Printer Friendly

FORCASTER: Force, Motion and Positioning of Microtubule Asters.

EU contribution: EUR 2 199 310

Objective: Cells must move and position internal components to perform their function. We here focus on the physical designs which allow microtubule (MT) asters to exert forces in order to move and position themselves in vivo. These are arrays of MTs radiating from the centrosome, which fill up large portions of cells. They orchestrate nuclear positioning and spindle orientation for polarity, division and development. Forces that move asters are generated at nanometer and second scales by MT-associated motors from sites in the cytoplasm or at the cell surface. How MTs and force-generators self-organize to control aster motion and position at millimeter and hour scales is not known. We will use a suit of biophysical experiments and models to address how aster micro-mechanics contribute to aster migration, centration, de-centration and orientation in a single in vivo system, using the early stages of Sea urchin development as a quantitative model. We aim to: 1) Elucidate mechanisms that drive aster large-scale motion, using sperm aster migration after fertilization during which asters grow and move rapidly and persistently to the large-egg center. We will investigate how speeds and trajectories depend on boundary conditions and on the dynamic spatial organization of force-generators.2) Implement magnetic-based subcellular force measurements of MT asters. We will use this to understand how single force-events are integrated at the scale of asters, how global forces may evolve will aster size, shape, in centration and de-centration processes, using various stages of development, and cell manipulation; and to compute aster friction. 3) Couple computational models and 3D imaging to understand and predict stereotyped division patterns driven by subsequent aster positioning and aster-pairs orientation in the early divisions of Sea urchin embryos and in other tissues. This framework bridging multiple scales will bring unprecedented insights on the physics of living active matter.

Project completion date : 2020-07-01 12:00:00

Major organization : CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Address : 3, rue Michel-Ange

75794 Paris cedex 16

Country :France

Url : http://www.cnrs.fr/

Financier : European Union (EU),

Financier address : European Union (EU)

Rue de la Loi 200/Wetstraat 200,

B-1049 Bruxelles/Brussels,

Belgium

Tel: 32-2-2999696, 2993085

Fax: 32-2-2961749

Url: ec.europa.eu/

2015 Al Bawaba (Albawaba.com) Provided by SyndiGate Media Inc. ( Syndigate.info ).

COPYRIGHT 2015 SyndiGate Media Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Mena Report
Date:Jul 13, 2015
Words:376
Previous Article:TUSUPO: Tubular Supramolecular Polymers: A new class of therapeutic polymers.
Next Article:MobiliSense: Air pollution and noise exposure related to personal transport behaviour: short-term and longer-term effects on health.

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters