 laboratories in 28 countries
 Laboratories
Training 1,311 individuals in more
 than 222 laboratories have
 received CODIS training.

 2001 2002 2003

Offender Profiles 750,929 1,247,163 1,493,536
Forensic Profiles 27,897 46,177 70,931

Investigations Aided 3,635 6,670 11,220
Forensic Hits 1,031 1,832 3,004
Offender Hits Total 2,371 5,032 8,269
--National 167 638 1,151
--State 22,041 43,941 71,181

 2004 2005

Offender Profiles 2,038,514 2,826,505
Forensic Profiles 93,956 126,315

Investigations Aided 20,792 30,455
Forensic Hits 5,147 7,071
Offender Hits Total 13,855 21,519
--National 1,864 2,855
--State 119,911 186,641

 2006 2007

Offender Profiles 3,977,433 5,372,773
Forensic Profiles 160,582 203,401

Investigations Aided 43,156 62,059
Forensic Hits 9,529 11,750
Offender Hits Total 32,439 49,813
--National 4,276 43,305
--State 281,631 6,508
COPYRIGHT 2007 Federal Bureau of Investigation at www.fbi.gov
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:FBI Laboratory Annual Report
Date:Jan 1, 2007
Words:8152
Previous Article:Terrorist explosive device analytical center.
Next Article:Operational support branch.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters