Printer Friendly

Evolution and functional diversity of aquaporins.

Abstract. In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.


Since the discovery of the archetypal molecular water channel (aquaporin-1, AQP1) in mammals towards the end of the twentieth century (Denker et al., 1988; Preston et al., 1992; Agre et al., 1993), increasing numbers of genome and transcriptome sequencing projects have resulted in the release of tens of thousands of orthologous channels in archaeal, bacterial, and eukaryotic organisms encompassing the three domains of life. Understanding how such gene diversity arose is challenging but necessary if we are to identify the historical events that led to the evolution of novel or constrained functions within or across taxonomic lineages.

The earliest evolutionary studies of diverse subfamilies of bacterial, plant, fungal, and animal aquaporins recognized two major phylogenetic divisions separating the water-selective type channels (Aqp) from the glycerol facilitators (Glp) (Park and Saier, 1996; Froger et al., 1998; Heymann and Engel, 1999). Such a phylogenetic dichotomy implied that an early gene duplication event led to the evolution of these two major functional forms in Prokaryota (Zardoya, 2005). Thus, until very recently, it was thought that Archaea have one aquaporin, termed AqpM, which permeates both water and glycerol (Kozono et al., 2003; Lee et al., 2005), while Bacteria have two, a water-selective channel, termed AqpZ (Calamita et al., 1995; Savage et al., 2003; Jiang et al., 2006), and a water-, urea-, and glycerol-transporting channel known as GlpF (Fu et al., 2000; Jensen et al., 2001). With the increasing troves of sequence data from different organisms, this view is changing. The latest studies are revealing an unexpected diversity of aquaporins in both prokaryotic and eukaryotic organisms (Bienert et al., 2013; Abascal et al., 2014; Finn et al., 2014; Verma et al., 2015). The aim of this review is to provide a brief summary of such diversity. It is not intended to give a comprehensive review of aquaporin structural biology and physiology, since these aspects have recently been reviewed elsewhere (Abascal et al., 2014; Ahmadpour et al., 2014; Bienert and Chaumont, 2014; Day et al., 2014; Ishibashi et al., 2014; Kaldenhoff et al., 2014; Li et al., 2014; Mukhopadhyay et al., 2014; Song et al., 2014; Tani and Fujiyoshi, 2014). Therefore, we present a short overview of the structure and function of aquaporins, and include a section on prokaryotic aquaporins to explain the origin by horizontal gene transfer (HGT) of some plant glycerol transporters. We review the origin and evolution of a new class of insect glycerol transporters, and finally we discuss the expansion of the eukaryotic superfamilies into four major grades of aquaporin and review recent advances in the origins of aquaporins in vertebrates. We use the term "grade" rather than "clade" to classify the different clusters of aquaporins in order to accommodate the similar but polyphyletic nature of the subfamilies.

Aquaporin Structure and Molecular Function

Aquaporins are integral membrane channels that primarily facilitate the passive transport of water and other small, uncharged solutes down their concentration gradients. Regardless of the permeability properties, however, the overall tertiary and quaternary structures of the core transmembrane domains (TMDs) are conserved. Four protomeric polypeptides form the individual water-conducting pores, which are folded in the endoplasmic reticulum and assembled primarily as homotetramers, but also occasionally as heterotetramers in membranebound vesicles of animals and plants (Verbavatz et al., 1993; Neely et al., 1999; Fetter et al., 2004; Pitonzo and Skach, 2005) (Fig. 1A). The prototypical protomer is thought to have evolved from an internal duplication and inversion of a trihelical-transmembrane segment causing the mature peptide to retain intracellular N- and C-termini of variable length and conformation (Pao et al., 1991). The integral membrane region is thus composed of six TMDs, three extracellular (A, C, E) and two intracellular (B, D) loops, and two inverted hemihelices on loops B and E that project opposing Asn-Pro-Ala (NPA) motifs to regulate the single-file conductance of water, while simultaneously functioning as a cation and a proton-excluding selectivity filter near the center of the molecule (Murata et al., 2000; Ho et al., 2009; Tani et al., 2009; Wree et al., 2011). A second constriction that contributes to proton exclusion is located in the outer channel vestibule and typically consists of aromatic residues and an arginine (ar/R) to form the major selectivity filter determining which molecular permeant can traverse the pore (Fu et al., 2000; Sui et al., 2001; Beitz et al., 2006a; Fu and Lu, 2007; Almasalmeh et al., 2014) (Fig. 1B). High-resolution crystallographic studies of fungal Aqy1, together with experimental studies of mammalian AQP1 and molecular dynamics simulations, have suggested that a synergistic effect between the NPA motifs and the ar/R selectivity filter breaks the connectivity of permeating water molecules to prevent proton transport via a Grotthuss mechanism, in which excess protons could shuttle through the hydrogen bond network of water, hydroxyl, and hydronium molecules (de Grotthuss, 1806; Wu etal., 2009; Li etal., 2011; Kosinska Eriksson et al., 2013). Based upon such findings, it has been suggested that the selectivity filter may have evolved as the major mechanism of proton exclusion, while the NPA motifs evolved to block cation transport through the pore (Li et al., 2011). In silico studies have further shown that the arrangement of the ar/R residues also correlates with the functional properties of the channel (Froger et al., 1998; de Groot and Grubmuller, 2005; Hub and de Groot, 2008; Oliva et al., 2010; Phongphanphanee et al., 2010; Lin et al., 2012; Zhang and Chen, 2013). For example, classical water-selective aquaporins such as eutherian AQP0, -1, -2, -4, or -5, which range in size from 28.1-34.8 kDa for the human channels, typically display a tight ar/R cluster in which His-201 on TMD5 of human AQP4 reduces the pore to about 1.5 Angstrom ([Angstrom]) and thus sterically

excludes the passage of glycerol (Ho et al., 2009). A three-dimensional reconstruction of the basal sarcopterygian coelacanth Aqp4 channel, based upon the structure mask of the crystallographically resolved human AQP4 ortholog (Protein Data Bank 3GD8), shows that this arrangement is evolutionarily conserved (Fig. 1C). Conversely, the eutherian water- and glycerol-transporting aquaporins (aquaglyceroporins, Glps) represented by AQP3, -7, -9, and -10, which range in size from 31.4-37.0 kDa for the human channels, have a more open structure due to a longer polypeptide region in loop E (Verma et al., 2015) and the tendency to display an uncharged constriction residue on TMD5. A model of the coelacanth Aqp3 channel based upon the structure mask of the bacterial glycerol uptake facilitator (GlpF) (Protein Data Bank 1LDF) illustrates that this more relaxed structure is also a conserved feature of Glps (Fig. 1D).

Although in silico structure-function studies can provide intuitive insight into the potential permeability properties of the various types of channels, their in vivo transport function may differ from such predictions due to differences in the primary structures, alternative splicing, posttranslational modifications, or the cellular environment in which they are expressed. For example, phosphorylation or dephosphorylation of N- or C-terminal residues, as well as in the intracellular or extracellular loops, is commonly associated with trafficking of vertebrate and plant aquaporins (Brown et al., 1998; van Balkom et al., 2002; Prak et al., 2008; Tingaud-Sequeira et al., 2008; Moeller et al., 2011; Tamma et al., 2011) , but can also result in gating (Tornroth-Horsefield et al., 2006; Nyblom et al., 2009; Verdoucq et al., 2014). The N-terminus is also associated with gating of fungal Aqyl (Fischer et al., 2009), while acidic pH and the [Ca.sup.2+] concentration in the cytoplasm is known to gate both plant plasma membrane intrinsic proteins (PIPs) (Tournaire-Roux et al., 2003; Alieva et al., 2006; Verdoucq et al., 2008; Frick et al., 2013) and vertebrate aquaporins (Zeuthen and Klaerke, 1999; Nemeth-Cahalan and Hall, 2000; Virkki et al., 2001; Nemeth-Cahalan et al., 2004; Chauvigne et al., 2015a). It is thus important to experimentally demonstrate the permeability properties of a given channel. The most direct evidence is obtained from homologous or heterologous expression experiments in amphibian oocytes, cultured cell lines, or yeast cells, or from reconstituted aquaporins in liposomes. Based upon such experiments, an overview of the major molecular solvents and solutes shown to permeate prokaryotic and eukaryotic aquaporins is presented in Table 1. The data for Eukaryota are organized into four grades: classical aquaporins, Aqp8-type aquaammoniaporins, unorthodox aquaporins, and Glps, according to the phylogenetic topology inferred from Bayesian inference of >700 non-redundant aquaporins (Fig. 1E).

The great majority of prokaryotic and eukaryotic aquaporin orthologs tested to date have been shown to transport water, indicating that this function was likely involved in cell volume regulation of the earliest life forms and has remained so in nearly all derived organisms. Some exceptions do, however, exist, including certain alleles of fungal Aqy2, which encode a premature stop codon in most laboratory strains (Laize et al., 2000; Carbrey et al., 2001). Plant type-1 PIPs (PIP1) and type-6 nodulin intrinsic proteins (NIP6) also display little or no water transport activity when expressed in amphibian oocytes (Chaumont et al., 2000; Dordas et al., 2000; Dixit et al., 2001; Bots et al., 2005; Temmei et al., 2005; Wallace et al., 2005; Secchi et al., 2007). Amongst animal aquaporins, Drosophila big brain (BIB), which lacks several amino acids upstream of the second NPA motif, lost the ability to transport water but evolved the dual capacity of a cation transporter and cellular adhesion molecule (Yanochko and Yool, 2002; Tatsumi et al., 2009). Other studies have suggested that the zebrafish Aqp0b ortholog of mammalian AQP0, which also functions as a cellular adhesion molecule (Costello et al., 1989; Gonen et al., 2004; Liu J., et al., 2011), is not a functional water transporter (Froger et al., 2010; Clemens et al., 2013). In this latter instance, however, a recent study of the pH sensitivies of tetraploid and diploid teleosts demonstrated that both zebrafish Aqp0a and -0b permeate water efficiently, but that an alternative allele exists (G19S) that abolishes the water transport function of Aqp0b (Chauvigne et al., 2015a). The first studies of unorthodox aquaporins Aqp11 and -12 indicated that these channels may not be functional at the plasma membrane due to their intracellular localization in vivo, a noncanonical NPC motif, and the replacement of the Arg residue in the ar/R selectivity filter by a Leucine (Leu) (Morishita et al., 2005; Gorelick et al., 2006). However, more recent studies have revealed, at least for mammalian AQP11, that both water and glycerol can permeate the pore (Yakata et al., 2007, 2011; Madeira et al., 2014).

In addition to the water transport function, Table 1 illustrates that a surprising diversity of molecules permeate different aquaporins, including small charged ions in selected channels such as mammalian AQP6 and insect BIB, or uncharged gases in several paralogs to large purines in mammalian AQP9, or disaccharides such as trehalose in certain mosquito aquaporins. While gas permeation is still debated (Kaldenhoff et al., 2014), observations that some channels that cluster on the water-selective branch of aquaporin trees naturally transport larger solutes such as glycerol and urea is beginning to blur the lines between the molecular function of a subfamily and its phylogenetic position. For example, rat AQP6. which is closely related to the water-selective AQP2 and -5 paralogs, is capable of transporting glycerol and urea under certain conditions (Holm et al., 2004). On a broader level, a novel class of aquaporins variously referred to as Rhodnius prolixus integral protein-like channels (RPIPs), Lygus hesperus integral protein-like channels (LHIPs), or AQP4/5 clade C channels (Drake et al., 2010, 2015; Wallace et al., 2012; Benoit et al., 2014a, b; Fabrick et al., 2014; Goto et al., 2015), have recently been classified as entomoglyceroporins (Eglp), since they specifically evolved to become the major glycerol transporters in insects (Finn et al., 2015). Experimental evidence has shown that the Eglp channels of both ancient and modern lineages of hexapod can transport a wide variety of polyols and urea (Kataoka et al., 2009a, b; Wallace et al., 2012; Drake et al., 2015; Finn et al., 2015). As shown in Figure IE, however, the Eglp channels are phylogenetically related to metazoan Aqp4 orthologs, which are classical water-selective channels. Nevertheless, experiments have demonstrated that the glycerol-transporting property of the Eglps specifically arose in basal hexapods in association with the substitution of the conserved TMD5 His in the ar/R selectivity filter of Aqp4-type channels to uncharged residues such as Ala and Ser in the Eglps (Finn et al., 2015). Remarkably, the Eglps subsequently replaced the ancestral Glps in the holometabolan insects, the most successful group of terrestrial organisms in the history of life, possibly due to the improved efficiency of Eglps for glycerol conductance (Finn et al., 2015) and an increased requirement for a colligative antifreeze (Duman, 2001; Stryer et al., 2010). The supplantation of Glps by Eglps thus may be viewed as an example of natural Darwinian selection at the molecular level.

Amongst other orthologs, mammalian AQP8- and the plant tonoplast intrinsic protein (TIP)-type channels, which have been termed aquaammoniaporins (Jahn et al., 2002), are not unique in transporting ammonia. Some classical aquaporins (AQP1, -6) and Glps from Protista to Mammalia also evolved this function. A separate semi-ubiquitous feature of aquaporins, regardless of their phylogenetic and structural characteristics, appears to be the conductance of hydrogen peroxide ([H.sub.2][O.sub.2]), which is commonly generated as a biproduct of mitochondrial oxidative phosphorylation in animals (Muller, 2000) or chloroplastic electron transport in plants (Ivanov et al., 2012). It has thus been suggested that most eukaryotic aquaporins likely evolved this capacity (Bienert and Chaumont, 2014) and are actively recruited to cell membranes to mediate cell signaling or to mitigate oxidative stress (Bienert et al., 2007; Dynowski et al., 2008; Almasalmeh et al., 2014; Bienert and Chaumont, 2014). Indeed, it was shown very recently that the rapid recruitment of a teleost Aqp8b channel to the inner mitochondrial membrane of the spermatozoon facilitates [H.sub.2][O.sub.2] efflux from the mitochondrial compartment, which is essential for the maintenance of the mitochondrial membrane potential, ATP production, and flagellar motility (Chauvigne et al., 2013, 2015b).

These examples thus hint at a broader spectrum of permeants for the aquaporin superfamilies of eukaryotic organisms, and it seems likely that this range will increase as ever more exotic properties of channels are discovered. It will be important, however, to place such novel functions in a phylogenetic framework in order to refine our understanding of how the aquaporin superfamily evolved its functional diversity in different organisms. This is particularly true if a given lineage of organisms loses a branch of aquaporins involved in basic biochemical pathways. For example, the available evidence now indicates that the glp genes associated with glycerol transport were independently lost in the megadiverse holometabolan insects and higher plants (Zardoya et al., 2002; Abascal et al., 2014; Finn et al., 2015), yet both lineages acquired new glycerol transporters from unexpected quarters. The next section explains how plants likely acquired a new set of glycerol transporter genes from bacteria.

Aquaporin Evolution from Prokaryota to Eukaryota

It has been suggested that half of all eukaryotic genes have their origins in Prokaryota (Lodgson, 2010). With the identification and phylogenetic analysis of the first prokaryotic aquaporins, it became clear that the eukaryotic aquaporin superfamily was also rooted within the archaeal and bacterial domains (Pao et al., 1991; Park and Saier, 1996). However, the flow of genes from prokaryotes to eukaryotes has taken two routes. The semivertical hybrid route may have occurred as a result of symbiosis shortly before the great oxygen crisis about 2.5 Ga (Gu, 1997) (McInerney et al., 2014), while the second occurred at different time periods via HGT (Andersson, 2005; Keeling and Palmer, 2008). It is not yet possible to assess the full dimensions of aquaporin evolution via HGT in Eukaryota due to the current paucity of data in non-metazoan organisms. Amongst plants, however, it has been reported that glycerol transporters in the form of Nodulin 26-like integral proteins (NIPs, Fortin et al., 1987; Rivers et al., 1997; Dean et al., 1999) evolved from bacterial AqpZ via HGT and functional recruitment (Zardoya et al., 2002). While this view has been maintained in the contemporary literature, where it is suggested that the first residue of the ar/R filter mutated to tryptophan (Trp), and the P1 and P5 sites were, respectively, replaced by aromatic and small hydrophobic amino acids to acquire glycerol transport capacity (Wallace et al., 2002; Abascal et al., 2014), recently available data hint at a different scenario (Finn et al., 2014). Based upon the molecular phylogeny of prokaryotic aquaporins, it has generally been assumed that bacterial genomes encode Aqps and Glps (Zardoya, 2005; Danielson and Johanson, 2010; Bienert et al., 2013; Abascal et al., 2014). However, a separate molecular phylogenetic analysis based upon Bayesian inference revealed a more complex evolution of prokaryotic aquaporins, in which four grades (AqpZ, AqpN, AqpM, and GlpF) were resolved with high statistical inference (Finn et al., 2014). In some Firmicutes, such as members of the order Bacillales, the newly identified AqpN grade coexists with AqpZ and GlpF. These new findings likely reflect the increased availability of genome sequences in public databases, which were not fully analyzed in earlier studies. Indeed, a more recent analysis using maximum parsimony and neighbor-joining protocols also found four distinct clusters of channels in Archaea, but only two in Bacteria (Verma et al., 2015). Although future studies will need to validate these findings, the surprising observation in one of the studies is that both archaeal and bacterial aquaporins are represented in each of the four grades (Finn et al., 2014), which is potentially consistent with the notion of a ring of life at the bottom of the tree of life (Rivera and Lake, 2004).

An interesting feature of the prokaryotic aquaporins clustering within the AqpN grade is that it contains species associated with nitrite oxidation in soil, which have only a 34% amino acid identity to the major intrinsic protein of nitrogen-fixing Rhizobium species found in the symbiosomes of root nodules of leguminous plants (Clarke et al., 2014). We therefore re-evaluated the HGT hypothesis of plant NIPs in light of these new data, using Bayesian inference (Fig. 2A). These analyses, conducted for the first time, here provide robust statistical support for proposing that the origin of plant NIPs arose via HGT from bacterial AqpN rather than AqpZ, with the last common ancestor closely related to nitrite-oxidizing members of the Chloroflexi phylum. Inspection of the ar/R residues and the P1-P5 sites thought to delineate the selectivity of water and glycerol-transporting channels (Froger et al., 1998) reveals that there was not a major functional shift in either the ar/R or the P1-P5 sites (Fig. 2B, C) during this transition. Consequently, our data suggest that the glycerol-transporting function was already established in the AqpN channels prior to the HGT event. Since NIPs are also considered essential for metalloid transport in plants (Pommerrenig et al., 2015), it would be interesting to establish whether metalloid transport was an ancestral biophysical feature of AqpN-type channels. While further experiments will need to verify this theory, it is nevertheless clear that following the HGT event, NIPs have significantly expanded in plant genomes due to serial rounds of tandem and genome duplications (Quigley et al., 2001; Liu et al., 2009). At least five nip genes are present in the moss (Physcomitrella patens) genome (Danielson and Johanson, 2008) and four in the genome of maize (Zea mays) (Chaumont et al., 2001), while eight to thirteen have been reported in the genomes of Arabidopsis thaliana, rice (Oryza sativa), grapevine (Vitis viniferd), black cottonwood tree (Populus trichocarpa), upland cotton (Gossypium hirsutum), tomato (Solanum lycopersicum), potato (Solanum tuberosum), soybean (Glycine max), and cabbage (Brassica oleracea) (Johanson et al., 2001; Quigley et al., 2001; Sakurai et al., 2005; Fouquet et al., 2008; Gupta and Sankararamakrishnan, 2009; Park et al., 2010; Reuscher et al., 2013; Venkatesh et al., 2013; Zhang et al., 2013; Diehn et al., 2015). The differences in the numbers of paralogs are thought to be associated with tandem duplication and the degree of polyploidy (Quigley et al., 2001; Park et al., 2010; Zhang et al., 2013), which is widespread amongst the majority (>70%) of flowering plants (angiosperms) (Blanc and Wolfe, 2004; Adams and Wendel, 2005; Meyers and Levin, 2006; Otto, 2007).

Aquaporin Diversity in Eukaryota

Despite the vast array of extant eukaryotic species, it has been suggested that all of these organisms can be grouped within two superclades, the Bikonta and Unikonta (Cavalier-Smith, 2002; Minge et al., 2009). In turn, these superclades are thought to comprise six major supergroups or kingdoms of eukaryotic life: Excavata, Rhizaria, Chromalveolata, Plantae, Amoebozoa, and Opisthokonta, wherein the latter contains Fungi and Animalia (Cavalier-Smith, 2002; Stechmann and Cavalier-Smith, 2002). In the present context, Figure 1E encapsulates some of this diversity in the form of aquaporins for Unikonta. Based upon an examination of available eukaryotic genomes, Figure 3 provides a schematic summary of the grades and prevalence of aquaporin paralogs found in Eukaryota. Absent from this scheme are members of the Rhizaria; however, BLAST searches of the Bigelowiella natans genome, which is a mixotrophic chlorarachniophyte alga, indicates that at least two paralogs are present in this organism. Consequently, it is likely that Aqps and Glps are encoded in the genomes of representative organisms from all kingdoms of life. Within Chromalveolata and Excavata, however, it is nevertheless apparent that some unicellular members of the Stramenopiles, such as Phytophthora infestans, have rapidly expanded the Glp branch at the expense of Aqps, while members of the Alveolata such as Paramecium tetraurelia and Euglenozoa, including Trypanosoma cruzi, expanded the Aqp branch at the expense of Glps (Abascal et al., 2014). Consequently, the concept of simplification from multicellular to unicellular organisms does not hold for the aquaporin superfamily. Indeed, the genome of the free-living P. tetraurelia encodes more paralogs than any tetrapod, possibly highlighting the physical challenges of exposure to changing environments (von Bulow and Beitz, 2015).

Available data suggest that the first major diversification of aquaporins occurred in land plants (Embryophyta), with seven classes or subfamilies currently documented for non-vascular plants (Bryophyta) such as moss (Danielson and Johanson, 2008). This includes the PIPs, hybrid intrinsic proteins (HIPs), X intrinsic proteins (XIPs), TIPs, NIPs, GlpF-like intrinsic protein (GIP), and small basic intrinsic proteins (SIPs). Between four and five of the bryophyte classes of aquaporin are found in angiosperms, and it has been proposed that the GIP and HIP classes were lost in paired leaf seed plants (Dicotyledonae), while the XIP class was further lost in single seed leaf plants (Monocotyledonae) (Danielson and Johanson, 2008). More recent data for the aquaporin superfamily of one of the oldest living lineages of vascular land plants (Lycophyta), the spike moss (Selaginella moellendorffii), indicate that the GIP subfamily may have been lost prior to the evolution of Lycophyta (Anderberg et al., 2012), while recent data for angiosperms support the absence of the HIP subfamily in Dicotyledonae (Gupta and Sankararamakrishnan, 2009; Park et al., 2010; Reuscher et al., 2013; Venkatesh et al., 2013; Zhang et al., 2013; Diehn et al., 2015). Further comprehensive studies of ferns (Sessa et al., 2014) and basal seed plants such as conifers (Gymnospermae), e.g., the Norway spruce (Nystedt et al., 2013), need to be conducted to determine whether the loss of the HIP subfamily occurred prior to the evolution of ferns, gymnosperms, or angiosperms. Amongst angiosperms, however, the number of paralogs varies between 33 and 71, with the highest gene copy number currently found in the allotetraploid upland cotton (Park et al., 2010).

Phylogenetic reconstructions of the aquaporin superfamilies in Plantae in relation to those present in Animalia have consistently clustered plant PIPs with animal Aqp4 orthologs and plant TIPs with animal Aqp8 orthologs (Zardoya and Villalba, 2001; Zardoya, 2005; Gomes et al., 2009; Soto et al., 2012; Abascal et al., 2014). Some of these studies further indicated that HIPs and XIPs may also repesent orthologs of animal Aqp8 channels, while SIPs are unorthodox aquaporins related to the Aqp 12-like genes of Metazoa (Gomes et al., 2009; Abascal et al., 2014). Although vascular plants lack true Glps, the acquistion of NIPs and GIPs have compensated for this function (Zardoya et al., 2002; Abascal et al., 2014). Amongst basal Metazoa, including sponges (Porifera), corals, and sea anemones (Cnidaria), the origins of four major grades of aquaporins present in deuterostome organisms have been resolved via Bayesian inference (Finn et al., 2014). These combined data sets therefore suggest that the aquaporin superfamilies of eukaryotic organisms can be segregated into four major grades, as shown in Figure 3. We have recently conducted extensive analyses of aquaporins encoded in arthropod genomes (Finn et al., 2015; Stavang et al., 2015), and we have further screened the genomes of members of the Lophotrochozoa to provide a preliminary assessment of the diversity of aquaporins present in Protostomia. We have not found any ortholog that did not fall within the four-grade classification depicted in Figure 3. Considering that lineage-specific gene losses are thought to account for the differences in gene repertoires of eukaryotic genomes, particularly in fungi, nematodes, and insects (Krylov et al., 2003), each of which also lacks at least one of the major grades of aquaporin, while others, including plants, molluscs, worms, and all deuterstome animals retain all four, it is plausible that the four grades of aquaporin arose deep within the eukaryotic lineage (Perez Di Giorgio et al., 2014). While such grades may also have arisen as a result of convergent evolution, it is certainly clear that different grades of aquaporins were differentially expanded and lost in the separate lineages, including the well-studied mammals.

Origin of Aquaporins in Vertebrates

Until recently, the mammalian complement of aquaporins was thought to consist of up to thirteen classes or subfamilies (AQP0 to -12) (King et al., 2004; Kruse et al., 2006; Gomes et al., 2009; Ishibashi et al., 2009). However, new studies have shown that older lineages of mammals (Metatheria and Prototheria) retain additional classes (AQP13 and -14) (Finn and Cerda, 2011; Finn et al., 2014). Yet more subfamilies (Aqp15 and -16) have been identified in non-mammalian vertebrates, including lampreys (Hyperoartia), sharks (Chondrichthyes), ray-finned fishes (Actinopterygii), coelacanths (Actinistia), frogs (Amphibia), alligators (Crocodylia), and turtles (Testudines) (Finn et al., 2014). Two of the new subfamilies, Aqp14 and -15, are classical aquaporins related to Aqp4 and Aqp1, respectively (Fig. 4), while Aqp13 is a Glp expressed in the oocytes of frogs (Virkki et al., 2002), and Aqp16 is closely related to the Aqp8-type of aquaammoniaporins. The permeability properties of Aqp14-, -15-, and -16-type channels have yet to be tested.

The number of subfamilies does not always reflect the number of paralogs in a given organism. With the exception of gorillas and humans, which harbor duplicates of AQP12, and excluding the AQP7 and -10 pseudogenes in humans and mice, respectively (Morinaga et al., 2002; Finn et al., 2014), the mammalian complement of aquaporins precisely reflects the number of subfamilies. The paralog counts of sauropsids also generally reflect the different subfamilies, although lizards (Iguania) and snakes (Serpentes) encode additional AQP5-like genes. The numerical relationship between paralogs and subfamiles is more divergent in Amphibia due to multiple copies of AQP6 (AQP6ub, AQP6vs1, AQP6vs2), which are, respectively, expressed in the urinary bladder and ventral skin (Suzuki et al., 2007; Suzuki and Tanaka, 2009; Suzuki et al., 2015), two copies of AQP5, representing a canonical channel and an AQP5-like gene, and three copies of AQP4 (Finn et al., 2014; Suzuki et al., 2015). In contrast to the Tetrapoda, the genomes of bony fishes (Teleostei) typically encode twice the number of paralogs (20-26) compared to the retained number of subfamilies (11-12), while the holostean spotted gar (Lepisosteas oculatus) has 13 paralogs spread amongst 11 subfamilies. The data for teleost aquaporins are thus consistent with a tertiary round of whole genome duplication (WGD) after the lineage separated from Holostei (Amores et al., 2011). Many of the teleost aquaporins show redundant expression in tissues, which could suggest subfunctionalization, but in most cases their physiological roles remain to be established (Cerda and Finn, 2010).

Paleopolyploidy events cannot explain the origin of all of the piscine paralogs, however. Several gene copies arose via tandem duplication, including aqp1aa, -1ab1, -1ab2, aqp3aa, -3ab, aqp8aa, -8ab, and aqp10aa, -10ab (Tingaud-Sequeira et al., 2008, 2010; Cerda and Finn, 2010; Zapater et al., 2011; Finn and Cerda, 2011; Finn et al., 2014). Although some of these paralogs tandemly duplicated within the teleost lineage, others including aqp3, -3L, -8aa, -8ab, -10, and -10L duplicated earlier in Chondrichthyes or prior to the separation of Holostei from Teleostei (Finn et al., 2014). Consequently, due to the combination of tandem duplication and WGD, the highest aquaporin gene copy number in any vertebrate is currently found in the tetraploid Atlantic salmon (Salmo salar), with 42 paralogs (Finn et al., 2014; Stavang et al., 2015), consistent with a fourth round of WGD in Salmonidae some 88-103 Ma (Berthelot et al., 2014; Macqueen and Johnston, 2014).

Since the first suggestions that vertebrate genomes were shaped by serial paleoploidy events (Ohno et al., 1968; Ohno, 1970), an expanding volume of studies has examined the evolutionary consequences of gene duplication (reviewed by Innan and Kondrashov, 2010; Kondrashov, 2012; Canestro et al., 2013). Although three rounds of WGD are recognized (Meyer and Schartl, 1999; Donoghue and Purnell, 2005; Finn and Kristoffersen, 2007; Braasch et al., 2008; Van de Peer et al., 2009), the timing of the second round near the base of vertebrate evolution remains uncertain (Kuraku et al., 2009). With respect to the aquaporin superfamily, seven classes (aqp01, -3L, -4, -8, -10L, -12, and -14) have been identified in the genomes of lampreys (Hyperoartia), which are extant representatives of jawless vertebrates (Agnatha). More than twice that number (17, aqp0 to -16) have been identified in the genomes of different jawed vertebrates (Gnathostomata) (Finn et al., 2014). Thus, for the aquaporin superfamily the occurrence of a second round of WGD after the separation of Gnathostomata from Agnatha would provide a parsimonious explanation for the divergent numbers of subfamiles in these lineages. This timing is further supported by observations of karyotype expansion between Cyclostomata and Gnathostomata (Nakatani et al., 2007) and earlier reconstructions of other gene families, including homeobox (Neidert et al., 2001; Force et al., 2002; Tank et al., 2009), pigmentation genes (Braasch et al., 2008), vitellogenin (Finn and Kristoffersen, 2007; Babin, 2009; Finn et ai, 2009; Kristoffersen et al., 2009), chemosensory receptors (Libants et al., 2009), adenohypophyseal hormones (Kawauchi and Sower, 2006; Sower et al., 2008), and thyroid and glycoprotein hormone receptors (Freamat and Sower, 2008; Chauvigne et al., 2010; Applebaum et al., 2012).

Interestingly, at least one set of the lamprey genes (aqp 10L1 and -10L2) appears to have arisen via tandem duplication, while another may have arisen as two separate genes (aqp0 and -1) that subsequently fused (aqp01) (Finn et al., 2014). Although further studies will need to examine whether an aqp0-like ortholog exists in hagfishes (Hyperotreti), the expression of the aqp01 gene in the eye of the sea lamprey (Petromyzoti marinus) is consistent with the evolution of multifocal lenses in Hyperoartia after the lineage diverged from Hyperotreti (Gustafsson et al., 2008). The subsequent evolution of aqp0 channels in Gnathostomata suggests that this multi-functional class of aquaporin experienced purifying selection. In all members of the Gnathostomata except birds (Aves), the aqp0 genes encode 263 amino acids with less than 32% of the residues substituted among Chondrichthyes, Actinopterygii, Actinistia, and Tetrapoda. This represents a divergence time spanning over 500 million years (Hedges, 2009). Similarly, a recent analysis of four aqp0 genes in the Atlantic salmon revealed that the salmonid-specific genomic duplicates have only diverged by 4%-6% at the amino acid and nucleotide levels, respectively, over about 100 million years (Chauvigne et al., 2015a). Such a slow rate of substitution (0.04 amino acids/million years) starkly contrasts with the aqp1ab genes of Teleostei, which have experienced up to 81% amino acid substitution during the same evolutionary time period (Zapater et al., 2011). These data highlight the purifying selection of the aqp0 genes that are essential for vision (Verkman, 2003; Froger et al., 2010; Schey et al., 2014).

A salient feature of the approximately 55,000 extant vertebrates is that roughly half now inhabit terrestrial environments (Tetrapoda), while the other half have remained in aquatic environments (fishes). Recent studies of 29 actinopterygian and 90 sarcopterygian genomes revealed that the AQP2, -5, or -6 gene clusters represent a genomic apomorphy since they are only found in the lobe-finned fish lineage (Sarcopterygii), including tetrapods that secondarily adapted to the aquatic environment (Cerda and Finn, 2010; Tingaud-Sequeira et al., 2010; Finn and Cerda, 2011; Xu et al., 2013; Finn et al., 2014). The oldest orthologs of AQP2, -5, and -6 are currently found in the coelacanth (Latimeria chalumnae) with three aqp2-like paralogs (aqp2a, -2b, and -2c, Fig. 4) that are syntenic to the tetrapod AQP2, -5, and -6 gene clusters. Similar aqp2-like genes that are reported as paralogs of AQPO (Aqp0p) have also been identifed in lungfishes (Dipnoi) (Konno et al. 2010). While the function of the coelacanth Aqp2-like channels remains unknown, the physiological role of the Aqp2-like channels in lungfishes is to promote antidiuresis during terrestrial estivation in a manner entirely synonymous with the arginine-vasoticin-induced regulation of AQP2 channels in the kidneys of modern tetrapods (Konno et al., 2010). Given the critical water-conserving roles that the AQP2, -5, and -6 channels play in the skin, urinary bladder, salt glands, and kidneys of extant amphibians, sauropsids, and mammals (Nishimura and Fan, 2002; Muller et al., 2006; Suzuki et al., 2007; Boone and Deen, 2008; Nishimura, 2008; Lau et al., 2009; Suzuki and Tanaka, 2009; Suzuki et al., 2015), it seems likely that their lineage-specific evolution was permissive for tetrapod terrestrial adaptation (Finn et al., 2014). This would be the case regardless of the mechanism of gene duplication, i.e., WGD or tandem duplication, which might be inferred from their linkage to aqp0 genes in the chromosomes of many vertebrates. The identification of an aqp2-like ortholog in the ancient chondrichthyan lineage would resolve the origin of the apomorphic gene clusters in vertebrates.


The available data indicate that multiple forms of aquaporins are found in virtually all organisms, including every eukaryotic kingdom of life. The diversity of molecules that permeate different channels is beginning to blur the lines between the molecular function of a subfamily and its phylogenetic position. The recent discovery of the insect Eglps, which are phylogenetically related to classical, water-selective Aqp4 channels, but which evolved to become the major glycerol transporters in holometabolan insects, clearly illustrates this point. While some microbes may lack aquaporins, other single-celled organisms can harbor higher gene copy numbers than modern mammals. An unexpected diversity of aquaporins is found in Archaea and Bacteria, with four intermixed grades (AqpZ, AqpN, AqpM, and GlpF) established in these domains of life. The first major diversification of aquaporins in Eukaryota is observed in land plants, with up to seven major classes established in the oldest bryophyte lineages (PIP, HIP, XIP, TIP, NIP, GIP, and SIP). The loss of Glps in the embryophytic land plants was compensated for by the acquisition by horizontal gene transfer of the NIP class of glycerol transporter. New data analyzed here suggest that the NIP genes originated from the AqpN class of aquaporins of nitrite-oxidizing Bacteria, and that there was no functional recruitment of residues to confer the glycerol-transporting property. The aquaporin repertoires of other multicellular eukaryotes are found to cluster within four major grades (Aqp4-like, Aqp8-like, Aqpl 2-like, and Glp), supporting the notion that a major divesification of these genes could have occurred deep in the evolution of Eukaryota. Not all lineages retain paralogs from each of the aquaporin grades, however, with current data indicating that Nematoda lack Aqp4-like orthologs and Arthropoda lack Aqp8-like orthologs. Nevertheless, the data show that the aquaporin grades independently expanded by gene duplication in the different lineages. While recurrent WGD and tandem duplications are sufficient to explain the origin of the majority of eukaryotic aquaporins, at least one gene was found to have fused in lampreys. Although the aquaporin repertoires have thus increased in vertebrates, with novel forms retained in non-eutherian members (Aqpl3, -14, -15, and -16), the expansion was unequal, with unique gene clusters of AQP2, -5, and -6-related paralogs only evolving in the sarcopterygian lineage. Owing to the vital, water-conserving roles of the AQP2, -5, and -6 gene clusters in extant amphibians, sauropsids, and mammals, it is suggested that lineage-specific evolution of these apomorphic gene clusters was permissive for vertebrate terrestrial adaptation.


This work was supported by the Research Council of Norway (RCN) projects 204813/F20 and 224816/E40 to R.N.F., and the Spanish Ministry of Economy and Competitiveness (MINECO), project AGL2013-41196-R to JC.

Literature Cited

Abascal, F., I. Irisarri, and R. Zardoya. 2014. Diversity and evolution of membrane intrinsic proteins. Biochim. Biophys. Acta 1840: 1468-1481.

Adams, K. L., and J. F. Wendel. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8: 135-141.

Agre, P., G. M. Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Neilsen. 1993. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265: F463-F476.

Ahmadpour, D., C. Geijer, M. J. Tamas, K. Lindkvist-Petersson, and S. Hohmann. 2014. Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim. Biophys. Acta 1840: 1482-1491.

Alieva, K., C. M. Niemietz, M. Sutka, C. Maurel, M. Parisi, S. D. Tyerman, and G. Amodeo. 2006. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J. Exp. Bot. 57: 609-621.

Almasalmeh, A., D. Krenc, B. Wu, and E. Beitz. 2014. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J. 281: 647-656.

Amores, A., J. Catchen, A. Ferrara, Q. Fontenot, and J. H. Postlethwaite. 2011. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188: 799-808.

Anderberg, H. I., P. Kjellbom, and U. Johanson. 2012. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front. Plant Sci. 3: 33.

Andersson, J. O. 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62: 1182-1197.

Applebaum, S. L., R. N. Finn, C. K. Faulk, G. J. Holt, and B. Scott Nunez. 2012. Developmental expression, differential hormonal regulation and evolution of thyroid and glucocorticoid receptor variants in a marine acanthomorph teleost (Sciaenops ocellatus). Gen. Comp. Endocrinol. 176: 39-51.

Babin, P. J. 2009. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome. Gene 413: 76-82.

Bai, L., K. Fushimi, S. Sasaki, and F. Marumo. 1996. Structure of aquaporin-2 vasopressin water channel. J. Biol. Chem. 271: 5171-5176.

Beitz, E., B. Wu, L. M. Holm, J. E. Schultz, and T. Zeuthen. 2006a. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA 103: 269-274.

Beitz, E., K. Liu, M. Ikeda, W. B. Guggino, P. Agre, and M. Yasui. 2006b. Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biol. Cell 98: 101-109.

Bellati, J., K. Alieva, G. Soto, V. Vitali, C. Jozefkowicz, and G. Amodeo. 2010. Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol. Biol. 74: 105-18.

Benoit, J. B., I. A. Hansen, G. M. Attardo, V. Michalkova, P. O. Mireji, J. L. Bargul, L. L. Drake, D. K. Masiga, and S. Aksoy. 2014a. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Negl. Trop. Dis. 8: e2517.

Benoit, J. B., I. A. Hansen, E. M. Szuter, L. L. Drake, D. L. Burnett, and G. M. Attardo. 2014b. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. J. Comp. Physiol. B 184: 811-825.

Berthelot, C., F. Brunet, D. Chalopin, A. Juanchich, M. Bernard, B. Noel, P. Bento, C. Da Silva, K. Labadie, A. Alberti et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5: 3657.

Bienert, G. P., and F. Chaumont. 2014. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840: 1596-1604.

Bienert, G. P., A. L. Moller, K. A. Kristiansen, A. Schulz, I. M. Moller, J. K. Schjoerring, and T. P. Jahn. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192.

Bienert, G. P., M. Thorsen, M. D. Schussler, H. R. Nilsson, A. Wagner, M. J. Tamas, and T. P. Jahn. 2008. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As[(OH).sub.3] and Sb[(OH).sub.3] across membranes. BMC Biol. 6: 26.

Bienert, G. P., M. D. Bienert, T. P. Jahn, M. Boutry, and F. Chaumont. 2011. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 66: 306-317.

Bienert. G. P., B. Desguin, F. Chaumont, and P. Hols. 2013. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem. J. 454: 559-570.

Blanc, G., and K. H. Wolfe. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16: 1667-1678.

Boone, M., and P. M. Deen. 2008. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch. 456: 1005-1024.

Bots, M., R. Feron, N. Uehlein, K. Weterings, R. Kaldenhoff, and T. Mariani. 2005. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J. Exp. Bot. 56: 113-121.

Braasch, I., J. N. Volff, and M. Schartl. 2008. The evolution of teleost pigmentation and the fish-specific genome duplication. J. Fish Biol. 73: 1891-1918.

Brown, D., T. Katsura, and C. E. Gustafson. 1998. Cellular mechanisms of aquaporin trafficking. Am. J. Physiol. 275: F328-F331.

Calamita, G. 2005. Aquaporins: highways for cells to recycle water with the outside world. Biol. Cell 97: 351-353.

Calamita, G., W. R. Bishai. G. M. Preston, W. B. Guggino, and P. Agre. 1995. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J. Biol. Chem. 270: 29063-29066.

Canestro, C., R. Albalat, M. Irimia, and J. Garcia-Fernandez. 2013. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin. Cell Dev. Biol. 24: 83-94.

Carbrey, J. M., M. Bonhivers, J. D. Boeke, and P. Agre. 2001. Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc. Natl. Acad. Sci. USA 98: 1000-1005.

Carbrey, J. M., D. A. Gorelick-Feldman, D. Kozono, J. Praetorius, S. Nielsen, and P. Agre. 2003. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 100: 2945-2950.

Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52: 297-354.

Cerda, J., and R. N. Finn. 2010. Piscine aquaporins: an overview of recent advances. J. Exp. Zool. A Ecol. Genet. Physiol. 313: 623-650.

Chaumont F., F. Barrieu, R. Jung, and M. J. Chrispeels. 2000. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol. 122: 1025-1034.

Chaumont, F., F. Barrieu, E. Wojcik, M. J. Chrispeels, and R. Jung. 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125: 1206-1215.

Chauvigne, F., A. Tingaud-Sequeira, R. A. Agulleiro, M. Calusinska, A. Gomez, R. N. Finn, and J. Cerda. 2010. Functional and evolutionary analysis of flatfish gonadotropin receptors reveals cladal- and lineage-level divergence of the teleost glycoprotein receptor family. Biol. Reprod. 82: 1088-1102.

Chauvigne, F., E. Lubzens, and J. Cerda. 2011. Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol. 11: 34.

Chauvigne, F., M. Boj, S. Vilella, R. N. Finn, and J. Cerda. 2013. Subcellular localization of selectively permeable aquaporins in the male germ line of a marine teleost reveals spatial redistribution in activated spermatozoa. Biol. Reprod. 89: 37.

Chauvigne, F., C. Zapater, J. A. Stavang, G. L. Taranger, J. Cerda, and R. N. Finn. 2015a. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J. 29: 2172-2184.

Chauvigne, F., M. Boj, R. N. Finn, and J. Cerda. 2015b. Mitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility. Sci. Rep. 5: 7789.

Chen, L. M., J. Zhao, R. Musa-Aziz, M. F. Pelletier, I. A. Drummond, and W. F. Boron. 2010. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299: R1163-R1174.

Clarke, V. C., P. C. Loughlin, D. A. Day, and P. M. Smith. 2014. Transport processes of the legume symbiosome membrane. Front. Plant Sci. 5: 699.

Clemens, D. M., K. L. Nemeth-Cahalan, L. Trinh, T. Zhang, T. F. Schilling, and J. E. Hall. 2013. In vivo analysis of aquaporin 0 function in zebrafish: permeability regulation is required for lens transparency. Invest. Ophthalmol. Vis. Sci. 54: 5136-5143.

Costello, M. J., T. J. McIntosh, and J. D. Robertson. 1989. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 30: 975-989.

Danielson, J. A., and U. Johanson. 2008. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 8: 45.

Danielson, J. A., and U. Johanson. 2010. Phylogeny of major intrinsic proteins. Adv. Exp. Med. Biol. 679: 19-31.

Day R. E., P. Kitchen, D. S. Owen, C. Bland, L. Marshall, A. C. Conner, R. M. Bill, and M. T. Conner. 2014. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta 1840: 1492-1506.

de Groot, B. L., and H. Grubmiiller. 2005. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr. Opin. Struct. Biol. 15: 176-183.

de Grotthuss, C. J. T. 1806. Sur la decomposition de l'eau et des corps qu'elle tient en dissolution a l'aide de l'electricite galvanique. Ann. Chim. (Paris) 58: 54-74.

Dean, R. M., R. L. Rivers, M. L. Zeidel, and D. M. Roberts. 1999. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347-353.

Deen, P. M., M. A. Verdijk, N. V. Knoers, B. Wieringa, L. A. Monnens. C. H. van Os, and B. A. van Oost. 1994. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264: 92-95.

Denker, B. M., B. L. Smith, F. P. Kuhajda, and P. Agre. 1988. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263: 15634-15642.

Diehn, T. A., B. Pommerrenig, N. Bernhardt, A. Hartmann, and G. P. Bienert. 2015. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis. Front. Plant Sci. 6: 166.

Dixit, R., C. Rizzo, M. Nasrallah, and J. Nasrallah. 2001. The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol. Biol. 45: 51-62.

Donoghue, P. C., and M. A. Purnell. 2005. Genome duplication, extinction and vertebrate evolution. Trends Ecol. Evol. 20: 312-319.

Dordas, C., M. J. Chrispeels, and P. H. Brown. 2000. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol. 124: 1349-1361.

Drake, L. L., D. Y. Boudko, O. Marinotti, V. K. Carpenter, A. L. Dawe, and I. A. Hansen. 2010. The aquaporin gene family of the yellow fever mosquito, Aedes aegypti. PLoS One 5: el5578.

Drake, L. L., S. D. Rodriguez, and I. A. Hansen. 2015. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Sci. Rep. 5: 7795.

Duman, J. G. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 63: 327-357.

Dynowski, M., G. Schaaf, D. Loque, O. Moran, and U. Ludewig. 2008. Plant plasma membrane water channels conduct the signalling molecule [H.sub.2][O.sub.2]. Biochem. J. 414: 53-61.

Echevarria, M., E. E. Windhager, S. S. Tate, and G. Frindt. 1994. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc. Natl. Acad. Sci. USA. 91: 10997-11001.

Engelund, M. B., F. Chauvigne, B. M. Christensen. R. N. Finn, J. Cerda, and S. S. Madsen. 2013. Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts. J. Exp. Biol. 216: 3873-3885.

Fabra, M., D. Rahlua. M. G. Bozzo, P. M. Deen, E. Lubzens, and J. Cerda. 2006. Yolk proteolysis and aquaporin-10 play essential roles to regulate fish oocyte hydration during meiosis resumption. Dev. Biol. 295: 250-262.

Fabrick, J. A., J. Pei, J. J. Hull, and A. J. Yool. 2014. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus Hesperus. Insect Biochem. Mol. Biol. 45: 125-140.

Fetter, K., V. Van Wilder, M. Moshelion, and F. Chaumont. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16: 215-228.

Finn, R. N., and J. Cerda. 2011. Aquaporin evolution in fishes. Front. Physiol. 2: 44.

Finn, R. N., and B. A. Kristoffersen. 2007. Vertebrate vitellogenin gene duplication in relation to the "3R hypothesis": correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One 2: el69.

Finn, R. N.. J. Kolarevic, H. Kongshaug, and F. Nilsen. 2009. Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol. Biol. 9: 2.

Finn, R. N., F. Chauvigne, J. B. Hlidberg, C. P. Cutler, and J. Cerda. 2014. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 9: el 13686.

Finn, R. N., F. Chauvigne, J. A. Stavang, X. Belles, and J. Cerda. 2015. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat. Commun. 6: 7814.

Fischer, G., U. Kosinska-Eriksson, C. Aponte-Santamaria, M. Palmgren, C. Geijer, K. Hedfalk, S. Hohmann, B. L. de Groot, R. Neutze, and K. Lindkvist-Petersson. 2009. Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism. PLoS Biol. 7: el000130.

Force, A., A. Amores, and J. H. Postlethwait. 2002. Hox cluster organization in the jawless vertebrate Petromyzon marinus. J. Exp. Zool. 294: 30-46.

Fortin, M. G., N. A. Morrison, and D. P. Verma. 1987. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res. 15: 813-824.

Fouquet, R., C. Leon, N. Ollat, and F. Barrieu. 2008. Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep. 27: 1541-1550.

Freamat, M., and S. A. Sower. 2008. A sea lamprey glycoprotein hormone receptor similar with gnathostome thyrotropin hormone receptor. J. Mol. Endocrinol. 41: 219-228.

Frick, A., M. Jarva, and S. Tornroth-Horsefield. 2013. Structural basis for pH gating of plant aquaporins. FEBS Lett. 587: 989-993.

Froger, A., B. Tallur, D. Thomas, and C. Delamarche. 1998. Prediction of functional residues in water channels and related proteins. Protein Sci. 7: 1458-1468.

Froger, A., D. Clemens, K. Kalman, K. L. Nemeth-Cahalan. T. F. Schilling, and J. E. Hall. 2010. Two distinct aquaporin 0s required for development and transparency of the zebrafish lens. Invest. Ophthalmol. Vis. Sci. 51: 6582-6592.

Fu, D., and M. Lu. 2007. The structural basis of water permeation and proton exclusion in aquaporins (review). Mol. Membr. Biol. 24: 366-374.

Fu, D., A. Libson, L. J. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R. M. Stroud. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481-486.

Geyer, R. R., R. Musa-Aziz, X. Qin, and W. F. Boron. 2013. Relative C[0.sub.2]/N[H.sub.3] selectivities of mammalian aquaporins 0-9. Am. J Physiol. Cell. Physiol. 304: C985-C994.

Gomes, D., A. Agasse. P. Thiebaud, S. Delrot, H. Geros, and F. Chaumont. 2009. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta 1788: 1213-1228.

Gonen, T., P. Sliz, J. Kistler, Y. Cheng, and T. Walz. 2004. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429: 193-197.

Gorelick, D. A., J. Praetorius, T. Tsunenari, S. Nielsen, and P. Agre. 2006. Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem. 7: 14.

Goto, S. G., B. N. Philip, N. M. Teets, Y. Kawarasaki, R. E. Lee. Jr., and D. L. Denlinger. 2011. Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. J. Insect Physiol. 57: 1106-1114.

Goto, S. G., R. E. Lee, Jr., and D. L. Denlinger. 2015. Aquaporins in the Antarctic midge, an extremophile that relies on dehydration for cold survival. Biol. Bull. 229: 47-57.

Gu, X. 1997. The age of the common ancestor of eukaryotes and prokaryotes: statistical inferences. Mol. Biol. Evol. 14: 861-866.

Gupta, A. B., and R. Sankararamakrishnan 2009. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol. 9: 134.

Gustafsson, O. S., S. P. Collin, and R. H. Kroger. 2008. Early evolution of multifocal optics for well-focused colour vision in vertebrates. J. Exp. Biol. 211: 1559-1564.

Hamdi, M., M. A. Sanchez, L. C. Beene, Q. Liu, S. M. Landfear, B. P. Rosen, and Z. Liu. 2009. Arsenic transport by zebrafish aquaglyceroporins. BMC Mol. Biol. 10: 104.

Hedges, S. B. 2009. Vertebrates (Vertebrata). Pp. 309-314 in The Timetree of Life, S. B. Hedges and S. Kumar, eds. Oxford University Press, New York.

Herraiz, A., F. Chauvigne, J. Cerda, X. Belles, and M. D. Piulachs. 2011. Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). J. Exp. Biol. 214: 3630-3638.

Herrera. M., N. J. Hong, and J. L. Garvin. 2006. Aquaporin-1 transports NO across cell membranes. Hypertension 48: 157-164.

Heymann, J. B., and A. Engel. 1999. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol. Sci. 14: 187-193.

Ho, J. D., R. Yeh, A. Sandstrom, I. Chorny, W. E. Harries, R. A. Robbins, L. J. Miercke, and R. M. Stroud. 2009. Crystal structure of human aquaporin 4 at 1.8 [Angstrom] and its mechanism of conductance. Proc. Natl. Acad. Sci. USA 106: 7437-7442.

Hohmann, I., R. M. Bill, G. Kavingo, and B. A. Prior. 2000. Microbial MIP channels. Trends Microbiol. 8: 33-38.

Holm, L. M., D. A. Klaerke, and T. Zeuthen. 2004. Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch. 448: 181-186.

Holm, L. M., T. P. Jahn, A. L. Moller, J. K. Schjoerring, D. Ferri, D. A. Klaerke, and T. Zeuthen. 2005. N[H.sub.3] and N[H.sub.4.sup.+] permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch. 450: 415-428.

Horsefield, R., K. Norden, M. Fellert, A. Backmark, S. Tornroth-Horsefield, A. C. Terwisscha van Scheltinga, J. Kvassman, P. Kjellbom, U. Johansen, and R. Neutze. 2008. High-resolution x-ray structure of human aquaporin 5. Proc. Natl. Acad. Sci. USA 105: 13327-13332.

Huang, C. G., T. Lamitina, P. Agre, and K. Strange. 2007. Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 292: C1867-C1873.

Hub, J. S., and B. L. de Groot. 2008. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. USA 105: 1198-1203.

Hwang, J. H., S. R. Ellingson, and D. M. Roberts. 2010. Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584: 4339-4343.

Ikeda, M., E. Beitz, I. Kozono, W. B. Guggino, P. Agre, and M. Yasui. 2002. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J. Biol. Chem. 277: 39873-39879.

Ikeda, M., A. Andoo, M. Shimono, N. Takamatsu, A. Taki, K. Muta, W. Matsushita, T. Uechi, T. Matsuzaki, N. Kenmochi et al. 2011. The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J. Biol. Chem. 286: 3342-3350.

Innan, H., and F. Kondrashov. 2010. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11: 97-108.

Ishibashi, K., S. Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, T. Gojobori et al. 1994. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. USA 91: 6269-6273.

Ishibashi, K., M. Kuwahara, Y. Gu, Y. Kageyama, A. Tohsaka, F. Suzuki, F. Marumo, and S. Sasaki. 1997a. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J. Biol. Chem. 272: 20782-20786.

Ishibashi, K., M. Kuwahara, Y. Kageyama, A. Tohsaka, F. Marumo, and S. Sasaki. 1997b. Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem. Biophys. Res. Commun. 237: 714-718.

Ishibashi, K., M. Kuwahara, Y. Gu, Y. Tanaka, F. Marumo, and S. Sasaki. 1998. Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem. Biophys. Res. Commun. 244: 268-274.

Ishibashi, K., T. Morinaga, M. Kuwahara, S. Sasaki, and M. Imai. 2002. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim. Biophys. Acta 1576: 335-340.

Ishibashi, K., S. Hara, and S. Kondo. 2009. Aquaporin water channels in mammals. Clin. Exp. Nephrol. 13: 107-117.

Ishibashi, K., Y. Tanaka, and Y. Morishita. 2014. The role of mammalian superaquaporins inside the cell. Biochim. Biophys. Acta 1840: 1507-1512.

Itel, F., S. Al-Samir, F. Oberg, M. Chami, M. Kumar, C. T. Supuran, P. M. Deen, W. Meier, K. Hedfalk, G. Gros et al. 2012. C[O.sub.2] permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J. 26: 5182-5191.

Ivanov, B., M. Kozuleva, and M. Mubarakshina. 2011. Oxygen metabolism in chloroplast. Pp. 39-72 in Cell Metabolism - Cell Homeostasis and Stress Response, P. Babulya (ed.). InTech, Rijeka, Croatia.

Jahn, T. P., A. L. Moller, T. Zeuthen, L. M. Holm, D. A. Klaerke, B. Mohsin, W. Kiihlbrandt, and J. K. Schjoerring. 2004. Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett. 574: 31-36.

Jensen, M. O., E. Tajkhorshid, and K. Schulten. 2001. The mechanism of glycerol conduction in aquaglyceroporins. Structure 9: 1083-1093.

Jiang, J., B. V. Daniels, and D. Fu. 2006. Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281: 454-460.

Johanson, U., M. Karlsson, I. Johansson, S. Gustavsson, S. Sjovall, L. Fraysse, A. R. Weig, and P. Kjellbom. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126: 1358-1369.

Jung, J. S., R. V. Bhat, G. M. Preston, W. B. Guggino, J. M. Barahan, and P. Agre. 1994. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. USA 91: 13052-13056.

Kaldenhoff, R., L. Kai, and N. Uehlein. 2014. Aquaporins and membrane diffusion of CO2 in living organisms. Biochim. Biophys. Acta 1840: 1592-1595.

Kataoka, N., S. Miyake, and M. Azuma. 2009a. Aquaporin and aquaglyceroporin in silkworms, differently expressed in the hindgut and midgut of Bombyx mori. Insect Mol. Biol. 18: 303-314.

Kataoka, N., S. Miyake, and M. Azuma. 2009b. Molecular characterization of aquaporin and aquaglyceroporin in the alimentary canal of Grapholita molesta (the oriental fruit moth)--comparison with Bombyx mori aquaporins. J. Insect Biotechnol. Sericol. 78: 81-90.

Kaufmann, N., J. C. Mathal, W. G. Hill, J. A. Dow, M. L. Zeidel, and J. L. Brodsky. 2005. Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am. J. Physiol. Cell Physiol. 289: C397-C407.

Kawauehi, H., and S. A. Sower. 2006. The dawn and evolution of hormones in the adenohypophysis. Gen. Comp. Endocrinol. 148: 3-14.

Keeling, P. J., and J. D. Palmer. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9: 605-618.

Kikawada, T., A. Saito, Y. Kanamori, M. Fujita, K. Snigorska, M. YVatanabe, and T. Okuda. 2008. Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochim. Biophys. Acta 1778: 514-520.

King, L. S., D. Kozono, and P. Agre. 2004. From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5: 687-698.

Kondrashov, F. A. 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. Biol. Sci. 279: 5048-5057.

Konno, N., S. Hyodo, Y. Yamaguehi, K. Matsuda, and M. Uchiyama. 2010. Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. Endocrinology 151: 1089-1096.

Kosinska Eriksson, U., G. Fischer, R. Friemann, G. Enkavi. E. Tajkhorshid, and R. Neutze. 2013. Subangstrom resolution x-ray structure details aquaporin-water interactions. Science 340: 1346-1349.

Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre, and Y. Kitagawa. 2003. Functional expression and characterization of an archaeal aquaporin. AqpM from Methanothermobacter marburgensis. J. Biol. Chem. 278: 10649-10656.

Kristoffersen, B. A., A. Nerland, F. Nilsen, J. Kolarevic, and R. N. Finn. 2009. Genomic and proteomic analyses reveal non-neofunctionalized vitellogenins in a basal clupeocephalan, the Atlantic herring, and point to the origin of maturational yolk proteolysis in marine teleosts. Mol. Biol. Evol. 26: 1029-1044.

Kruse, E., N. Uehlein, and R. Kaldenhoff. 2006. The aquaporins. Genome Biol. 7: 206.

Krylov, D. M., Y. I. Wolf, I. B. Rogozin, and E. V. Koonin. 2003. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13: 2229-2235.

Kuraku, S., A. Meyer, and S. Kuratani. 2009. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26: 47-59.

Laize, V., R. Gobin, G. Rousselet, C. Badier, S. Hohmann, P. Ripoche. and F. Tacnet. 1999. Molecular and functional study of AQY1 from Saccharomyces cerevisiae--role of the C-terminal domain. Biochem. Biophys. Res. Commun. 257: 139-144.

Laize, V., F. Tacnet, P. Ripoche, and S. Hohmann. 2000. Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16: 897-903.

Lau, K. K., Y. Yang, G. A. Cook, R. J. Wyatt, and H. Nishimura. 2009. Control of aquaporin 2 expression in collecting ducts of quail kidneys. Gen. Comp. Endocrinol. 160: 288-294.

Le Caherec, F., P. Bron, J. M. Verbavatz, A. Garret, G. Morel, A. Cavalier, G. Bonnec, D. Thomas, J. Gouranton, and J. F. Hubert. 1996. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin. J. Cell Sci. 109: 1285-1295.

Lee, J. K., D. Kozono, J. Remis, Y. Kitagawa, P. Agre, and R. M. Stroud. 2005. Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. Proc. Natl. Acad. Sci. USA 102: 18932-18937.

Li, G. W., Y. H. Peng, X. Yu, M. H. Zhang, W. M. Cai, W. N. Sun, and W. A. Su. 2008. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J. Plant Physiol. 165: 1879-1888.

Li, G., V. Santoni, and C. Maurel. 2014. Plant aquaporins: roles in plant physiology. Biochim. Biophys. Acta 1840: 1574-1582.

Li, H., H. Chen, C. Steinbronn. B. Wu, E. Beitz, T. Zeuthen, and G. A. Voth. 2011. Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1. J. Mol. Biol. 407: 607-620.

Libants, S., K. Carr, H. Wu, J. H. Teeter, Y. W. Chung-Davidson, Z. Zhang, C. Wilkerson, and W. Li. 2009. The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol. Biol. 9: 180.

Lin, X., T. Hong, Y. Mu, and J. Torres. 2012. Identification of residues involved in water versus glycerol selectivity in aquaporins by differential residue pair co-evolution. Biochim. Biophys. Acta 1818: 907-914.

Liu, J., J. Xu, S. Gu. B. J. Nicholson, and J. X. Jiang. 2011. Aquaporin enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J. Cell Sci. 124: 198-206.

Liu, K., H. Tsujimoto, S. J. Cha, P. Agre, and L. Rason. 2011. Aquaporin water channel AgAQPl in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc. Natl. Acad. Sci. USA 108: 6062-6066.

Liu, Q., H. Wang, Z. Zhang, J. Wu, Y. Feng, and Z. Zhu. 2009. Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics 10: 313.

Liu, Z., J. Shen. J. M. Carbrey, R. Mukhopadhyay, P. Agre, and B. P. Rosen. 2002. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 99: 6053-6058.

Lodgson, J. M., Jr. 2010. Eukaryotic evolution: the importance of being archaebacterial. Curr. Biol. 20: R1078-R1079.

Luyten, K., J. Albertyn, W. F. Skibbe, B. A. Prior, J. Ramos, J. M. Thevelein, and S. Hohmann. 1995. Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14: 1360-1371.

Ma, J. F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. 2006. A silicon transporter in rice. Nature 440: 688-691.

Ma, T., A. Frigeri, H. Hasegawa, and A. S. Verkman. 1994. Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J. Biol. Chem. 269: 21845-21849.

MacIver, B., C. P. Cutler, J. Yin, M. G. Hill, M. L. Zeidel, and W. G. Hill. 2009. Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). J. Exp. Biol. 212: 2856-63.

Macqueen, D. J., and I. A. Johnston. 2014. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. Biol. Soc. B. 281: 20132881.

Madeira, A., S. Fernandez-Veledo, M. Camps, A. Zorzano, T. F. Moura, V. Ceperuelo-Mallafre, J. Vendrell, and G. Sovoral. 2014. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity (Silver Spring) 22: 2010-2017.

Martos-Sitcha, J. A., M. A. Campinho, J. M. Mancera, G. Martinez-Rodriguez, and J. Fuentes. 2015. Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J. Exp. Biol. 218: 684-693.

Maurel, C., J. Reizer, J. I. Schroeder, and M. J. Chrispeels. 1993. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12: 2241-7.

Maurel, C., J. Reizer, J. I. Schroeder, M. J. Chrispeels, and M. H. Saier, Jr. 1994. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J. Biol. Chem. 269: 11869-11872.

McInerney, J. O., M. J. O'Connell, and D. Pisani. 2014. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12: 449-455.

Meng, Y. L., Z. Liu, and B. P. Rosen. 2004. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279: 18334-18341.

Meyer, A., and M. Schartl. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell. Biol. 11: 699-704.

Meyers, L. A., and D. A. Levin. 2006. On the abundance of polyploids in flowering plants. Evolution 60: 1198-1206.

Minge, M. A., J. D. Silberman, R. J. Orr, T. Cavalier-Smith. K. Shalchian-Tabrizi, F. Burki. A. Skjaeveland, and K. S. Jakobsen. 2009. Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proc. Biol. Sci. 276: 597-604.

Mitani N., N. Yamaji, and J. F. Ma. 2008. Characterization of substrate specificity of a rice silicon transporter, Lsil. Pflugers Arch. 456: 679-686.

Moeller, H. B., E. T. Olesen, and R. A. Fenton. 2011. Regulation of the water channel aquaporin-2 by posttranslational modification. Am. J. Physiol. Renal. Physiol. 300: F1062-F1073.

Morinaga, T., M. Nakakoshi, A. Hirao, M. Imai, and K. Ishibashi. 2002. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem. Biophys. Res. Commun. 294: 630-634.

Morishita, Y., T. Matsuzaki, M. Hara-chikuma, A. Andoo, M. Shimono, A. Matsuki, K. Kobayashi, M. Ikeda, T. Yamamoto. A. Verkman et al. 2005. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 25: 7770-7779.

Mukhopadhvay, R.. H. Bhattacharjee, and B. P. Rosen. 2014. Aquaglyceroporins: generalized metalloid channels. Biochim. Biophys. Acta 1840: 1583-1591.

Mulders, S. M., G. M. Preston, P. M. Deen, W. B. Guggino, C. H. van Os, and P. Agre. 1995. Water channel properties of major intrinsic protein of lens. J. Biol. Chem. 270: 9010-9016.

Muller, C., M. Sendler, and J. P. Hildebrandt. 2006. Downregulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid. J. Exp. Biol. 209: 4067-4076.

Muller, F. 2000. The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J. Am. Aging Assoc. 23: 227-253.

Murata, K., K. Mitsuoka, T. Hirai, T. Walz. P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi. 2000. Structural determinants of water permeation through aquaporin-1. Nature 407: 599-605.

Musa-Aziz, R., L. M. Chen, M. F. Pelletier, and W. F. Boron. 2009. Relative C[O.sub.2]/N[H.sub.3] selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. USA 106: 5406-5411.

Nagae, T., S. Miyake, S. Kosaki, and M. Azuma. 2013. Identification and characterisation of a functional aquaporin water channel (Anomala cuprea DRIP) in a coleopteran insect. J. Exp. Biol. 216: 2564-2572.

Nakatani, Y., H. Takeda, Y. Kohara, and S. Morishita. 2007. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17: 1254-1265.

Nakhoul, N. L., B. A. Davis, M. F. Romero, and W. F. Boron. 1998. Effect of expressing the water channel aquaporin-1 on the C[O.sub.2] permeability of Xenopus oocytes. Am. J. Physiol. 274: C543-C548.

Nakhoul, N. L., K. S. Hering-Smith, S. M. Abdulnour-Nakhoul, and L. L. Hamm. 2001. Transport of N[H.sub.3]/NH in oocytes expressing aquaporin-1. Am. J. Physiol. Renal Physiol. 281: F255-F263.

Neely J. D., B. M. Christensen, S. Nielsen, and P. Agre. 1999. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38: 11156-11163.

Neidert, A. H.. V. Virupannavar, G. W. Hooker, and J. A. Langeland. 2001. Lamprey Dlx genes and early vertebrate evolution. Proc. Natl. Acad. Sci. USA 98: 1665-1670.

Nemeth-Cahalan, K. L., and J. E. Hall. 2000. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275: 6777-6782.

Nemeth-Cahalan, K. L., K. Kalman, and J. E. Hall. 2004. Molecular basis of pH and [Ca.sup.2+] regulation of aquaporin water permeability. J. Gen. Physiol. 123: 573-580.

Niemietz, C. M., and S. D. Tyerman. 2000. Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465: 110-114.

Nishimura, H. 2008. Urine concentration and avian aquaporin water channels. Pflugers Arch. 456: 755-768.

Nishimura, H., and Z. Fan. 2002. Sodium and water transport and urine concentration in avian kidney. Symp. Soc. Exp. Biol. 54: 129-151.

Nozawa, A., J. Takano, M. Kobayashi, N. von Wiren, and T. Fujiwara. 2006. Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 262: 216-222.

Nyblom M., A. Frick, M. Ekvall, K. Hallgren, K. Hedfalk, R. Neutze, E. Tajkhorshid, and S. Tornroth-Horsefield. 2009. Structural and functional analysis of SoPIP2;l mutants adds insight into plant aquaporin gating. J. Mol. Biol. 387: 653-668.

Nystedt, B., N. R. Street, A. Wetterbom, A. Zuccolo, Y. C. Lin, G. G. Scofield, F. Vezzi, N. Delhomme, S. Giacomello, A. Alexeyenko et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579-584.

Ohno S. 1970. Evolution by gene duplication. Springer-Verlag, Berlin.

Ohno, S., Wolf, U., and N. B. Atkin. 1968. Evolution from fish to mammals by gene duplication. Hereditas 59: 169-187.

Oliva, R., G. Calamita, J. M. Thornton, and M. Pellegrini-Calaee. 2010. Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity. Proc. Natl. Acad. Sci. USA 107: 4135-4140.

Otto, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.

Pao, G. M., L. F. Wu, K. D. Johnson, H. Hofte, M. J. Chrispeels, G. Sweet, N. N. Sandal, and M. H. Saier, Jr. 1991. Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 5: 33-37.

Park, J. H., and M. H. Saier, Jr. 1996. Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153: 171-180.

Park, W., B. E. Scheffler, P. J. Bauer, and B. T. Campbell. 2010. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 10: 142.

Perez Di Giorgio, J., G. Soto, K. Alieva, C. Jozefkowicz, G. Amodeo, J. P. Muschietti, and N. D. Ayub. 2014. Prediction of aquaporin function by integrating evolutionary and functional analyses. J. Membr Biol. 247: 107-125.

Philip, B. N., A. J. Kiss, and R. E. Lee, Jr. 2011. The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQPl. J. Exp. Biol. 214: 848-857.

Phongphanphanee, S., N. Yoshida, and F. Hirata. 2010. Molecular selectivity in aquaporin channels studied by the 3D-RISM theory. J. Phys. Chem. B. 114: 7967-7973.

Pitonzo, D., and W. R. Skach. 2006. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. Biochim. Biophys. Acta 1758: 976-988.

Pommerrenig, B., T. A. Diehn, and G. P. Bienert. 2015. Metalloidoporins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 238: 212-227.

Prak, S., S. Hem, J. Boudet. G. Viennois, N. Sommerer, M. Rossignol, C. Maurel, and V. Santoni. 2008. Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;l in response to salt stress. Mol. Cell Proteomics 7: 1019-1037.

Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385-387.

Quigley, F., J. M. Rosenberg, Y. Sachar-Hill, and H. J. Bohnert. 2001. From genome to function: the Arabidopsis aquaporins. Genome Biol. 3 doi: 10.1186/gb-2001-3-1-research0001.

Raina, S., G. M. Preston, W. B. Guggino, and P. Agre. 1995. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J. Biol. Chem. 270: 1908-1912.

Raldua, D., D. Otero, M. Fabra, and J. Cerda. 2008. Differential localization and regulation of two aquaporin-1 homologs in the intestinal epithelia of the marine teleost Sparus aurata. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294: R993-R1003.

Reuscher, S., M. Akiyama, C. Mori, K. Aoki, D. Shibata, and K. Shiratake. 2013. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8: e79052.

Rivera, M. C., and J. A. Lake. 2004. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152-155.

Rivers, R. L., R. M. Dean, G. Chandy, J. E. Hall, D. M. Roberts, and M. L. Zeidel. 1997. Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J. Biol. Chem. 272: 16256-16261.

Sakurai, J., F. Ishikawa, T. Yamaguchi, M. Uemura, and M. Maeshima. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 46: 1568-1577.

Sanders, O. I., C. Rensing, M. Kuroda, B. Mitra, and B. P. Rosen. 1997. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 179: 3365-3367.

Santos, C. R., M. D. Estevao, J. Fuentes, J. C. Cardoso, M. Fabra, A. L. Passos, F. J. Detmers, P. M. Deen, J. Cerda, and D. M. Power. 2004. Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J. Exp. Biol. 207: 1217-1227.

Savage, D. F., P. F. Egea, Y. Robles-Colmenares, J. D. O'Connell, 3rd, and R. M. Stroud. 2003. Architecture and selectivity in aquaporins 2.5: a x-ray structure of aquaporin Z. PLoS Biol. 1: E72.

Schey, K. L., Z. Wang, J. L. Wenke, and Y. Qi. 2014. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim. Biophys. Acta 1840: 1513-1523.

Schuurmans, J. A., J. T. van Dongen, B. P. Rutjens, A. Boonman, C. M. Pieterse, and A. C. Borstlap. 2003. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol. Biol. 53: 633-645.

Secchi, F., C. Lovisolo, N. Uehlein, R. Kaldenhoff, and A. Schubert. 2007. Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225: 381-392.

Sessa, E. B., J. A. Banks, M. S. Barker, J. P. Der, A. M. Duffy, S. W. Graham, M. Hasebe, J. Langdale, F. W. Li, D. B. Marchant et al. 2014. Between two fern genomes. Gigascience 3: 15.

Shakesby, A. J., I. S. Wallace, H. V. Isaacs, J. Pritchard, D. M. Roberts, and A. E. Douglas. 2009. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem. Mol. Biol. 39: 1-10.

Song, J., E. Mak, B. Wu, and E. Beitz. 2014. Parasite aquaporins: current developments in drug facilitation and resistance. Biochim. Biophys. Acta 1840: 1566-1573.

Soto, G., K. Alleva, G. Amodeo, J. Muschietti, and N. D. Ayub. 2012. New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503: 165-176.

Sower, S. A., M. Freamat, and S. I. Kavanaugh. 2009. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen. Comp. Endocrinol. 161: 20-29.

Stavang, J. A., C. Chauvigne, H. Kongshaug, J. Cerda, F. Nilsen, and R. N. Finn. 2015. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics 16: 618. doi: 10.1186/s 12864-015-1814-8.

Stechmann, A., and T. Cavalier-Smith. 2002. Rooting the eukaryote tree by using a derived gene fusion. Science 297: 89-91.

Stryer, L., J. M. Berg, and J. L. Tymoczko. 2010. Biochemstry. W.H. Freeman, New York.

Sui, H., B. G. Han, J. K. Lee, P. Walian, and B. K. Jap. 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature 414: 872-878.

Sutherland, F. C., F. Lages, C. Lucas, K. Luyten, J. Albertyn, S. Hohmann, B. A. Prior, and S. G. Kilian. 1997. Characteristics of Fps1 -dependent and -independent glycerol transport in Saccharomyces cerevisiae. J. Bacteriol. 179: 7790-7795.

Suzuki, M., and S. Tanaka. 2009. Molecular and cellular regulation of water homeostasis in anuran amphibians by aquaporins. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153: 231-241.

Suzuki, M., T. Hasegawa, Y. Ogushi, and S. Tanaka. 2007. Amphibian aquaporins and adaptation to terrestrial environments: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148: 72-81.

Suzuki, M., Y. Shibata, Y. Ogushi, and R. Okada. 2015. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution. Biol. Bull. 229: 109-119.

Takano, J., K. Miwa, and T. Fujiwara. 2008. Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci. 13: 451-457.

Tamma, G., J. H. Robben, C. Trimpert, M. Boone, and P. M. Deen. 2011. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am. J. Physiol. Cell Physiol. 300: C636-C646.

Tani, K., and Y. Fujiyoshi. 2014. Water channel structures analysed by electron crystallography. Biochim. Biophys. Acta 1840: 1605-1613.

Tani, K., T. Mitsuma, Y. Hiraoki, A. Kamegawa, K. Nishikawa, Y. Tanimura, and Y. Fujiyoshi. 2009. Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. J. Mol. Biol. 389: 694-706.

Tank, E. M., R. G. Dekker, K. Beauchamp, K. A. Wilson, A. E. Boehmke, and J. A. Langeland. 2009. Patterns and consequences of vertebrate Emx gene duplications. Evol. Dev. 11: 343-353.

Tatsumi, K., S. Tsuji, H. Miwa, T. Morisaku, M. Nuriya, M. Orihara, K. Kaneko, H. Okano, and M. Yasui. 2009. Drosophila big brain does not act as a water channel, but mediates cell adhesion. FEBS Lett. 583: 2077-2082.

Temmei Y., S. Uchida, D. Hoshino, N. Kanzawa, M. Kuwahara, S. Sasaki, and T. Tsuchiya. 2005. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett. 579: 4417-4422.

Tingaud-Sequeira, A., F. Chauvigne, M. Fabra, J. Lozano, D. Raldua, and J. Cerda. 2008. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication. BMC Evol. Biol. 8: 259.

Tingaud-Sequeira, A., C. Zapater, F. Chauvigne, D. Otero, and J. Cerda. 2009. Adaptive plasticity of killifish (Fundulus heteroclitus) embryos: dehydration-stimulated development and differential aquaporin-3 expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296: R1041-R1052

Tingaud-Sequeira, A., M. Calusinska, R. N. Finn, F. Chauvigne, J. Lozano, and J. Cerda. 2010. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol. Biol. 10: 38.

Tornroth-Horsefield, S., Y. Wang, K. Hedfalk, U. Johanson, M. Karlsson, E. Tajkhorshid, R. Neutze, and P. Kjellhom. 2006. Structural mechanism of plant aquaporin gating. Nature 439: 688-694.

Tournaire-Roux, C., M. Sutka, H. Javot, E. Gout, P. Gerbeau, D. T. Luu, R. Bligny, and C. Maurel. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393-397.

Tsukaguchi, H., S. Weremowicz, C. C. Morton, and M. A. Hediger. 1999. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol. 277: F685-F696.

van Balkom, B. W., B. J. Savelkoul, D. Markovich, E. Hofman, S. Nielsen, P. van der Sluijs, and P. M. Deen. 2002. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J. Biol. Chem. 277: 41473-41479.

Van de Peer, Y., S. Maere, and A. Meyer. 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10: 725-732.

Venkatesh, J., J. W. Yu, and S. W. Park. 2013. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol. Biochem. 73: 392-404.

Verbavatz, J. M., D. Brown, I. Sabolic, G. Valenti, D. A. Ausiello, A. N. Van Hoek, T. Ma, and A. S. Verkman. 1993. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J. Cell Biol. 123: 605-618.

Verdoucq, L., A. Grondin, and C. Maurel. 2008. Structure-function analysis of plant aquaporin AtPIP2:1 gating by divalent cations and protons. Biochem. J. 415: 409-416.

Verdoucq, L., O. Rodrigues, A. Martiniere. D. T. Luu, and C. Maurel. 2014. Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. Curr. Opin. Plant Biol. 22: 101-107.

Verkman, A. S. 2003. Role of aquaporin water channels in eye function. Exp. Eye Res. 76: 137-143.

Verma, R. K., N. D. Prabh, and R. Sankararamakrishan. 2015. Intrahelical salt-bridge and helix destabilizing residues within the same helical turn: role of functionally important loop E half-helix in channel regulation of major intrinsic proteins. Biochim. Biophys. Acta 1848: 1436-1449.

Virkki, L. V., G. J. Cooper, and W. F. Boron. 2001. Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281: R1994-R2003.

Virkki, L. V., C. Franke, P. Somieski, and W. F. Boron. 2002. Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes. J. Biol. Chem. 277: 40610-40616.

von Bulow, J., and E. Beitz. 2015. Number and regulation of protozoan aquaporins reflect environmental complexity. Biol. Bull. 229: 38-46.

Wallace, I. S., and D. M. Roberts. 2005. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44: 16826-16834.

Wallace, I. S., D. M. Wills, J. F. Guenther, and D. M. Roberts. 2002. Functional selectivity for glycerol of the nodulin 26 subfamily of plant membrane intrinsic proteins. FEBS Lett. 523: 109-112.

Wallace, I. S., W. G. Choi, and D. M. Roberts. 2005. The structure, function and regulation of the nodulin 26-like intrinsic protein family of aquaglyceroporins. Biochim. Biophys. Acta 1758: 1165-1175.

Wallace, I. S., A. J. Shakesby, J. H. Hwang, W. G. Choi, N. Martinkova, A. E. Douglas, and D. M. Roberts. 2012. Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin. Biochim. Biophys. Acta 1818: 627-635.

Wree, D., B. Wu, T. Zeuthen, and E. Beitz. 2011. Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion. FEBS J. 278: 740-748.

Wu, B., C. Steinbronn, M. Alsterfjord. T. Zeuthen, and F.. Beitz. 2009. Concerted action of two cation filters in the aquaporin water channel. EMBO J. 28: 2188-2194.

Wysocki, R., C. C. Chery, D. Wawrzvcka, M. Van Hulle, R. Cornelis, J. M. Thevelein, and M. J. Tamas. 2001. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40: 1391-1401.

Xu, S., Y. Yang, X. Zhou, J. Xu, K. Zhou, and G. Yang. 2013. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation. BMC Evol. Biol. 13: 189.

Yakata, K., Y. Hiroaki, K. Ishibashi, E. Sohara, S. Sasaki, K. Mitsuoka, and Y. Fujiyoshi. 2007. Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim. Biophys. Acta 1768: 688-693.

Yakata, K., K. Tanl, and Y. Fujiyoshi. 2011. Water permeability and characterization of aquaporin-11. J. Struct. Biol. 174: 315-320.

Yang, B., and A. S. Verkman. 1997. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272: 16140-16146.

Yanochko, G. M., and A. J. Yool. 2002. Regulated cationic channel function in Xenopus oocytes expressing Drosophila big brain. J. Neurosci. 22: 2530-2540.

Yasui, M., A. Hazama, T. H. Kwon, S. Nielsen, W. B. Guggino, and P. Agre. 1999. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402: 184-187.

Zapater, C., F. Chauvigne, B. Norberg, R. N. Finn, and J. Cerda. 2011. Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol. Biol. Evol. 28: 3151-3169.

Zardoya, R. 2005. Phylogeny and evolution of the major intrinsic protein family. Biol. Cell 97: 397-414.

Zardoya, R., and S. Villalba. 2001. A phylogenetic framework for the aquaporin family in eukaryotes. J. Mol. Evol. 52: 391-404.

Zardoya, R., X. Ding, Y. Kitagawa, and M. J. Chrispeels. 2002. Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc. Natl. Acad. Sci. USA 99: 14893-14896.

Zeuthen, T., and D. A. Klaerke. 1999. Transport of water and glycerol in aquaporin 3 is gated by H(+). J. Biol. Chem. 274: 21631-21636.

Zeuthen, T., B. Wu, S. Pavlovic-Djuranovic, L. M. Holm, N. L. Uzcategui, M. Duszenko, J. F. Kun, J. E. Schultz, and E. Beitz. 2006. Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypanosoma brucei. Mol. Microbiol. 61: 1598-1608.

Zhang, Y. B., and L. Y. Chen. 2013. In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid. Biophys. Chem. 171: 24-30.

Zhang DY, Z. Ali, C. B. Wang, L. Xu, J. X. Yi, Z. L. Xu, X. Q. Liu, X. L. He, Y. H. Huang, I. A. Khan, R. M. Trethowan, and H. X. Ma. 2013. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 8: e56312.


(1) Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; (2) Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and (3)Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar, Consejo Superior de Investigaciones Cientificas (CSIC), 08003 Barcelona, Spain

(*) To whom correspondence should be addressed. E-mail:

Abbreviations: AQP, aquaporin; ar/R, aromatic-arginine selectivity filter; Arg, arginine; ATP, adenosine triphosphate; BIB, big brain; Eglp, entomoglyceroporin; Ga, billions of years ago; GIP, GlpF-like intrinsic protein; Glp, aquaglyceroporin; HGT, horizontal gene transfer; HIP, hybrid intrinsic protein; His, histidine; Leu, leucine; LHIP, Lygus hesperus integral protein-like channel; NIP, plant nodulin 26-like integral protein; NPA, asparagine-proline-alanine; NPC, asparagine-proline-cysteine; PIP, plasma membrane intrinsic protein; RPIP, Rhodnius prolixus integral protein-like channel; SIP, small basic intrinsic protein; TIP, plant tonoplast intrinsic protein; TMD, transmembrane domain; Trp, tryptophan; XIP, X intrinsic protein; WGD, whole genome duplication.

Table 1
Major solvents and solutes shown to permeate through archaeal,
bacterial, plant, insect, and vertebrate aquaporins

grade         Ortholog        Permeant

Classical     AQP0            Water, C[O.sub.2]
              AQP1            Water, C[O.sub.2], NO, [H.sub.2][O.sub.2],

              AQP2            Water

              AQP4            Water, C[O.sub.2]

              AQP5            Water. C[O.sub.2]

              AQP6            Water, glycerol, urea, anions,
                              N[O.sub.3.sup.-], C[O.sub.2], N[H.sub.3]
              PRIP            Water, urea

              BIB             Cations
              DRIP            Water

              Eglp            Water, glycerol, polyols, trehalose

              PIP             Water

Aqp8-related  AQP8            Water, glycerol, urea, N[H.sub.3],

                                 Geyer et al., 2013
              Nematode Aqp8L  Water
              TIP             Water, glycerol, [H.sub.2][O.sub.2],

              XIP             Glycerol, urea, boric acid
              HIP             Unknown
              NIP             Water, glycerol, formamide,
                              arsenite, boric acid, silicic acid,

              Aqyl, Aqy2      Water
                                 Madeira et al., 2014
Unorthodox    AQP 11          Water, glycerol
Bacteria      AqpZ            Water
Glps          AQP3            Water, glycerol, urea, antimonite,
                              arsenite, polyols

              AQP7            Water, glycerol, urea, antimonite,
                              arsenite, N[H.sub.3],

              AQP9            Water, glycerol, urea, carbamides,
                              polyols, purines, pyrimidines,
                              antimonite, arsenite, C[O.sub.2],

              AQP 10          Water, glycerol, urea; antimonite,
                                 et al., 2010
              AQP 13          Water, glycerol, urea
              Nematode Glp    Water, glycerol
              Plasmodium Glp  Water, glycerol, N[H.sup.3],
              Fps1            Water, glycerol, methylamine, N[H.sub.3],
                              antimonite, arsenite, boric acid

Bacteria      GlpF            Water, glycerol, urea, antimonite,
                              arsenite, polyols, lactate
Archaea       AqpM            Water, glycerol

grade           References

Classical       Mulders et al., 1995; Virkki et al., 2001;
aquaporins      Froger et al., 2010; Clemens et al.,
                2013; Geyer et al., 2013;
                Chauvigne et al., 2015b
                Preston et al., 1992; Yang and Verkman,
                1997; Nakhoul et al., 1998; Nakhoul et
                al., 2001; Fabra et al., 2006; Herrera et
                al., 2006; Musa-Aziz et al., 2009; Raldua
                et al., 2008; Tingaud-Sequeira et al.,
                2008, 2009, 2010; Chen et al., 2010;
                Zapater et al., 2011; Itel et al., 2012;
                Geyer et al., 2013; Almasalmeh et al.,
                2014; Martos-Sitcha et al., 2015
                Fushimi et al., 1993; Deen et al., 1994;
                Bai et al., 1996; Yang and Verkman, 1997
                Jung et al., 1994; Yang and Verkman, 1997;
                Musa-Aziz et al., 2009; Geyer et al., 2013
                Raina et al., 1995: Yang and Verkman,
                1997; Musa-Aziz et al., 2009; Geyer et
                 al., 2013
                Yasui et al., 1999; Ikeda et al., 2002;
                Holm et al., 2004; Geyer et al., 2013
                Kikawada et al., 2008; Liu K., et al.,
                2011; Herraiz et al., 2011; Goto et al.,
                 2011; Philip et al., 2011
                Yanochko and Yool, 2002
                Le Caherec et al., 1996; Kaufmann et al.,
                2005; Shakesby et al., 2009; Nagae et al.,
                Kikawada et al., 2008; Kataoka et al.,
                2009a, b; Wallace et al., 2012; Fabrick
                et al., 2014; Drake et al., 2015;
                Finn et al., 2015
                Tournaire-Roux et al., 2003; Schuurmans
                et al., 2003; Bellati et al., 2010
Aqp8-related    Ishibashi et al., 1997b; Jahn et al.,
                2004; Tingaud-Sequeira et al., 2010;
                Engelund et al., 2013; Chauvigne et al.,
                2013; Chauvigne et al., 2015a

                Huang et al., 2007
                Maurel et al., 1993; Jahn et al., 2004;
                Holm et al., 2005; Bienert et al., 2007;
                Li et al., 2008
                Bienert et al., 2011

                Dean et al., 1999; Niemietz and Tyerman,
                2000; Schuurmans et al., 2003; Wallace and
                Roberts. 2005; Ma et al., 2006; Bienert
                et al, 2008; Mitani et al., 2008; Takano
                et al., 2008; Hwang et al., 2010
                Laize et al., 1999; Carbrey et al., 2001;

Unorthodox      Ikeda et al., 2011; Yakata et al., 2011
Bacteria        Calamita et al., 1995
Glps            Echevarria et al., 1994; Ishibashi et al.,
                1994; Ma et al., 1994; Yang and Verkman,
                1997; Hamdi et al., 2009; MacIver et al.,
                2009; Tingaud-Sequeira et al., 2009, 2010;
                Chauvigne et al., 2011
                Ishibashi et al., 1997a; Liu et al., 2002;
                Tingaud-Sequeira et al., 2010; Chauvigne
                et al., 2013; Geyer et al., 2013
                Ishibashi et al., 1998; Tsukaguchi et al.,
                1999; Liu et al., 2002; Carbrey et al.,
                2003; Hamdi et al., 2009; Tingaud-Sequeira
                et al., 2010; Chauvigne et al., 2013;
                Geyer et al., 2013
                Ishibashi et al., 2002; Santos et al.,
                2004; Hamdi et al., 2009; Tingaud-Sequeira

                Virkki et al., 2002
                Huang et al., 2007
                Zeuthen et al., 2006
                Luyten et al., 1995; Sutherland et al.,
                1997; Wysocki et al., 2001; Beitz
                et al., 2006b; Nozawa et al., 2006
Bacteria        Maurel et al., 1994; Calamita et al.,
                1995; Sanders et al., 1997; Meng et al.,
Archaea         2004; Bienert et al., 2013
                Kozono et al., 2003   0

Although the major permeants are indicated, there may be additional
permeants not listed here that are transported by specific aquaporins
in different organisms.
COPYRIGHT 2015 University of Chicago Press
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Finn, Roderick Nigel; Cerda, Joan
Publication:The Biological Bulletin
Article Type:Report
Date:Aug 1, 2015
Previous Article:New insights into aquaporin evolution and physiology in eukaryotic organisms: Introduction to a virtual symposium in The Biological Bulletin.
Next Article:Involvement of aquaporin channels in water extrusion from biosilica during maturation of sponge siliceous spicules.

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters