Printer Friendly

Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

1. Introduction

Actinobacteria, especially the genus Streptomyces, are major producers of bioactive metabolites [1] and account for nearly 75% of the total antibiotic production available commercially [2, 3]. A few decades ago, antibiotics were considered as wonder drugs since they warded off deadly pathogens leading to eradication of infectious diseases. However, the unprecedented deployment of antibiotics over a period of time has resulted in evolution of multidrug-resistant pathogens. There is increasing attention to bioprospecting of Actinobacteria from different biotopes. With limiting bioresources, it is now imperative for search of unexplored or underexplored habitats. One such overlooked and promising niche is the inner tissues of plants, especially those with ethnomedicinal value [4-10].

The plant Dracaena cochinchinensis Lour. has been used as a traditional folk medicine in the oriental countries including China [11]. D. cochinchinensis Lour. has many medicinally important properties, like antimicrobial, antiviral, antitumor, cytotoxic, analgesic, antioxidant, anti-inflammatory, haemostatic, antidiuretic, antiulcer, and wound healing activities [10, 12]. The plant is the source of deep red resin having medicinal properties which is also known as dragon's blood. The main components of dragon's blood are flavonoids and stilbenoids [13]. Apart from its medicinal use, it also finds applications as colouring materials and wood varnish [12]. The slow growth of the plant along with low yield of dragon's blood extracts, however, led to the destruction of large number of these plants, thereby endangering the plant. The current study described the diversity of culturable Actinobacteria associated with this medicinal plant and also indicated the cytotoxic potential of these Actinobacteria. The study, in a way, proposed a means for sustainable use of the plant resources without destroying the natural niche.

2. Materials and Methods

2.1. Sample Collection and Isolation of Endophytic Actinobacteria. Healthy plant samples (leaves, stems, and roots) of medicinal plant D. cochinchinensis Lour. were collected from four different provinces located in two countries: Pingxiang, Guangxi province, China (20[degrees]06702"N, 106[degrees]45701"E; elevation, 236 m); Xishuangbanna, Yunnan province, China (21[degrees]55,41,/N, 101[degrees]25/49"E; 984 m); Bach Ma National Park, Thua Thien Hue province, Vietnam (16[degrees]9,55"N, 107[degrees]55,19"E; 1450 m), and Cuc Phuong National Park, Ninh Binh province, Vietnam (20[degrees]19,8,,N, 105[degrees]37,20,,E; 338 m). The plant samples were packed in sterile plastics, taken to the laboratory, and subjected to isolation procedures within 96 h. The samples were washed thoroughly with running tap water and in ultrasonic bath to remove any adhering soil particles and air-dried at ambient temperature for 48 h.

Two methods were employed for the isolation of the endophytic Actinobacteria using seven specific isolation media (Table 1).

Method 1. The plant parts of D. cochinchinensis Lour. were excised and subjected to a five-step surface-sterilization procedure: a 4 min wash in 5% NaOCl, followed by 10 min wash in 2.5% [Na.sub.2][S.sub.2][O.sub.3], a 5 min wash in 75% ethanol, a wash in sterile water, and a final rinse in 10% NaHC[O.sub.3] for 10 min. After drying thoroughly under sterile conditions, the surface sterilized tissues were disrupted aseptically in a commercial blender and distributed on isolation media [5, 7].

Method 2. The surface sterilized plant parts (1-2 g) were sliced, grounded with mortar and pestle, and mixed with 0.5 g CaC[O.sub.3]. The samples were kept in a laminar flow cabinet for 14 d, incubated at 80[degrees]C for 30 min, and plated onto isolation media [7].

Each medium was supplemented with nalidixic acid (25mg x [L.sup.-1]), nystatin (50mg x [L.sup.-1]), and K2Cr2O7 (50mg x [L.sup.- 1]) to inhibit the growth of Gram-negative bacteria and fungi; polyvinyl pyrrolidone (2%) and tannase (0.005%) were also added to improve the development of colonies on media. Colonies grown on these isolation media were selected and purified by repeated streaking on YIM 38 medium. The pure cultures were preserved as glycerol suspensions (20%, v/v) at -80[degrees] C and as lyophilized spore suspensions in skim milk (15%, w/v) at 4[degrees]C.

2.2. Identification and Diversity Profiling. For phylogenetic characterization, genomics DNAs of all isolates were extracted using an enzyme hydrolysis method. About 50 mg of the freshly grown culture was taken in an autoclaved 1.5 mL Eppendorf tube. To the culture, 480 [micro]L TE buffer (1x) and 20 [micro]L lysozyme solution (2mg x [L.sup.-1]) were added. The bacterial suspension was thoroughly mixed and incubated for 2h under shaking conditions (160 rpm, 37[degrees]C). The mixture was treated with 50 [micro]L SDS solution (20%, w/v) and 5 [micro]L Proteinase K solution (20 [micro]g x m[L.sup.-1]) and kept on a water bath (55[degrees]C, 1 h). DNA was then extracted twice with phenolchloroform- isoamyl alcohol (25: 24: 1 v/v/v), followed by precipitation with 80 [micro]L sodium acetate (3 mol x [L.sup.-1], pH 4.8-5.2) and 800 [micro]L absolute ethanol. The resulting DNA precipitate was centrifuged at 4[degrees]C (12,000 rpm, 10 min), washed with 70% ethanol, and then air-dried. The extracted DNA was resuspended in 30 [micro]L TE buffer and stored at -20[degrees] C. PCR amplification for 16S rRNA gene from the extracted DNA samples was done using the primer pair PA-PB (PA: 5'-CAGAGTTTGATCCTGGCT-3'; PB: 5'AGGAGGTGATCCAGCCGCA-37) as described previously [14]. Amplified PCR products were purified and sequenced by Sangon Biotech (Shanghai). Identification of phylogenetic neighbours and calculation of pairwise 16S rRNA gene sequence similarities were achieved using the EzTaxon server (http://www.eztaxon.org/) [15] and BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The alignment of the sequences was done using CLUSTALW [16]. The phylogenetic tree was constructed using the aligned sequences by the neighbour-joining method [17] using Kimura 2-parameter distances [18] in the MEGA 6 software [19]. To determine the support of each clade, bootstrap analysis was performed with 1,000 replications [20].

2.3. Selection of Bioactive Actinobacteria Strains. Each of the isolated Actinobacteria was screened for antimicrobial activity and anthracyclines production. The antibacterial activities were evaluated against Methicillin-resistant Staphylococcus epidermidis (MRSE) ATCC 35984, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 25923, Methicillin-susceptible Staphylococcus aureus (MSSA) ATCC 29213, Klebsiella pneumoniae ATCC 13883, Aeromonas hydrophila ATCC 7966, and Escherichia coli ATCC 25922 using the agar well diffusion method [21]. Anthracycline productivity was screened using the pigment production test as described by Trease [22]. Based on the results of the two screenings, bioactive strains were selected for further assays.

2.4. Antifungal and Cytotoxicity Tests. Antifungal activity of the selected bioactive strains was tested against Fusarium graminearum, Aspergillus carbonarius, and Aspergillus westerdijkiae (strains producing the mycotoxins deoxynivalenol and ochratoxin A) [23, 24]. These test pathogens were provided by CIRAD, UMR QUALISUD, France, and maintained on Potato Dextrose Agar (PDA).

The cytotoxic activity of the selected strains was tested by sulforhodamine B (SRB) assay as described earlier [25-27]. The human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (Hep G2) cells lines used for the test were procured from American Type Culture Collection (ATCC, Boulevard, Manassa, VA 20110, USA). Ellipticine was used as the positive control.

2.5. Screening for Biosynthetic Genes. Three sets of PCR primers A3F/A7R, K1F/M6R, and KS[alpha]F/KS[alpha]R were used for amplification of nonribosomal peptide synthetase (NRPS), polyketide synthase- (PKS-) I, and PKS-II specific domains [6, 28]. PCR amplifications were performed in a Biometra thermal cycler in a final volume of 25 [micro]L containing 0.2 [micro]mol x [L.sup.-1] of each primer, 0.1 [micro]mol x [L.sup.-1] of each of the four dNTPs (Takara, Japan), 2.5 [micro]L of extracted DNA, 0.5 unit of Taq DNA polymerase (with its recommended reaction buffer), and 10% of DMSO. Amplifications were performed according to the following profile: initial denaturation at 96[degrees]C for 5 min; 30 cycles of denaturation at 96[degrees]C for 1min, primer annealing at either 57[degrees] C (for K1F/M6R, A3F/A7R) or 58[degrees]C (for KS[alpha]F/KS[alpha]R) for 1 min, and extension at 72[degrees]C for 1min, followed by a final extension at 72[degrees]C for 5 min. The sizes of amplicons were 1,200-1,400 bp (K1F/M6R), 613 bp (KSaF/KSaR), and 700-800 bp (A3F/A7R).

3. Results

3.1. Isolation of Endophytic Actinobacteria. A total of 304 putative endophytic Actinobacteria were isolated from three different tissues of D. cochinchinensis Lour. The highest number of Actinobacteria was isolated from roots (117 strains, 38.49%), followed by stems (113 strains, 37.17%) and leaves (74 strains, 24.34%) (Figure 1). Among the sites, more Actinobacteria were isolated from Xishuangbanna (Yunnan province, China) and Cuc Phuong National Park (Ninh Binh province, Vietnam) (Figure 1).

During the present study, Method 2 was found to be more suitable for the isolation of endophytic Actinobacteria from tissues of D. cochinchinensis Lour. and accounted for nearly 65% of the total isolation. All the media used in the current study, except for sodium propionate-asparagine-salt agar, were suitable for isolation of endophytic Actinobacteria (Figure 2).

3.2. Diversity Profiling. Based on the 16S rRNA gene sequence analysis, the most abundant Actinobacteria genera were Streptomyces (86.84%), followed by Nocardiopsis (4.93%), Brevibacterium (1.64%), Microbacterium (1.64%), Tsukamurella (1.64%), Arthrobacter (0.66%), Brachybacterium (0.66%), Nocardia (0.66%), Rhodococcus (0.66%), Kocuria (0.33%), Nocardioides (0.33%), and Pseudonocardia (0.33%). The relative abundance of the endophytic Actinobacteria among the different sites is shown in Table 2. Among the different sampling sites, Yunnan and Ninh Binh yielded the highest diversity, each contributing eight genera of Actinobacteria. Yunnan samples yielded the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Brachybacterium, Rhodococcus, Kocuria, and Tsukamurella, while Ninh Binh samples yielded Streptomyces, Tsukamurella, Nocardiopsis, Arthrobacter, Nocardia, Brevibacterium, Nocardioides, and Pseudonocardia. Thua Thien Hue samples contained Streptomyces, Nocardiopsis, and Microbacterium, while Streptomyces and Nocardiopsis were present in Guangxi samples.

3.3. Selection of Bioactive Actinobacteria Strains. All 304 Actinobacteria isolates were tested for antimicrobial activity and anthracycline production. Table 3 represents the distribution of bioactive Actinobacteria. These bioactive strains were distributed in the genera Streptomyces, Nocardiopsis, Nocardioides, Pseudonocardia, and Tsukamurella. The genus Streptomyces possessed the highest proportion of isolates with antimicrobial activities. Anthracyclines are important group of antitumor antibiotics and are being used in cancer treatment [29, 30]. Of the 304 strains, 49 strains tested positive for anthracycline production.

Based on the results of the bioactivity screening, 17 strains (HUST001-HUST011, HUST013-HUST015, HUST017, HUST018, and HUST026) were selected for further antifungal and cytotoxicity studies (Table 4). Of the 17 strains, 14 belonged to the genera Streptomyces while the rest comprised Nocardioides, Nocardiopsis, and Pseudonocardia (Figure 3).

3.4. Evaluation of Antifungal and Cytotoxicity Effects of the Bioactive Strains. Several strains among the selected bioactive Actinobacteria were positive for antifungal activities against the mycotoxins-producing F. graminearum, A. carbonarius, and A. westerdijkiae strains. Frequencies of the antifungal activities against the indicator fungal pathogens were as follows: F. graminearum: 58.8%; A. carbonarius: 41.2%; and A. westerdijkiae: 23.5%. Table 5 summarizes the antifungal profile of the selected 17 strains.

Of the 17 strains, three strains (HUST001, HUST004, and HUST005) exhibited cytotoxic effects against the two tested human cancer cell lines, MCF-7 and Hep G2 (Table 5). Strain HUST004 showed significant inhibition toward MCF-7 cells with [IC.sub.50]-value of 3 [micro]g x m[L.sup.-1], while strains HUST001 and HUST005 showed moderate activity with [IC.sub.50]-values of 19 and 25 [micro]g x m[L.sup.-1], respectively. Against Hep G2 cell lines, [IC.sub.50] values for the strains HUST004 and HUST005 were 10 and 33 [micro]g x m[L.sup.-1], respectively. The remaining strains were inactive against the two cancer cell lines.

3.5. Screening of Biosynthetic Genes. All 17 bioactive strains were investigated for the presence of PKS-I, PKS-II, and NRPS genes. Frequencies of positive PCR amplification of the three biosynthetic systems were 29.41%, 70.59%, and 23.53%, respectively (Table 5). All these three genes were detected in two strains (HUST003, HUST004), which were identified as members of the genus Streptomyces. PKS-II gene was detected at highest frequencies in both Streptomyces and nonStreptomycetes genera, while PKS-I and NRPS genes were detected only in the genus Streptomyces.

4. Discussion

The plant source D. cochinchinensis is known for the production of dragon's blood [11]. Traditional practices of folk medicine involved extraction of dragon's blood from the plant. During its extraction, large scale exploitation of the plant is necessary owing to the low yield of plant's extract and slow growth of the plant, thereby resulting in destruction of large number of century old plant [13]. It is, therefore, imperative to search for alternative source of the plant's metabolites to preserve the plant in its natural niche. One such means is to study the endophytic microbes associated with the plant. In an earlier study by Cui et al. [35], D. cochinchinensis collected from Beijing, China, had been used to study the endophytic fungal diversity. The study resulted in the isolation of 49 fungal strains distributed into 18 genera. In another study of endophytic microbe associated with D. cochinchinensis, Khieu et al. [10] had isolated a Streptomyces strain, producing two potent cytotoxic compounds, from plant samples collected from Cuc Phuong National Park, Ninh Binh province, Vietnam. But neither of these studies described the diversity profile of the Actinobacteria communities living in association with the plant. As endophytic Actinobacteria from medicinal plants have been a major research area in the search of new antibiotic-producing strains [4, 7, 8, 36-39], we have selected the same plant source for in-depth analysis of Actinobacteria community structure. The present study resulted in the isolation of 304 Actinobacteria strains.

Many reports suggested that maximum endophytes were recovered from roots, followed by stems and leaves [9, 31-34]. Similar observation was found during our study whereby more number of isolates was obtained from roots than from stems or leaves (Table 6). This may be due to the fact that rhizospheric regions of the soil have higher concentration of nutrients. A report also suggested that microorganism enters various tissues of plant from rhizosphere and switched to endophytic lifestyles [40,41]. Isolation of more isolates using thesecondmethodmaybeattributedto theenrichmentofthe samples with calcium carbonate. Qin et al. [7] have reported that calcium carbonate altered the pH to alkaline conditions which favour the growth of Actinobacteria.

Among various genera isolated, Streptomyces is predominantly present in the plant D. cochinchinensis. The finding is consistent with similar studies of endophytic bacteria [6, 9, 32, 33, 36]. In the present study, rare Actinobacteria of the genera Arthrobacter, Brevibacterium, Kocuria, Microbacterium, Nocardia, Nocardioides, Nocardiopsis, Pseudonocardia, Rhodococcus, and Tsukamurella were also isolated. Though Arthrobacter, Brevibacterium, Microbacterium, Nocardia, Nocardioides, Nocardiopsis, Pseudonocardia, Rhodococcus, and Tsukamurella have been reported as endophytic Actinobacteria of medicinal plant [6, 7, 31-34], this study forms the first report for the isolation of Brachybacterium and Kocuria (Table 6).

Endophytic Actinobacteria are often associated with antimicrobial properties [6, 7, 31]. This is shown by the high proportion of antibacterial activities by endophytic Actinobacteria associated with D. cochinchinensis Lour.: 23.03% against ATCC 35984, 23.26% against ATCC 25923, 25% against ATCC 29213, 23.68% against ATCC 13883, 32.43% against ATCC 7966, and 17.43% against ATCC 25922. Based on the preliminary bioactivity profile, a set of 17 Actinobacteria were further studied for antifungal and cytotoxic properties. Of the 17 strains selected, 10 strains were significant against F. graminearum, seven against A. carbonarius, and four against A. westerdijkiae. Similar findings have been reported in related studies of Streptomyces strains [42-44]. Four strains (HUST003, HUST004, HUST005, and HUST026) showed remarkable antifungal activity against all test fungi (Table 5). In contrast to above strains, HUST002, HUST006, HUST008, HUST009, HUST013, HUST015, and HUST017 did not show any antifungal activity.

In the study of Cui et al. [35], it was indicated that 71% of the fungal isolates obtained from D. cochinchinensis exhibited varied antitumor activities against five human cancer cell lines: HepG2, MCF7, SKVO3, Hl-60, and 293-T. Similarly, in the study of Khieu et al. [10], the compounds (Z)-tridec-73n3-1,2,13- tricarboxylic acid and Actinomycin-D produced by a Streptomyces sp. exhibited cytotoxic effect against two human cancer cell lines HepG2 and MCF-7. During the current study, three of the Streptomyces strains (HUST001, HUST004, and HUST005) produced potential cytotoxic activities. All the three studies on D. cochinchinensis indicated that the endophytic microbes associated with the plant are alternative sources for extraction of cytotoxic compounds. These studies further indicated that endophytic microbes can serve as a means for sustainable utilization of the plant resources by preserving the natural niche.

The cytotoxic abilities ([IC.sub.50]-values) of the three strains HUST001, HUST004, and HUST005 against the human cancer cell lines MCF-7 and/or Hep G2 range in between 3 and 33 [micro]g x m[L.sup.-1]. This finding is significant with reference to related studies [44-47]. Lu and Shen [45] isolated naphthomycin K from endophytic Streptomyces strain CS which exhibit cytotoxic activity against P388 and A-549 cell lines with [IC.sub.50]-values of 0.07 and 3.17 [micro]mol-[L.sup.-1]. Kim et al. [48] isolated salaceyins A and B from Streptomyces laceyi MS53 having [IC.sub.50]-values of 3.0 and 5.5 [micro]g x m[L.sup.-1] against human breast cancer cell line SKBR3.

The biosynthetic genes are involved in microbial natural product biosynthesis. The antitumor drug bleomycin from Streptomyces verticillus ATCC15003 involved a hybrid NRP-SPKS system [49]. Genomic analysis of the specific strain will, however, be necessary for illustration of the presence of biosynthetic gene clusters. Despite this fact, positive reaction for the amplification of specific domains for the three biosynthetic gene clusters is an indirect indication for the presence of the biosynthetic gene. In the present study, 13 of the 17 bioactive strains were found to have at least one of the three biosynthetic gene clusters. Among them, strains HUST003 and HUST004 showed positive results for the presence of PKS-I, PKS-II, and NRPS genes and also exhibited antifungal activity against all test pathogens (Table 5). Strains HUST006, HUST008, and HUST017 were negative both for the presence of PKS-I, PKS-II, and NRPS genes and for antifungal activity. The results indicated that the antifungal metabolites of these bioactive strains might be products of these biosynthetic genes. Li et al. [4] and Qin et al. [7] had reported that number of isolates having antimicrobial property need not correlate with the percentage of isolates showing the presence of PKS and NRPS gene and vice versa. Strains HUSTO02, HUST009, HUST013, and HUST015 did not show any antifungal activity but they encoded at least one of these biosynthetic genes. Similarly strain HUST014 was absent for PKS or NRPS gene products but showed antifungal activity.

5. Conclusions

Relatively fewer studies have been done to explore the endophytic microbes associated with medicinal plant. This study showed that endophytic Actinobacteria associated with the medicinal plant D. cochinchinensis Lour. could be an alternate source for production of bioactive compounds that were previously obtained from the medicinal plant. It thereby provides a sustainable way of utilizing the medicinal plant without destroying the plant.

https://doi.org/10.1155/2017/1308563

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Nimaichand Salam and Thi-Nhan Khieu contributed equally to this work.

Acknowledgments

The authors are grateful to China Postdoctoral Science Foundation (Project no. 2016M602566), Visiting Scholar Grant of State Key Laboratory of Biocontrol, Sun Yat-Sen University (Project no. SKLBC14F02), Vietnam Ministry of Education and Training (Project no. B2014-01-79), and Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014) for financial support for this study.

References

[1] J. Berdy, "Thoughts and facts about antibiotics: where we are now and where we are heading," Journal of Antibiotics, vol. 65, no. 8, pp. 385-395, 2012.

[2] D. Rodrigues Sacramento, R. R. Rodrigues Coelho, M. D. Wigg et al., "Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil," World Journal of Microbiology and Biotechnology, vol. 20, no. 3, pp. 225-229, 2004.

[3] L.-H. Lee, N. Zainal, A.-S. Azman et al., "Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia," The Scientific World Journal, vol. 2014, Article ID 698178, 2014.

[4] J. Li, G.-Z. Zhao, H.-H. Chen et al., "Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest," Letters in Applied Microbiology, vol. 47, no. 6, pp. 574-580, 2008.

[5] J. Li, G.-Z. Zhao, S. Qin, W.-Y. Zhu, L.-H. Xu, and W.-J. Li, "Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp," International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 6, pp. 1492-1496, 2009.

[6] J. Li, G.-Z. Zhao, H.-Y. Huang et al., "Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L.," Antonie van Leeuwenhoek, vol. 101, no. 3, pp. 515-527, 2012.

[7] S. Qin, J. Li, H.-H. Chen et al., "Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China," Applied and Environmental Microbiology, vol. 75, no. 19, pp. 6176-6186, 2009.

[8] S. Qin, K. Xing, J.-H. Jiang, L.-H. Xu, and W.-J. Li, "Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria," Applied Microbiology and Biotechnology, vol. 89, no. 3, pp. 457-473, 2011.

[9] S. Qin, H.-H. Chen, G.-Z. Zhao et al., "Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods," Environmental Microbiology Reports, vol. 4, no. 5, pp. 522-531, 2012.

[10] T.-N. Khieu, M.-J. Liu, S. Nimaichand et al., "Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour.," Frontiers in Microbiology, vol. 6, article 574, 2015.

[11] X.-H. Wang, C. Zhang, L.-L. Yang, and J. Gomes-Laranjo, "Production of dragon's blood in Dracaena cochinchinensis plants by inoculation of Fusarium proliferatum," Plant Science, vol. 180, no. 2, pp. 292-299, 2011.

[12] D. Gupta, B. Bleakley, and R. K. Gupta, "Dragon's blood: botany, chemistry and therapeutic uses," Journal of Ethnopharmacology, vol. 115, no. 3, pp. 361-380, 2007

[13] L.-L. Fan, P.-F. Tu, J.-X. He, H.-B. Chen, and S.-Q. Cai, "Microscopical study of original plant of Chinese drug "Dragons Blood" Dracaena cochinchinensis and distribution and constituents detection of its resin," Zhongguo Zhongyao Zazhi, vol. 33, no. 10, pp. 1112-1117, 2008.

[14] W.-J. Li, P. Xu, P. Schumann et al., "Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia," International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 7, pp. 1424-1428, 2007

[15] O.-S. Kim, Y.-J. Cho, K. Lee et al., "Introducing EzTaxon-e: a prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species," International Journal of Systematic and Evolutionary Microbiology,vol. 62, no. 3,pp. 716-721, 2012.

[16] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, "The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools," Nucleic Acids Research, vol. 25, no. 24, pp. 4876-4882, 1997

[17] N. Saitou and M. Nei, "The neighbor-joining method: a new method for reconstructing phylogenetic trees," Molecular Biology and Evolution, vol. 4, no. 4, pp. 406-425,1987

[18] M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, UK, 1983.

[19] K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, "MEGA6: molecular evolutionary genetics analysis version 6.0," Molecular Biology and Evolution, vol. 30, no. 12, pp. 2725-2729, 2013.

[20] J. Felsenstein, "Confidence limits on phylogenies: an approach using the bootstrap," Evolution, vol. 39, no. 4, pp. 783-791,1985.

[21] I. A. Holder and S. T. Boyce, "Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture," Burns, vol. 20, no. 5, pp. 426-429, 1994.

[22] G. E. Trease, A Textbook of Pharmacognosy, Bailliere Tindall Ltd, London, UK, 14th edition, 1996.

[23] M. V. Boost, M. M. O'Donoghue, and A. James, "Prevalence of Staphylococcus aureus carriage among dogs and their owners," Epidemiology and Infection, vol. 136, no. 7, pp. 953-964, 2008.

[24] S. Khamna, A. Yokota, and S. Lumyong, "Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production," World Journal of Microbiology and Biotechnology, vol. 25, no. 4, pp. 649-655, 2009.

[25] A. Monks, D. Scudiero, P. Skehan et al., "Feasibility of a highflux anticancer drug screen using a diverse panel of cultured human tumor cell lines," Journal of the National Cancer Institute, vol. 83, no. 11, pp. 757-766, 1991.

[26] R. H. Shoemaker, D. A. Scudiero, G. Melillo et al., "Application of high-throughput, molecular-targeted screening to anticancer drug discovery," Current Topics in Medicinal Chemistry, vol. 2, no. 3, pp. 229-246, 2002.

[27] D. T. Thao, D. T. Phuong, T. T. H. Hanh et al., "Two new neoclerodane diterpenoids from Scutellaria barbata D. Don growing in Vietnam," Journal of Asian Natural Products Research, vol. 16, no. 4, pp. 364-369, 2014.

[28] J. Huffman, R. Gerber, and L. Du, "Review recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins," Biopolymers, vol. 93, no. 9, pp. 764-776, 2010.

[29] L. C. M. Kremer, E. C. Van Dalen, M. Offringa, J. Ottenkamp, and P. A. VoUte, "Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study," Journal of Clinical Oncology, vol. 19, no. 1, pp. 191-196, 2001.

[30] C. Fischer, F. Lipata, and J. Rohr, "The complete gene cluster of the antitumor agent gilvocarcin V and its implication for the biosynthesis of the gilvocarcins," Journal of the American Chemical Society, vol. 125, no. 26, pp. 7818-7819, 2003.

[31] T. Taechowisan, J. F. Peberdy, and S. Lumyong, "Isolation of endophytic actinomycetes from selected plants and their antifungal activity," World Journal of Microbiology and Biotechnology, vol. 19, no. 4, pp. 381-385, 2003.

[32] V. C. Verma, S. K. Gond, A. Kumar, A. Mishra, R. N. Kharwar, and A. C. Gange, "Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity," Microbial Ecology, vol. 57, no. 4, pp. 749-756, 2009.

[33] A. K. Passari, V K. Mishra, R. Saikia, V. K. Gupta, and B. P. Singh, "Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential," Frontiers in Microbiology, vol. 6, article 273, 2015.

[34] K. Zhao, P. Penttinen, T. Guan et al., "The diversity and antimicrobial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau, China," Current Microbiology, vol. 62, no. 1, pp. 182-190, 2011.

[35] J.-L. Cui, S.-X. Guo, H. Dong, and P. Xiao, "Endophytic fungi from Dragon's blood specimens: isolation, identification, phylogenetic diversity and bioactivity," Phytotherapy Research, vol. 25, no. 8, pp. 1189-1195, 2011.

[36] L. Cao, Z. Qiu, J. You, H. Tan, and S. Zhou, "Isolation and characterization of endophytic Streptomyces strains from surfacesterilized tomato (Lycopersicon esculentum) roots," Letters in Applied Microbiology, vol. 39, no. 5, pp. 425-430, 2004.

[37] Q. Gu, H. Luo, W. Zheng, Z. Liu, and Y. Huang, "Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root," International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 9, pp. 2193-2197, 2006.

[38] U. F. Castillo, L. Browne, G. Strobel et al., "Biologically active endophytic streptomycetes from Nothofagus spp. and other plants in patagonia," Microbial Ecology, vol. 53, no. 1, pp. 12-19, 2007

[39] K. Duangmal, A. Thamchaipenet, I. Ara, A. Matsumoto, and Y. Takahashi, "Kineococcus gynurae sp. nov., isolated from a Thai medicinal plant," International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 10, pp. 2439-2442, 2008.

[40] M. Rosenblueth and E. Martlnez-Romero, "Bacterial endophytes and their interactions with hosts," Molecular PlantMicrobe Interactions, vol. 19, no. 8, pp. 827-837, 2006.

[41] S. Compant, C. Clement, and A. Sessitsch, "Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization," Soil Biology and Biochemistry, vol. 42, no. 5, pp. 669-678, 2010.

[42] M. A. Rahman, M. Z. Islam, P. Khondkar, and M. A. U. Islam, "Characterization and antimicrobial activities of a polypeptide antibiotic isolated from a new strain of Streptomyces parvulus," Bangladesh Pharmaceutical Journal, vol. 13, no. 1, pp. 14-17,2010.

[43] R. Usha, P. Ananthaselvi, C. K. Venil, and M. Palaniswamy, "Antimicrobial and antiangiogenesis activity of Streptomyces parvulus KUAP106 from mangrove soil," European Journal of Biological Sciences, vol. 2, no. 4, pp. 77-83, 2010.

[44] S. Jemimah Naine, C. Subathra Devi, V. Mohanasrinivasan, and B. Vaishnavi, "Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract," Brazilian Archives of Biology and Technology, vol. 58, no. 2, pp. 198-207, 2015.

[45] C. Lu and Y. Shen, "A novel ansamycin, naphthomycin K from Streptomyces sp.," The Journal of Antibiotics, vol. 60, no. 10, pp. 649-653, 2007.

[46] E. A. Gontang, S. P. Gaudencio, W. Fenical, and P. R. Jensen, "Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria," Applied and Environmental Microbiology, vol. 76, no. 8, pp. 2487-2499, 2010.

[47] V. Rambabu, S. Suba, P. Manikandan, and S. Vijayakumar, "Cytotoxic and apoptotic nature of migrastatin, a secondary metabolite from Streptomyces evaluated on HepG2 cell line," International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 2, pp. 333-338, 2014.

[48] N. Kim, J. C. Shin, W. Kim et al., "Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi," Journal of Antibiotics, vol. 59, no. 12, pp. 797-800, 2006.

[49] L. Du, C. Sanchez, M. Chen, D. J. Edwards, and B. Shen, "The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase," Chemistry and Biology, vol. 7, no. 8, pp. 623-642, 2000.

Nimaichand Salam, (1) Thi-Nhan Khieu, (1,2) Min-Jiao Liu, (3) Thu-Trang Vu, (2) Son Chu-Ky, (2) Ngoc-Tung Quach, (4) Quyet-Tien Phi, (4) Manik Prabhu Narsing Rao, (1) Angelique Fontana, (5) Samira Sarter, (5) and Wen-Jun Li (1,3)

(1) State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

(2) Department of Food Technology, School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

(3) Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China

(4) Laboratory of Fermentation Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

(5) CIRAD, UMR QUALISUD, 34398 Montpellier, France

Correspondence should be addressed to Son Chu-Ky; son.chuky@hust.edu.vn and Wen- Jun Li; liact@hotmail.com

Received 30 June 2016; Accepted 20 March 2017; Published 6 April 2017

Academic Editor: Young-Mi Lee

Caption: Figure 3: Neighbour-joining phylogenetic dendrogram based on 16S rRNA gene sequences showing the relationship of the selected 18 endophytic Actinobacteria with their closest species.
Table 1: Composition of the seven media used for the isolation
of endophytic Actinobacteria from Dracaena cochinchinensis Lour.

Medium    Name and composition (g [L.sup.-1] of water)    Reference

1         Tap water-yeast extract agar (TWYE)             [3,5]
          Yeast extract 0.25, [K.sub.2]HP[O.sub.4] 0.5,
          agar 15

2         Trehalose agar
          Trehalose 6, KN[O.sub.3] 0.5, C[aCl.sub.2]      [5]
          0.3, [Na.sub.2]HP[O.sub.4] 0.3, MgS[O.sub.4]
          x 7[H.sub.2] O 0.2, agar 15

          Sodium propionate agar                          [5]
3         Sodium propionate 2, N[H.sub.4]N[O.sub.3]
          0.1, KCl 0.1, MgS[O.sub.4] x 7[H.sub.2] O
          0.05, FeS[O.sub.4] x 7[H.sub.2] O 0.05, agar
          15

          Starch agar                                     [5]
4         Starch 2, KN[O.sub.3]1, NaCl 0.4,
          [K.sub.2]HP[O.sub.4] 0.5, MgS[O.sub.4] x
          7[H.sub.2] O 0.5, FeS[O.sub.4] x 7[H.sub.2] O
          0.01, agar 15

          Citrate agar                                    This study
5         Citric acid 0.12, ferric ammonium citrate
          0.12, NaN[O.sub.3] 1.5, [K.sub.2] HP[O.sub.4]
          x 3[H.sub.2] O 0.4, MgS[O.sub.4] x 7[H.sub.2]
          O 0.1, Ca[Cl.sub.2] x [H.sub.2]O 0.05, EDTA
          0.02, [Na.sub.2]C[O.sub.3] 0.2, agar 15

          Sodium propionate-asparagine-salt agar
6         Sodium propionate 4, asparagine 1, casein 2,    [5]
          [K.sub.2]HP[O.sub.4] 1, MgS[O.sub.4] x
          7[H.sub.2] O 0.1, FeS[O.sub.4] x 7[H.sub.2] O
          0.01, NaCl 30, agar 15

          Dulcitol-proline agar                           This study
7         Dulcitol 2, proline 0.5, [K.sub.2]HP[O.sub.4]
          0.3, NaCl 0.3, MgS[O.sub.4] x 7[H.sub.2] O 1,
          Ca[Cl.sub.2] x 2[H.sub.2] O 1, agar 15

Table 2: Distribution of endophytic Actinobacteria isolated from the
different tissues of D. cochinchinensis Lour. among the different
sampling sites.

Genera               Yunnan    Guangxi   Thua Thien Hue   Ninh Binh
                      China     China       Vietnam        Vietnam

Arthrobacter            0         0            0              2
Brachybacterium         2         0            0              0
Brevibacterium          4         0            0              1
Kocuria                 1         0            0              0
Microbacterium          4         0            1              0
Nocardia                0         0            0              2
Nocardioides            0         0            0              1
Nocardiopsis            8         1            2              4
Pseudonocardia          0         0            0              1
Rhodococcus             2         0            0              0
Streptomyces           104       46            30            82
Tsukamurella            1         0            0              5

Total                  126       47            33            98

Genera               Total

Arthrobacter           2
Brachybacterium        2
Brevibacterium         5
Kocuria                1
Microbacterium         5
Nocardia               2
Nocardioides           1
Nocardiopsis           15
Pseudonocardia         1
Rhodococcus            2
Streptomyces          262
Tsukamurella           6

Total                 304

Table 3: Bioactivity profiles of the endophytic Actinobacteria i
solated from D. cochinchinensis Lour.

Genera                          Antimicrobial activity
                    ATCC     ATCC     ATCC     ATCC     ATCC     ATCC
                    35984    25923    29213    13883     7966    25922

Arthrobacter          0        0        0        0        0        0
Brachybacterium       0        0        0        0        0        0
Brevibacterium        0        0        0        0        0        0
Kocuria               0        0        0        0        0        0
Microbacterium        0        0        0        0        0        0
Nocardia              0        0        0        0        0        0
Nocardioides          0        0        1        1        0        0
Nocardiopsis          0        3        4        1        0        0
Pseudonocardia        0        0        1        0        1        0
Rhodococcus           0        0        0        0        0        0
Streptomyces          70       68       70       70       96       53
Tsukamurella          0        0        0        0        1        0
Total                 70       71       76       72       98       53
Proportion (%)      23.03    23.26    25.00    23.68    32.43    17.43

Genera
                    Anthracycline
                     production

Arthrobacter              0
Brachybacterium           0
Brevibacterium            0
Kocuria                   0
Microbacterium            0
Nocardia                  0
Nocardioides              1
Nocardiopsis              1
Pseudonocardia            1
Rhodococcus               0
Streptomyces             46
Tsukamurella              0
Total                    49
Proportion (%)          16.11

Note. Number indicates number of isolates positive for the
particular bioactivity.

ATCC 35984, Methicillin-resistant Staphylococcus epidermidis
(MRSE); ATCC 25923, Methicillin-resistant Staphylococcus aureus
(MRSA); ATCC 29213, Methicillin-susceptible Staphylococcus aureus
(MSSA); ATCC 13883, Klebsiella pneumoniae; ATCC 7966, Aeromonas
hydrophila; ATCC 25922, Escherichia coli.

Table 4: Isolation and characterization profile of the 17 selected
endophytic Actinobacteria.

Strain     Sampling    Isolation   Isolation   Source   Accession
           site*       medium      method               number

HUST001       NB           3           2        Stem    KT033860
HUST002       GX           2           1        Stem    KP317660
HUST003       TTH          5           1        Stem    KT033861
HUST004       YN           3           2        Root    KT033862
HUST005       NB           4           2        Stem    KT033863
HUST006       NB           3           2        Stem    KT033864
HUST007       YN           5           1        Root    KT033865
HUST008       TTH          6           2        Stem    KT033866
HUST009       YN           3           2        Stem    KT033867
HUST010       YN           2           1        Root    KT033868
HUST011       GX           3           1        Root    KT033869
HUST013       NB           4           1        Root    KT033870
HUST014       TTH          5           1        Root    KT033871
HUST015       TTH          7           2        Stem    KT033872
HUST017       YN           2           2        Leaf    KT033873
HUST018       NB           1           2        Root    KT033874
HUST026       NB           1           2        Root    KT033859

Strain     Closest homologs

HUST001    Streptomyces puniceus NBRC 12811T
HUST002    Streptomyces violarus NBRC 13104T
HUST003    Streptomyces cavourensis NBRC 13026T
HUST004    Streptomyces cavourensis NBRC 13026T
HUST005    Streptomyces parvulus NBRC 13193T
HUST006    Streptomyces rubiginosohelvolus NBRC 12912T
HUST007    Streptomyces puniceus NBRC 12811T
HUST008    Streptomyces puniceus NBRC 12811T
HUST009    Streptomyces puniceus NBRC 12811T
HUST010    Streptomyces pluricolorescens NBRC 12808T
HUST011    Streptomyces parvulus NBRC 12811T
HUST013    Pseudonocardia carboxidivorans Y8T
HUST014    Streptomyces augustmycinicus NBRC 3934T
HUST015    Streptomyces violarus NBRC 13104T
HUST017    Nocardiopsis dassonvillei subsp. albirubida DSM 40465t
HUST018    Streptomyces graminisoli JR- 19T
HUST026    Nocardioides ganghwensis JC2055t

Strain     Pairwise
           similarity

HUST001       100.0
HUST002       99.45
HUST003       99.70
HUST004       100.0
HUST005       99.73
HUST006       99.72
HUST007       100.0
HUST008       99.80
HUST009       98.66
HUST010       100.0
HUST011       100.0
HUST013       100.0
HUST014       99.85
HUST015       99.57
HUST017       100.0
HUST018       99.45
HUST026       98.26

* YN, Xishuangbanna, Yunnan province, China; GX, Pingxiang, Guangxi
province, China; TTH, Bach MaNational Park, Thua Thien Hue
province, Vietnam; NB, Cuc Phuong National Park, Ninh Binh
province, Vietnam.

Table 5: Antifungal, cytotoxic, and biosynthetic gene profiles of
the 17 selected endophytic Actinobacteria isolated from D.
cochinchinensis Lour.

                         Test pathogens
Strain     Fusarium      Aspergillus      Aspergillus
           graminearum   carbonarius      westerdijkiae

HUST001         +              -                -
HUST002         -              -                -
HUST003         +              +                +
HUST004         +              +                +
HUST005         +              +                +
HUST006         -              -                -
HUST007         +              -                -
HUST008         -              -                -
HUST009         -              -                -
HUST010         +              +                -
HUST011         +              +                -
HUST013         -              -                -
HUST014         +              -                -
HUST015         -              -                -
HUST017         -              -                -
HUST018         +              +                -
HUST026         +              +                +

            Cytotoxicity on MCF-7 (given in % inhibition)
Strain        Concentration ([micro]g x [ml.sup.-1])
           10000    2000     400      80       16       [IC.sub.50]

HUST001    101.74   94.48    70.47    63.70    48.84    19
HUST002    112.12   89.42    62.60    31.86    15.99    194
HUST003    106.71   97.45    67.50    44.38    19.33    120
HUST004    105.40   88.68    73.52    62.87    56.94    3
HUST005    107.96   106.95   103.59   58.13    44.02    25
HUST006    78.54    17.16    5.59     -1.08    -10.50   5710
HUST007    97.06    82.03    33.40    25.28    18.73    832
HUST008    99.71    81.92    42.76    30.32    11.34    399
HUST009    94.51    84.24    26.54    16.43    8.34     870
HUST010    98.86    98.72    68.98    29.28    11.93    166
HUST011    98.10    54.71    47.71    39.48    24.42    695
HUST013    53.93    0.62     -3.91    -5.34    -6.81    9517
HUST014    91.67    80.05    52.38    43.63    11.27    249
HUST015    99.05    83.68    70.60    37.20    15.59    129
HUST017    22.66    -0.40    -1.00    -2.63    -8.75    >10000
HUST018    42.02    6.29     4.41     -1.26    0.57     >10000
HUST026    92.08    86.55    37.72    28.64    22.61    623

           Cytotoxicity on Hep G2 (given in % inhibition)
Strain
           10000    2000     400      80       16       [IC.sub.50]

HUST001    103.92   103.29   102.75   56.25    12.42    68
HUST002    105.66   94.93    45.31    17.74    4.48     547
HUST003    109.97   109.29   90.54    54.56    -4.41    56
HUST004    109.18   107.70   103.23   87.50    62.08    10
HUST005    109.38   95.95    97.89    56.33    37.92    33
HUST006    88.18    13.60    9.25     -2.98    -5.14    5745
HUST007    125.34   107.26   35.64    -3.78    -5.46    587
HUST008    105.41   103.72   27.53    8.78     -2.05    633
HUST009    121.62   104.90   18.83    -6.83    -17.04   688
HUST010    98.50    97.87    58.09    34.39    13.29    271
HUST011    85.25    47.37    27.53    13.06    -14.29   1721
HUST013    9.34     -3.28    -14.36   -19.50   -13.38   >10000
HUST014    109.90   106.17   86.86    46.85    -6.02    77
HUST015    101.49   97.87    76.25    32.02    -4.37    172
HUST017    -1.27    -1.70    -2.76    -1.54    -12.18   >10000
HUST018    32.18    -0.88    -2.25    -12.44   -15.58   >10000
HUST026    104.63   86.23    38.05    21.95    10.72    691

           Biosynthetic genes
Strain
           PKS-I    PKS-II   NRPS

HUST001      -        +        -
HUST002      -        +        -
HUST003      +        +        +
HUST004      +        +        +
HUST005      -        +        +
HUST006      -        -        -
HUST007      +        -        -
HUST008      -        -        -
HUST009      +        +        -
HUST010      -        +        -
HUST011      +        +        -
HUST013      -        +        -
HUST014      -        -        -
HUST015      -        +        -
HUST017      -        -        -
HUST018      -        +        +
HUST026      -        +        -

Table 6: Comparative endophytic Actinobacteria diversity profile
from different plant sources.

                       Number of isolates from
Plant sources          different tissues
                       Leaves    Roots    Stems    Others

Artemisia annua           /        /        /         /
(Yunnan, China)

Maytenus
austroyunnanensis        102      126       84        /
(Yunnan, China)

36 plant species
(Chiang Mai,             97       212       21        /
Thailand)

Azadirachta indica
A. Juss. (Varanasi,      12        30       13        /
India)

7 plant species           6        22       9         2
(Mizoram, India)

26 species               78       326      156        /
(Sichuan, China)

Dracaena
cochinchinensis
Lour. (China and         74       117      113        /
Vietnam)

Plant sources          Diversity profile*                    Reference

                       Streptomyces (123);
                       Promicromonospora (26);
                       Pseudonocardia (15); Nocardia (11);
Artemisia annua        Nonomuraea (10); Rhodococcus (8);        [6]
(Yunnan, China)        Kribbella (7); Micromonospora (7);
                       Actinomadura (6); Amycolatposis
                       (3); Streptosporangium (3);
                       Dactylosporangium (2); Blastococcus
                       (1); Glycomyces (1); Gordonia (1);
                       Kocuria (1); Microbispora (1);
                       Micrococcus (1); Phytomonospora (1)

                       Streptomyces (208); Pseudonocardia
                       (22); Nocardiopsis (21);
                       Micromonospora (17);
Maytenus               Promicromonospora (6);
austroyunnanensis      Streptosporangium (6); Actinomadura      [9]
(Yunnan, China)        (4); Amycolatopsis (4); Nonomuraea
                       (4); Mycobacterium (3); Glycomyces
                       (2); Gordonia (2); Microbacterium
                       (2); Plantactinospora (2);
                       Saccharopolyspora (2); Tsukamurella
                       (2); Cellulosimicrobium (1);
                       Janibacter (1); Jiangella (1);
                       Nocardia (1); Polymorphospora (1)

36 plant species       Streptomyces (277); Microbispora
(Chiang Mai,           (14); Nocardia (8); Micromonospora       [31]
Thailand)              (4); uncharacterized (27)

Azadirachta indica     Streptomyces (27);
A. Juss. (Varanasi,    Streptosporangium (8); Microbispora      [32]
India)                 (6); Streptoverticillium (3);
                       Saccharomonospora (3); Nocardia (2)

7 plant species        Streptomyces (23); Microbacterium        [33]
(Mizoram, India)       (9); Leifsonia (1); Brevibacterium
                       (1); Uncharacterized (3)

26 species             Streptomyces, Micromonospora,            [34]
(Sichuan, China)       Nonomuraea, Oerskovia,
                       Promicromonospora, Rhodococcus

Dracaena               Streptomyces (264); Nocardiopsis
cochinchinensis        (15); Brevibacterium (5);             This study
Lour. (China and       Microbacterium (5); Tsukamurella
Vietnam)               (5); Arthrobacter (2);
                       Brachybacterium (2); Nocardia (2);
                       Rhodococcus (2); Kocuria (1);
                       Nocardioides (1); Pseudonocardia
                       (1)

* Number within parentheses indicates the number of strains from
each genera; / indicates no data.

Figure 1: Distribution of endophytic Actinobacteria isolated from
the different tissues of Dracaena cochinchinensis Lour. among the
different sampling sites.

                 Roots   Stems   Leaves
Yunnan            48      44       34
Guangxi           14      18       15
Thua Thien Hue     3      18       12
Ninh Binh         52      33       13

Total             117     113      74

Note: Table made from bar graph.

Figure 2: Effect of media on the isolation of endophytic
Actinobacteria.

Medium 1     11%
Medium 2     16%
Medium 3     19%
Medium 4     18%
Medium 5     18%
Medium 6      3
Medium 7     15%

Note: Table made from pie chart.
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi
Publication:BioMed Research International
Article Type:Report
Date:Jan 1, 2017
Words:7056
Previous Article:No Significant Difference between Plasma miRNAs and Plasma-Derived Exosomal miRNAs from Healthy People.
Next Article:Calcium Ionophore, Calcimycin, Kills Leishmania Promastigotes by Activating Parasite Nitric Oxide Synthase.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters