Printer Friendly

Evidence of pollen and plant macroremains from the sediments of suburban area of medieval Tartu/Oietolmu ja taimsete makrojaanuste vordlev analuus keskaegse Tartu eeslinna alalt.


In 1990-1994 rescue excavations at the building site of Postimaja (Post Office) at 7 Vanemuise Street were carried out in the suburban area of medieval Tartu (Fig. 1) directed by archaeologist Mare Aun (Aun 1994; 1995a; 1995b). In general, treatments of the primary structure of the settlement have been based on the oldest preserved town plans of the 17th century (Maesalu & Vissak 2002). Although the exact data concerning the formation of southern settlement outside the town wall is not available, it is rather likely that the suburban settlement was already developing by the fourth quarter of the 13th century at the latest (Heinloo 2006).

To engage an archaeobotanist to determine plant macro-remains from the deposits of early town was quite a common practice (Sillasoo 1997; 2005). Besides plant tissues, seeds and fruits, sediments frequently contain plant micro-remains--pollen and spores, providing extra information about the environment, economy and activities of the settlement. Only a few pollen analytical studies of medieval cultural layers were known from Europe at that time (cf. Vuorela & Hiekkanen 1991) as urban archaeology was among the latest fields of palynology. However, several waterlogged habitats from archaeological settings may prove suitable for pollen preservation, such as ditches, moats, wells, lynchets, post holes and sewers (Moore et al. 1991). As pollen and spores survive best in acidic and anoxic conditions, soils receive less attention from palynologists. The soil composition of cultural layers differs from the traditional material (peat, lake sediments and waterlogged sediments) used for pollen analyses. Oxidation and drying of soil lead to pollen corrosion and together with high charcoal dust concentration values it hampers the pollen analyses, so that the identification of taxa is often restricted (Vuorela & Lempiainen 1993; Vuorela et al. 1996). This has been, for example, the case with material from Tartu Dome Hill, where pollen was not found (Kihno 1994).


Still, not all settlement layers have badly preserved pollen. Archaeobotanical investigations in medieval towns of Finland (Vuorela & Hiekkanen 1991; Vuorela & Lempiainen 1993; Vuorela 1994), as well as attempts made in this field in the suburban areas of medieval Tallinn (Kihno 1995a), encouraged the archaeologist Mare Aun to involve both an archaeobotanist and a palynologist in the project (Hiie 1995; 2002; Kihno 1995b).

Material and methods


Samples for pollen and plant macrofossil analyses were collected by Ulle Sillasoo in May 1994. The sampling point was located in the southern part of the rescue excavations close to Vanemuise Street (Fig. 2). On the site of Postimaja both prehistoric and medieval cultural layers were discernible. Unfortunately neither of them was observed all over the investigated area; in the southern part of the excavation plot a medieval layer was established as the earliest upon the natural layers (?un 1995b).

About 1 m sample column was taken from the profile [4/i.sup.1] which can be divided into nine complexes (Fig. 3). At the base of the profile light sand crops out. The analysed cross-section begins with 0.18 m of brown peat followed by a 0.12 m well decomposed black layer of humus which is covered by a 0.38 m thick layer of organic-rich soil containing pieces of wood. On top of it, within 0.5 m, layers of sandy soil, fine brown sand rich in charcoal and coarse grey clayey sand with charcoal lay. The upper 0.35 m consists of rubble and infill.



The samples range from the natural layers to the 14th-17th century cultural layers, the dating of which was based on archaeological finds (Aun 1995a). Two pollen and macrofossil sub-samples were analysed from the peat (Table 1), one from the layer of humus and two from the soil. In addition one macrofossil analyse was made from the coarse grey sand containing charcoal, where pollen was not preserved because of high degree of oxidation.

Pollen analysis

For pollen analysis macro-remains from the soil samples of 2 cubic centimetres were removed by sieving with a sieve of 0.25 mm. In order to remove humus and cellulose the samples were treated in a laboratory with sodium hydroxide and boiled in a mixture of sulphuric acid and acetic acid following the standard technique of Berglund and Ralska-Jasiewiczowa (1986). Heavy liquid treatment (Cd[J.sub.2] and KJ solution with the gravity of 2.2 g/[cm.sup.3]) was additionally used for samples with high minerogenic matter content (Pokrovskaya 1950).

The samples were inspected microscopically using microscope Jenaval. A magnification of 400x was applied for routine counting. For pollen identification the keys of Faegry and Iversen (1989), Moore et al. (1991), Kuprianova and Aleshina (1972; 1978) as well as pollen reference collection of the laboratory of geoarchaeology and ancient technology at the Institute of History, Tallinn University, was used. More than 1000 land pollen grains from cultural and 500 from natural layer were counted per sample plus identification of aquatics and spores. Pollen diagrams were plotted with the Tilia-Tilia*Graph software (Grimm 1992). Herbs considered to be human impact indicators were grouped following Behre (1981), Berglund and Ralska-Jasiewiczowa (1986) and Hicks (1992).

Plant macrofossil analysis

For the plant macrofossil analyses the samples were prepared according to the method described by Wasylikowa (1979; 1986). The soil samples were washed under tap water through the sieve with a 0.4 mm mesh. More consolidated sediments were dispersed in a 10% KOH solution one day before washing. Plant remains were picked out and identified under the stereomicroscope ???-10 at the magnification 8.16 times. Most of the investigated plant remains were uncharred. Only carpological finds were identified, vegetative remains of plants were not determined. Identification of seeds and fruits was done using the keys of Katz (Katz et al. 1965; 1977), Rasi?. (1954) and Schoch (Schoch et al. 1988); and the reference collection of seeds and fruits of the laboratory of geoarchaeology and ancient technology at the Institute of History, Tallinn University. The volume of plant macrofossil samples ranged from 400.1100 [cm.sup.3], absolute numbers of finds are presented in the table (Table 2).



80 plant taxa were recorded from the investigated sequence. Table 2 gives a detailed overview of the distribution and grouping of the plant macrofossils identified. Some other remains like sclerotia of fungus (Cenococcum geophilum), fragments of fish and animal bones and puparia of insects are included in the table as well.

Pollen data

Three local pollen assemblage zones (LPAZ) were established for the analysed sediment sequence (Fig. 4) described below, with the earliest zone first.

LPAZ 1 (35.90-36.10 m a.s.l.)

This LPAZ is identified on the basis of two samples in which the proportion of arboreal pollen (AP) is high, up to 96.5% of total land pollen. Betula (11 and 17% respectively), Pinus (20 and 22%), Alnus (8.8 and 20.8%) and Corylus (9 and 8%) are supported by enormous amount of broad-leaved tree Tilia (34.7 and 31.6%). The sum of other Quercetum Mixtum (Ulmus, Quercus and Fraxinus) remain at low relative values ( Picea and Salix also occur in this zone. The sum of non-arboreal pollen (NAP) is low. Spores of Equisetum, Polypodiaceae (1), Sphagnum, Lycopodium and Pteridium were recorded in LPAZ 1.


LPAZ 2 (36.10-36.20 m a.s.l.)

Only few AP (Betula, Pinus, Alnus, Picea, Corylus and Tilia) and NAP pollen grains (Poaceae, Cyperaceae, Umbelliferae, Asteraceae, Viola) were found in this interval. Spores of Polypodiaceae and Sphagnum are present.

LPAZ 3 (36.20-36.60 m a.s.l.)

The uppermost pollen zone in the sequence is established on the basis of the samples in which the pollen concentration of NAP reaches 97%. The high value of NAP is mainly attributable to Poaceae. AP pollen of Betula, Alnus, Picea, Salix and Sambucus are present as scattered finds.


Natural layers

Peat layer (samples F and E) is rather pure by plant species and number of seed finds. Identified plant macro-remains show natural environmental conditions. Wetland species such as celery-leaved buttercup (Ranunculus sceleratus) and marsh woundwort (Stachys palustris) occur and some seeds of nutrient rich habitants such as nettle (Urtica dioica) and fat hen (Chenopodium album) were also found. The pollen spectra of peat (LPAZ 1) indicate also natural conditions and most probably reflect the period of climatic optimum. Extremely high lime (Tilia) pollen frequencies indicate that lime grew near the site at the time of deposition of the material, as the majority of insect pollinated lime pollen drops to the ground with the flowers. Vegetation in the surroundings was heavily influenced by the differences in hydrological regime and soil. Moist river valley vegetation dominated by birch (Betula) forests and alder (Alnus) prevail along the riverside. Mixed forest of pine (Pinus), spruce (Picea) and broad-leaved trees spread on slopes. Presence of spores of light-demanding bracken (Pteridium) and pollen of cow-wheat (Melampyrum), considered to be indicators of grazed forest suggest an existence of clearings in the forest.

Pollen sample from layer D (LPAZ 2) is different from others with its high concentration of microscopic charcoal particles, so the pure visibility keeps the pollen count under 100 pollen grains. It must be mentioned that the concentration of microscopic charcoal particles was too high to be counted in all samples. According to pollen composition, LPAZ 2 is similar to LPAZ 1. Poor preservation of pollen points on low and unstable water level. This hypothesis is supported by macrofossil finds--species of wetland flora are characteristic of this layer. Seeds of Ranunculus sceleratus occur most abundantly, which is the pioneer plant in muddy soils and watersides. This plant is often an indicator of grazing in wetland. Other marsh plants such as marsh cinquefoil (Comarum palustre), cowbane (Cicuta virosa) and sedge (Carex) species were also observed. The number of raspberry (Rubus idaeus) seeds is remarkable. In this condition they should belong to natural vegetation. Anthropogenic indicators such as Chenopodium album, greater celandine (Chelidonium majus) and annual nettle (Urtica urens) also occur, but they might originate from the uppermost layer, as we do not know the degree of contamination of the layers. If the area was used for grazing, what we can suppose by the great presence of the seeds of Ranunculus sceleratus, the settlement weeds might be trampled into this layer by the cattle.

Cultural layers

LPAZ 3 (samples C and B) is rich in pollen which is better preserved than it was in the other samples. Natural mineral soil vegetation is dominated by grasses (Poaceae). The variety of NAP other than Poaceae is high as well reaching up to 50 taxa. In order to study the influence of man a human impact diagram (Fig. 5) was constructed for herbs pollen taxa of cultural layer dated to the 14th century. Pollen dispersal of the family Poaceae is very effective as it consists of wind-pollinated species. To make the traces of human activity more visible against the background of pollen production of Poaceae, the last mentioned taxa was excluded from the calculation sum (NAP-Poaceae = 100%).

Pollen taxa of 18 settlement indicators were recorded. The most dominant are Cerealia and Asteraceae (Liguliflorae pollen type). According to Vuorela (1994) the layers of urban and post-urban period of the Old Town of Helsinki contain many pollen taxa of which Liguliflorae pollen type frequencies dominate, exceeding even those of Poaceae. The relative frequencies of Liguliflorae increase when approaching the edge of the urban cultural layer, thus confirming the importance of this pollen type as one of the essential urban indicators (Vuorela & Lempiainen 1993). All finds of pollen of cereals are summarized as Cerealia type among which pollen of barley (Hordeum type) was more frequent. The rare find is pollen grain of buckwheat (Fagopyrum esculentum). Pollen of sorrel/sheep.s sorrel (Rumex acetosa/acetosella type) and cornflower (Centaurea cyanus) is connected with agriculture, settlement weeds are greater/hoary plantain (Plantago major/media type) and knotgrass (Polygonum aviculare), cabbage family (Brassicaceae), wormwood (Artemisia), goosefoot family (Chenopodiaceae). Melampyrum, heather (Calluna vulgaris) and Anemone type refer to the existence of open forest vegetation in the area. Pollen of water- and shore meadow plants (dominated by Cyperaceae) is also present.


Organic rich deposit (samples C and B) was also richest in macrofossil taxa and seed finds. A few remains of cultural plants were found including one seed of imported fruit--fig (Ficus carica), hemp (Cannabis sativa), opium poppy (Papaver somniferum) and Fagopyrum esculentum. The fruit scale and easily distinguished pollen grain of Fagopyrum esculentum from the sample C provides evidence of the use of this culture. According to the coin finds the same layer is dated to the 14th century (?un 1995a). There are several finds of fruit scales of buckwheat from the old town of Tartu from the 14th.15th centuries (Sillasoo & Hiie 2007). Comparing the number of finds of cultural plants to the other analyses made from medieval layers of Tartu, the low presence of cultural plants in our samples could be explained by the content of analysed material. Abundantly finds were obtained mostly from latrines (Tammet 1988; Sillasoo 1995; 1997); our samples were taken from the cultural layer outside the refuse pit.

The wild plants gathered for food were much more numerous. Seeds of wild strawberry (Fragaria vesca) and hop (Humulus lupulus) were found most frequently. Hop was collected from woods as well as planted in gardens. Some nut fragments of hazel (Corylus avellana) and single seed of cowberry (Vaccinium vitis-idea) and Vaccinium sp. were found. Among the weeds and ruderal plants several field weeds were observed: corn cockle (Agrostemma githago), Centaurea cyanus, wild turnip (Brassica campestris), foxtail (Setaria sp.), black bindweed (Fallopia convolvulus), pale persicaria (Polygonum lapathifolium), cleavers (Galium aparine). Centaurea cyanus and Agrostemma githago are known as weeds in winter crops. The majority of seed finds belong typically to Chenopodium album.

The uppermost part of the column (sample A), dated to the 17th century is characterized by anthropogenic species like fat hen (most numerous), oak-leaved goosefoot (Chenopodium glaucum), spear-leaved orache (Atriplex prostrata), nettles (Urtica dioica, U. urens and Lamium album), common chickweed (Stellaria media), bittersweet (Solanum dulcamara) and black nightshade (Solanum nigrum). All these species are common settlement weeds, which grow near the houses. Some seeds of opium poppy also occur. Because of the sandy soil the preservation of seeds is poor if to compare with the organic rich cultural layer (samples B and C)..

It is obvious from Fig. 4 that pollen spectra from peat (LPAZ 1) and archaeological layer (LPAZ 3) are remarkably different. Two pie pollen diagrams were constructed (Fig. 6) to demonstrate more clearly the differences between two complexes. The main contrast lies in the relationship of arboreal pollen to nonarboreal pollen, reflecting development from closed growing conditions to open landscape. The pollen composition found in the lower unit is dominated by arboreal pollen and spores and provides information about the local conditions preceding the urban settlement. In the upper complex the AP/NAP relation is strongly dominated by Poaceae pollen, originated probably from river shore meadow. Relative pollen frequencies of cereals (Cerealia type) exceed 6%.

Comparison of pollen and macrofossil data

Natural macrofossil assemblages are local and provide information about the vegetation of the nearest area while pollen provides better data from beyond the site. We present a comparison of pollen and plant macro-remains data from the profile [4/i.sup.1] (Tables 3, 4) to see how the plant taxa are recorded in the results of different methods.

In our material the peat layer (Table 3) contains few species of plant macroremains, as only carpological finds were identified. Cryptogams and trees are altogether missing, even the variety of herbs is larger in pollen records, so only the finds of seeds of Urtica dioica and Ranunculus sceleratus do not have corresponding pollen taxa. Urtica dioica release a lot of pollen. The reason of the total absence of Urtica pollen in all samples is probably the quick disintegration of the pollen of delicate exine and partly maybe its poor visibility in soil samples.

The possibilities of pollen analysis are limited concerning the taxonomic level down to which pollen can be identified. Pollen types are sometimes identified only at family or genus level, while macrofossils of anthropogenic plants can be often identified at species level. It is important in the case of cultural layer (Table 4) as it gives more exact information of the activity of people. For example, macroremains of Brassica campestris, Thlaspi arvense and Capsella bursa-pastoris correspond in pollen record to the family Brassicaceae. Agrostemma githago, Cerastium arvense, Cerastium holosteoides, Scleranthus annuus, Silene vulgaris, Stellaria graminea, Stellaria media and Spergula arvensis to the pink family (Caryophyllaceae) as use of phase contrast microscopy would be necessary for identification of the mentioned species. Pollen of some self- or insect pollinating species may not get into the sample even if the plants grow nearby. On the other hand, we can find pollen taxa not recorded from macrofossils--Hordeum t. and rye (Secale cereale) from cultural plants; Plantago major/media, Plantago lanceolata t., rosebay willowherb (Epilobium angustifolium), thistle (Cirsium t.) and Artemisia which belong to weeds and ruderals; wetlands taxa as common valerian (Valeriana officinalis), Orchidaceae, Liliaceae and Iridaceae. Woody plants species are much better represented in pollen record. Cryptogams exist only in t he list of pollen taxa.


The results of our investigation prove that macrofossil data gives different information from pollen data and thus the comparison of two methods allows us to reconstruct local environment in greater detail.

Long-term landscape changes are documented by pollen diagram indicating a transformation of the landscape type from natural to urban. The ratio of arboreal pollen (AP) to non arboreal pollen (NAP) reflects a development to deforestation at least in the 14th century. The proportion of NAP is 5% in lower sub-samples, gaining its maximum values (95%) in the upper samples of the profile [4/i.sup.1] at the level 3620 cm a.s.l. The high value of NAP is mainly attributable to Poaceae (60% of total pollen). The variety of NAP other than Poaceae is high as well, reaching up to 50 taxa. The most dominant settlement indicators are cereals (Cerealia type) and Asteraceae (Liguliflorae pollen type).

The richest plant macrofossil material was obtained from the layers dated to the 14th century. Species composition is typical to medieval towns, although the number of cultivated plants is small. Some remains of buckwheat (Fagopyrum esculentum), hemp (Cannabis sativa), fig (Ficus carica) and opium poppy (Papaver somniferum) were found. The wild plants gathered for food were much more numerous. Hazel (Corylus avellana) nuts, raspberry (Rubus idaeus), wild strawberry (Fragaria vesca), bilberry (Vaccinium myrtillus), cowberry (Vaccinium vitis-idaea) and hop (Humulus lupulus) were found. In addition to typical settlement weeds the seeds of cornflower (Centaurea cyanus) and fragments of corn cockle (Agrostemma githago), the weeds of winter crop, were found.

The results show that the development of the suburban area is in good correlation with the foundation of the town in the 13th century.


This article derives from the project supported by the Estonian target funding project SF0130012s08. We thank Mare Aun and Ulle Sillasoo for sampling of material and Liis Soon for revision of the English. The authors are grateful to Kersti Siitan, Anneli Poska and Liina Maldre for completing the drawings. The journal reviewers are acknowledged for valuable criticism.


Aun, M. 1994. = ??? ?. [TEXT NOT REPRODUCIBLE IN ASCII.]--TATU, 43: 4, 404-408.

Aun, M. 1995a. = ??? ?. [TEXT NOT REPRODUCIBLE IN ASCII.]--TATU, 44: 4, 437-441.

Aun, M. 1995b. Tartu keskaegse eeslinna kultuurkihist Kuuni tanava arheoloogilise materjali pohjal. (Tartu Ulikooli Arheoloogia Kabineti Toimetised, 8.) Tartu, 91.97.

Behre, K.-E. 1981. The interpretation of anthropogenic indicators in pollen diagrams.--Pollen et Spores, 23, 225-245.

Berglund, B. E. & Ralska-Jasiewiczowa, M. 1986. Pollen analysis and pollendiagrams.--Handbook of Holocene Palaeoecology. Palaeohydrology. Ed. B. E. Berglund. Wiley & Sons, Chichester, 455-484.

Eesti taimede maaraja. 1966. Eds M. Kask, A. Vaga. Valgus, Tallinn.

Faegri, K. & Iversen, J. 1989. Textbook of Pollen Analysis. IV ed. John Wiley & Sons, Kobenhavn.

Grimm, E. 1992. TILIA-TILIA*GRAPH Computer program. Illinois State Museum.

Heinloo, E. 2006. Tartu lounapoolne eeslinn kesk- ja varauusajal arheoloogia andmetel. Peaseminaritoo. Manuscript in the Institute of History and Archaeology of the University of Tartu.

Heinloo, E. 2007. Keskaegne Tartu Riia-eeslinn ehitusjaanuste pohjal. (Tartu Linnamuuseumi aastaraamat, 13.) Tartu, 65-76.

Hicks, S. 1992. Pollen evidence for the activities of man in peripherial areas.--Publications of Karelian Institute, 102, 21-39.

Hiie, S. 1995. Tartu Postimaja kaevandi makrojaanuste analuus.--Aun, M. Aruanne arheoloogilistest kaevamistest Tartu Vanemuise tanava kanalisatsioonitrassi maa-alal 17. martsist kuni 17. juulini 1995, lisa 2. Manuscript in the Institute of History of Tallinn University.

Hiie, S. 2002. An example from the archaeobotanical investigations of medieval Tartu, Estonia. Abstract.--Nordic Archaeobotany--NAG 2000 in Umea. (Archaeology and Environment, 15.) University of Umea.

Katz, N. Ya., Katz, S. V. & Kipiani, M. G. 1965. = [TEXT NOT REPRODUCIBLE IN ASCII.] ????. ???k?, ???kb?.

Katz, N. Ya., Katz, S. V. & Skobeeva, I. E. 1977. = [TEXT NOT REPRODUCIBLE IN ASCII.], ???kb?.

Kihno, K. 1994. Tartu Toomemae pohjaplatoo pinnaseproovide palunoloogilise analuusi tulemused. Manuscript in the Institute of History of Tallinn University.

Kihno, K. 1995a. Harjapea joe soodisetete palunoloogiline analuus.--Seveljov, V. Aruanne arheoloogilisest jarelvalvest Tallinnas, Maakri tn. 25, Liivalaia 53, OU Stockmanni ehituskrundil. Tallinn. Manuscript in the Institute of History of Tallinn University.

Kihno, K. 1995b. Tartu Postimaja kaevandi loodusliku ja kultuurkihi vordlev palunoloogiline anal uus.--Aun, M. Aruanne arheoloogilistest kaevamistest Tartu Vanemuise tanava kanalisatsioonitrassi maa-alal 17. martsist kuni 17. juulini 1995, lisa 3. Manuscript in the Institute of History of Tallinn University.

Kuprianova, L. A. & Aleshina, L. A. 1972. = [TEXT NOT REPRODUCIBLE IN ASCII.] ????. ???k?, [TEXT NOT REPRODUCIBLE IN ASCII.].

Kuprianova, L. A. & Aleshina, L. A. 1978. = [TEXT NOT REPRODUCIBLE IN ASCII.] ????. ???k?, [TEXT NOT REPRODUCIBLE IN ASCII.].

Maesalu, A. & Vissak, R. 2002. On the older topography of Tartu.--The Medieval Town in the Baltic: Hanseatic History and Archaeology, II. Ed. R. Vissak & A. Maesalu. Tartu, 145-163.

Moore, P. D., Webb, J. A. & Collinson, M. E. 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford.

Pokrovskaya, I. M. 1950. = [TEXT NOT REPRODUCIBLE IN ASCII.]. ???kb?.

Rasi?., A. 1954. Latvijas PSR nez??u aug?i un s?klas. Latvijas valsts izdevnieciba, Riga.

Schoch, W. H., Pawlik, B. & Schweingruber, F. H. 1988. Botanische Makroreste. P. Haupt, Bern. Sillasoo, U. 1995. Tartu 14. ja 15. sajandi jaatmekastide taimeleidudest. (Tartu Ulikooli Arheoloogia Kabineti Toimetised, 8.) Tartu, 115-127.

Sillasoo, U. 1997. Eesti keskaegsete linnade ja nende lahiumbruse arheobotaanilisest uurimisest 1989.-1996. a. (Tartu Ulikooli Arheoloogia Kabineti Toimetised, 9.) Tartu, 109-119.

Sillasoo, U. 2005. Mis saab arheobotaanikast Eestis?--EJA, 9: 1, 73-81.

Sillasoo, U. & Hiie, S. 2007. An archaeobotanical approach to investigating food of the Hanseatic period in Estonia.--Medieval Food Traditions in Northern Europe. Ed. S. Karg. (Publications from the National Museum. Studies in Archaeology & History, 12.) Copenhagen, 73-96.

Tammet, M. 1988. Tartu keskaegsete jaatmekastide karpoloogilise analuusi tulemusi.--Loodusteaduslikke meetodeid Eesti arheoloogias. Ed. A.-M. Rouk & J. Selirand. Eesti NSV Teaduste Akadeemia Ajaloo Instituut, Tallinn, 97-101.

Vuorela, I. 1994. Palynological investigations in the old town of Helsinki.--Bulletin of the Geological Society of Finland, 66: 2, 125-128.

Vuorela, I. & Hiekkanen, M. 1991. The urban milieu of late- and postmedieval town of Porvoo, southern Finland, investigated by means of pollen analysis.--Annales Botanici Fennici, 28, 95-106.

Vuorela, I. & Lempiainen, T. 1993. Palynological and palaeobotanical investigations in the area of the post-medieval Helsinki Old Town.--Vegetation History & Archaeobotany, 2, 101-123.

Vuorela, I., Gronlund, T. & Lempiainen, T. 1996. A reconstruction of the environment of retting in the city of Turku, Finland, on the basis of diatom, pollen, plant macrofossil and phytolith analyses.--Bulletin of the Geological Society of Finland, 68: 2, 46-71.

Wasylikowa, K. 1979. Plant macrofossil analysis.--Palaeohydrological Changes in the Temperate Zone in the Last 15 000 Years. Ed. B. E. Berglund. (IGCP 158 B. Lake and mire environments. Project guide, vol. 2.) Department of Quaternary Geology, Lund University, 291-313.

Wasylikowa, K. 1986. Analysis of fossil fruits and seeds.--Handbook of Palaeoecology and Palaeohydrology. Ed. B. E. Berglund. John Wiley & Sons Ltd., Chichester, 571-590.

(1) In the present work the family Polypodiaceae is defined on the basis of Eesti taimede maaraja (Key of Estonian Plants) (1966).

Kersti Kihno, Institute of History, Tallinn University, 6 Ruutli St., 10130 Tallinn, Estonia;

Sirje Hiie, Institute of History, Tallinn University, 6 Ruutli St., 10130 Tallinn, Estonia;
Fig. 6. Pie pollen diagrams showing the percentage of main pollen
groups for peat layer (a), and cultural layer (b). The calculations
of pie diagrams are based on the sum of all identified land pollen
and spores (AP + NAP + Spores = 100%) and show the proportions of
arboreal pollen (with Quercetum Mixtum shown separately),
non-arboreal pollen (with Poaceae and Cerealia separately) and spores.

Arboreal Pollen                              55%
Quercetum Mixtum                             33%
Non-Arboreal Pollen (excluded Poaceae)        2%
Poaceae                                       1%
Spores                                        9%

Poaceae                                      57%
Cerealia                                      6%
Spores                                        1%
Arboreal Pollen                               3%
Non-Arboreal Pollen (excluded Poaceae        33%
  and Cerealia)

Note: Table made from pie chart.

Table 1. The analysed samples

Sample   Depth                  Material

F        3592-3595 cm a.s.l.    Peat
E        3600-3610 cm a.s.l.    Peat
D        3615-3620 cm a.s.l.    Humus
C        3620-3630 cm a.s.l.    Soil
B        3650-3660 cm a.s.l.    Soil
A        3690-3700 cm a.s.l.    Sand

Table 2. Macrofossil plant remains

                                        Sample volume, ml

                                    A, 600    B, 400    C, 800

Cannabis sativa                                            1
Fagopyrum esculentum                                       1
Ficus carica                                               1
Papaver somniferum                     4                   2

Corylus avellana                                 1         3
Fragaria vesca                                   4        79
Humulus lupulus                                  2        36
Rubus idaeus
Yaccinium vitis-idaea                                      1
Yaccinium sp.                                              1

Agrostemma githago frgm.                                  61
Anthemis tinctoria                                         1
Anthriscus sylvestris                                      1
A triplex prostrata                    2         2
Brassica campestris                              5         9
Capsella bursa pastoris                                    1
Centaurea cyanus                                 2         3
Cerastium arvense                                          3
Cerastium holosteoides                                    15
Chelidonium majus                                         38
Chenopodium album                     69        479       544
Chenopodium glaucum                    7
Erodium cicutarium                                         1
Fallopia convolvulus                             8        31
Fumaria officinalis                                        2
Galeopsis ladanum                                          1
Galeopsis tetrahit/speciosa                      9        25
Galium aparine                                            39
Galium spurium                                             1
Geranium pusillum                                          4
Lamium album                                               1
Lamium purpureum                       1
Lapsana communis                                           2
Polygonum aviculare                                       29
Polygonum lapathifolium                         12        237
Polygonum sp.                                              2
Potentilla anserina                                        6
Rumex acetosa                                    1
Rumex acetosella                                 8        35
Rumex sp.                                                  1
Scleranthus annuus                               2         5
Setaria sp.                                               13
Silene alba                                      1         1
Silene vulgaris                                            7
Solanum dulcamara                      4                   1
Solanum nigrum                         1                   1
Spergula arvensis                                          9
Stellaria graminea                               3         6
Stellaria media                        1        13
Thlaspi arvense                                  2         3
Urtica dioica                          3         1         5
Urtica urens                           3                   4
Viola arvensis                                   1         1

Alchemilla sp.                                   2         2
Campanula patula                                           6
Carex leporina                                   1         1
Hieracium sp.
Leontodon autumnalis                                       2
Lychnis flos-cuculi                              1         5
Poaceae                                          1        60
Potentilla erecta                                8        15
Potentilla argentea                                        1
Prunella vulgaris                                         39
Ranunculus repens                               11        136

Carex flava                                      1         1
Carex pseudocyperus                    1
Carexspp.                              6        30        146
Cicuta virosa
Comarum palustre
Cyperaceae                                                 2
Eleocharis sp.                                   3         2
Filipendula ulmaria                                        3
Lycopus europaeus                                1
Ranunculus flammula                              2         1
Ranunculus sceleratus                                      4
Stachys palustris
Typha sp.                                        1         2
Viola palustris                                  2         2
Viola sp.                              1         1         6

Betula sp. fruit and catkin scale                         12
Cenococcum geophilum
Puparia                                          8        475
Fish scales                           45        52        29
Fish vertebra                          4         5         3
Fragments of fish bones                         11        25
Fragments of animal bones             46

                                        Sample volume, ml

                                    D, 800    E, 1100   F, 400

Cannabis sativa
Fagopyrum esculentum
Ficus carica
Papaver somniferum

Corylus avellana
Fragaria vesca
Humulus lupulus
Rubus idaeus                          86
Yaccinium vitis-idaea
Yaccinium sp.

Agrostemma githago frgm.
Anthemis tinctoria
Anthriscus sylvestris
A triplex prostrata
Brassica campestris
Capsella bursa pastoris
Centaurea cyanus
Cerastium arvense
Cerastium holosteoides
Chelidonium majus                      4
Chenopodium album                     27                   1
Chenopodium glaucum
Erodium cicutarium
Fallopia convolvulus
Fumaria officinalis
Galeopsis ladanum
Galeopsis tetrahit/speciosa
Galium aparine
Galium spurium
Geranium pusillum
Lamium album
Lamium purpureum
Lapsana communis
Polygonum aviculare
Polygonum lapathifolium
Polygonum sp.
Potentilla anserina
Rumex acetosa
Rumex acetosella
Rumex sp.
Scleranthus annuus
Setaria sp.
Silene alba
Silene vulgaris
Solanum dulcamara
Solanum nigrum
Spergula arvensis
Stellaria graminea
Stellaria media
Thlaspi arvense
Urtica dioica                                    6
Urtica urens                           1
Viola arvensis

Alchemilla sp.
Campanula patula
Carex leporina
Hieracium sp.                                    1
Leontodon autumnalis
Lychnis flos-cuculi                                        1
Poaceae                                1
Potentilla erecta
Potentilla argentea
Prunella vulgaris
Ranunculus repens

Carex flava
Carex pseudocyperus
Carexspp.                              5
Cicuta virosa                          3
Comarum palustre                      11
Eleocharis sp.
Filipendula ulmaria
Lycopus europaeus
Ranunculus flammula
Ranunculus sceleratus                 183        2
Stachys palustris                                8         6
Typha sp.
Viola palustris
Viola sp.

Betula sp. fruit and catkin scale
Cenococcum geophilum                            42        38
Fish scales
Fish vertebra
Fragments of fish bones
Fragments of animal bones

Table 3. Comparison of pollen and macrofossil data from natural
peat (samples F, E). The plant taxa (see also Table 4) identified
at genus or species level are in italic, at family level in * bold

Pollen taxa                  Macrofossil taxa

Poaceae *
Cichoriaceae *               Hieracium sp.
                             Lychnis flos-cuculi
Chenopodiaceae *             Chenopodium album
Rumex Acetosa/acetosella t
Lamiaceae *                  Stachys palustris
Rubiaceae *
                             Urtica dioica
Rosaceae *
Cyperaceae *
                             Ranunculus sceleratus
Brassiceae *
Polypodiaceae *
Corylus avellana

Table 4. Comparison of pollen and macrofossil data from cultural
layer of the 14th century (samples C, B)

Pollen taxa                      Macrofossil taxa

Poaceae *                        Poaceae *
                                 Setarea sp.
Hordeum t.
Secale cereale
                                 Ficus carica
                                 Cannabis sativa
Humulus lupulus                  Humulus lupulus
Asteraceae *
Centaurea cyanus                 Centaurea cyanus
Cirsium t.
Cichorlaceae *                   Leontodon autumnalis
                                 Lapsana communis
                                 Hieracium sp.
Caryophyllaceae *                Agrostemma githago
                                 Cerastium arvense
                                 Cerastium holosteoides
                                 Scleranthus annuus
                                 Silene alba
                                 Silene vulgares
                                 Stellarea graminea
                                 Stellarea media
                                 Spergula arvensis
Lychnis                          Lychnis fos-cuculi
Plantago major/media t
Brassicaceae *                   Brassica campestres
                                 Thlaspi arvense
                                 Capsella bursa pastores
Chenopodiaceae *                 Chenopodium album
                                 Atriplex prostrata
Polygonum sp.                    Polygonum sp.
Polygonum persicaria t
Polygonum aviculare t.           Polygonum aviculare
                                 Polygonum lapathifolium
                                 Fallopia convolvulus
Fagopyrum esculentum             Fagopyrum esculentum
Geraniaceae *                    Geranium pusillum
Erodium cicutarium               Erodium cicutarium
Rumex acetosa/acetosella t       Rumex acetosa
                                 Rumex acetosella
                                 Rumex sp.

Lamiaceae *                      Galeopsis ladanum
                                 Galeopsis tetrahit/speciosa
                                 Stachys palustris
                                 Lycopus europaeus
                                 Lamium album
Prunella vulgaris                Prunella vulgaris
Rubiaceae *                      Galium aparine
                                 Galium spurium
Epilobium angustifolium
                                 Urtica dioica
                                 Urtica urens
Apiaceae *                       Anthriscus sylvestris
                                 Cicuta virosa
Helianthemum nummularium
Rosaceae *                       Potentilla anserina
                                 Fragaria vesca
                                 Comarum palustre
                                 Potentilla erecta
                                 Potentilla argentea
                                 Alchemilla sp.
Filipendula ulmaria              Filipendula ulmaria
Ericaceae *
Calluna vulgaris
                                 Yaccinum vitis-idaea
                                 Yaccinum sp.
Fabaceae *
Medicago lupulina
Vicia t
Campanula                        Campanula patula
Scrophulariaceae *
Cyperaceae *                     Cyperaceae *
                                 Eleocharis sp.
                                 Carex flava
                                 Carex leporina
                                 Carex spp.
Ranunculaceae *                  Ranunculus repens
Ranunculus acris t
Ranunculus flammula              Ranunculus flammula
                                 Ranunculus sceleratus
Anemone t.
                                 Fumaria ofcinalis
                                 Papaver somniferum
                                 Chelidonium majus
                                 Solanum dulcamara
                                 Solanum nigrum
                                 Viola sp.
Viola palustris                  Viola palustris
                                 Viola arvensis

Pollen taxa
Orchidaceae *
Liliaceae *
Iridaceae *
Typha                            Typha sp.
Corylus avellana                 Corylus avellana
Betula                           Betula sp.
Lycopodium annotinum
Lycopodium complanatum
Polypodiaceae *
COPYRIGHT 2008 Estonian Academy Publishers
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2008 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Kihno, Kersti; Hiie, Sirje
Publication:Estonian Journal of Archaeology
Geographic Code:4EXES
Date:Jun 1, 2008
Previous Article:Exchange of amber in Northern Europe in the III millennium BC as a factor of social interactions/ Merevaiguvahetus Pohja-Euroopas ih aastatuhandel...
Next Article:Materiaalne kultuur. Rituaal. Tolgendus.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters