Printer Friendly

El uso de las nuevas practicas para la evaluacion de la condicion corporal.

The use of new practices for assessment of body condition score

INTRODUCCION

La condicion corporal (CC) se ha reconocido como una herramienta importante para el manejo de ganado lechero. Ademas, la CC es el metodo mas importante para la interpretacion de las reservas de energia corporal en este ganado (1-9). Es un sistema muy simple y con buena repetibilidad para evaluar las reservas corporales de grasa (1, 10-14); se ha puesto una atencion considerable en la CC, en lo que se refiere al calculo de la movilizacion de los tejidos (15). Este sistema se utiliza tambien para la preparacion de un plan de alimentacion adecuado y para la determinacion del estado nutricional de las vacas en la granja lechera (16).

Hay algunas dificultades en la interpretacion del sistema de CC, en cuanto al rango y la variacion (2). Ademas, las diferentes escalas de puntuacion varian de 0 a 4.0 a 5.1 a 4.1 a 5 y de 1 a 9 (1). En Turquia, de manera similar al sistema utilizado en los Estados Unidos, el mas comun y probablemente mas importante rango de calificacion aplica una escala de 1 a 5, siendo 1 demacrado, 2 delgado, 3 promedio, 4 graso y finalmente 5 obeso (17). El ultimo sistema fue aplicado luego a un metodo descrito anteriormente en otra parte (18) y se basa completamente en la evaluacion visual, en tanto que el otro sistema de calificacion de la condicion corporal empleado en algunos paises como el Reino Unido, Irlanda y Nueva Zelanda (4) involucra la palpacion de partes especificas del cuerpo.

Existe un consenso general con respecto a los beneficios de la CC, mientras que solo un pequeno porcentaje de las granjas (tan solo el 5%), adopto y exploro la viabilidad de la estimacion de la CC aprobada en los Estados Unidos. Asi que hay que subrayar que la CC debe actualizarse para cada ganado, lo que incrementa el costo en la granja (5).

La viabilidad de la interpretacion de la CC a partir de imagenes digitales ha sido objeto de algunos estudios anteriores (1, 4). Debido a las discrepancias entre los estudios antes mencionados, este autor decidio realizar este trabajo. El interes del autor en este tema se desperto tras el conocimiento de la aplicacion para telefonos inteligentes BCS Cowdition de Bayer HealthCare Animal Health, disenada para la simplificacion y estandarizacion de la CC en vacas lecheras. Por consiguiente, el objetivo del presente trabajo fue comprender mejor y comparar los metodos de evaluacion de la CC para vacas lecheras, es decir, la evaluacion visual y los informes digitales. Por lo tanto, los resultados de este estudio podrian haber ayudado a los investigadores y a los consultores que tratan de estimar y comparar la CC presentada en otros estudios pertinentes.

MATERIALES Y METODOS

Animales. Los datos para este estudio se obtuvieron de 50 vacas de raza Holstein-Frisona entre 1a y 4a paridad (lactancia media), con uno o mas partos, sin ningun tipo de problemas relacionados con la reproduccion, criadas en una granja lechera privada situada en Aydin, Turquia.

Diseno experimental. El sistema CC de los Estados Unidos (USBCS) (1,18) se basa completamente en una valoracion visual utilizando una escala de 1 a 5 con intervalos de 0.25, tal como ha sido utilizado por algunos investigadores (4). Despues del ordeno de la manana en la granja, se recolectaron los datos de CC desde el 16 de enero 2015 al 16 de febrero de 2015 (4 semanas). Estas CC fueron evaluadas por dos investigadores experimentados (incluyendo al autor de este articulo, que tiene una maestria y un doctorado de la Facultad de Agricultura, Departamento de Ciencia Animal), mientras que para la evaluacion del grado de CC se utilizaron observaciones visuales y diagramas de flujo desarrollados por algunos autores (18). Comparativamente y como un segundo metodo, se mejoro la aplicacion para telefonos inteligentes BCS Cowdition. BCS Cowdition es una mejora innovadora de Bayer HealthCare Animal Health. El evaluador que tiene imagenes descriptivas detalladas de las vacas con diferentes condiciones de salud, se puede descargar de Internet de las fuentes disponibles. El programa esta disponible actualmente en ingles y turco. La aplicacion BCS Cowdition puede ser utilizada para evaluar el estado de salud y, por lo tanto, la CC de las vacas lecheras. Este programa tecnologico innovador para telefonos inteligentes cuenta con un sistema de CC de cinco pasos despues de descargar la fotografia de la vaca, y que luego se instala en el telefono inteligente. Despues, el sistema automatizado evalua la CC.

En pocas palabras, la aplicacion se basa en el sistema de 5 pasos establecido por Bayer HealthCare Animal Health, que le permite al investigador medir la CC simplemente tomando fotos individuales de cada vaca (Figura 1).

Analisis estadistico. Los datos obtenidos se analizaron con ANOVA (analisis de varianza) utilizando el procedimiento del Modelo Lineal Generalizado (MLG) del programa SPSS 18.0 (Statistical Package for the Social Sciences) para Windows que se utilizo en el analisis estadistico de los datos (20). Se comparo la significancia de las diferencias entre los grupos utilizando el metodo de rango multiple de Duncan (21). La relacion entre los dos metodos se determino mediante el analisis de correlacion de Pearson y los modelos de regresion se evaluaron utilizando el analisis de regresion lineal (20).

RESULTADOS

En la figura 2 se muestra la evaluacion de una vaca con el sistema de evaluacion BCS Cowdition. En el ultimo paso (5[grados] paso), el valor de CC de la vaca que se encontro por medio del sistema BCS Cowdition fue de 3.25.

La estadistica descriptiva para la CC estimada de acuerdo con los sistemas BCS Cowdition y USBCS se presenta en la tabla 1. La medias generales de CC que se encontraron fueron de 3.37 [+ o -] 0.068 y 3.45 [+ o -] 0.060 para BCS Condicion y USBCS, respectivamente. Las medias de CC para BCS Cowdition oscilaron entre 3.16 y 3.54, mientras que las medias de CC estuvieron entre 3.33 y 3.55 en el sistema USBCS (Tabla 1). Se encontro que los efectos de la paridad sobre CC no son significativos en los dos sistemas (p>0.05).

Se determino que las diferencias medias entre CC eran 0,08 unidades menores en el sistema BCS Cowdition que en el USBCS y estas diferencias no fueron estadisticamente significativas (p>0.05).

La correlacion positiva entre los sistemas BCS Cowdition y USBCS fue de 0,81 en la medicion de la condicion corporal (p<0.01).

La relacion entre los sistemas BCS Cowdition y USBCS se muestra en la figura 3. Se encontro una relacion lineal positiva (p<0.001) entre los dos sistemas (Figura 3). La ecuacion de regresion para la estimacion de COWDITION de USBCS fue: COWDITION = 0.168 + 0.928 x USBCS ([R.sup.2]=0.66). La ecuacion para la estimacion de USBCS de COWDITION fue: USBCS = 1.042 + 0.714 x COWDITION ([R.sup.2]=0.66).

DISCUSION

Se encontro que las medias generales de los sistemas BCS Cowdition y USBCS para CC fueron de 3.37 [+ o -] 0.068 y 3.45 [+ o -] 0.060 respectivamente. Este resultado fue menor que el encontrado por Roche et al (22), igual a los resultados de Berry et al (23) y superior a los hallazgos de algunos investigadores (9,18,24-27).

La CC se vuelve importante en las diferentes etapas de lactancia (vacas frescas, lactancia temprana, lactancia media, lactancia final y el periodo seco). Por lo general, la CC es de aproximadamente 3 (en la escala de 5 puntos) o de 5 (en la escala de 9 puntos) en la etapa de la lactancia media. Si las vacas tienen produccion mayor durante la lactancia media, la CC alcanza un valor de 3.5 a 4.0 (en la escala de 5 puntos) o de 6.0 a 7.0 (en la escala de 9 puntos) (6). Los resultados de este estudio son consistentes con la bibliografia.

Algunos investigadores informaron que una CC<2.5 y 4.0<CC en las vacas demuestra en gran parte el deterioro del bienestar de los animales (28). Las alteraciones de la CC pueden tener su origen en diferentes causas. Lo anterior se puede explicar brevemente dentro de un nivel adecuado de nutricion y una racion bien disenada, como

10 describieron otros autores previamente (29). Ademas, estos cambios hacen referencia a la alteracion del peso corporal de las vacas y a la conversion de los tejidos del organismo para una alta productividad (12).

En este estudio, se encontro que el efecto de la paridad sobre la CC no era estadisticamente significativo (p>0.05). Del mismo modo, Edmondson y colaboradores (18) y Berry et al (25) registraron que la paridad no afecto la CC.

La gran mayoria de las vacas (58%) fueron evaluadas en este estudio con una CC entre 2.5 y 3.25 puntos, de manera similar a lo descrito en otra parte (9). Un autor reporto que la mayor parte de las vacas (42%) estaban situadas con una CC entre 3 y 4 puntos. En otro estudio, las vacas Holstein Estonia se clasificaron como delgadas (28%, CC [menor que o igual a] 3.0), moderadas (46%, CC 3.25 a 3.50) y gordas (26%, CC [mayor que o igual a] 3.75) (30). Algunos investigadores encontraron que el 5% de las vacas se evaluaron con una CC [mayor que o igual a] 6.0 puntos durante el parto y el 23% de ellas se evaluaron con una CC [menor que o igual a] 4.0 puntos.

El coeficiente de correlacion de Pearson que se encontro en el presente estudio fue de 0.81 (p<0.01). En un estudio previo realizado en Escocia se compararon los dos metodos de Evaluacion del grado de CC de vacas lecheras, se evaluaron los valores de CC semanalmente durante tres meses. Las puntuaciones cotejadas (n=2088) entre el sistema primario utilizado en Reino Unido y en Estados Unidos se correlacionaron moderadamente (r=0.75, p<0.0001) (4).

La relacion lineal positiva entre los dos sistemas declarados ([R.sup.2]=0.66) en el presente estudio es similar a los sistema de CC de Australia y Nueva Zelanda ([R.sup.2]=0.61) reportados por Roche et al (2). Se encontro que esta relacion entre los sistemas USBCS y UKBCS (CC en el Reino Unido) era de 0.56 en otro estudio (4). De mismo modo, Isensee et al (14) reportaron que la dCC (CC dependiente) puede explicar el BFT (espesor de grasa en la espalda) mejor que la iCC (CC independiente) ([R.sup.2]=0.67).

A falta de informacion detallada, la interpretacion del sistema de CC no resulta facil. Algunos investigadores se basaron en fotografias con una evaluacion insuficiente y otros en escritos relevantes muy detallados. Todos los factores mencionados anteriormente evitan la repeticion de los sistemas (18). Por esta razon, se deben mejorar los nuevos sistemas CC. Es por esto que la CC sera de beneficio como un indicio importante de la salud animal y del manejo usando practicas beneficiosas. Por lo anterior, la distribucion generalizada de investigaciones en relacion con CC se puede utilizar para ayudar a interpretar los resultados de las puntuaciones obtenidas en terminos del productor y de la industria del ganado lechero.

Se encontro una relacion lineal positiva (p<0.001) entre los sistemas BCS Cowdition y USBCS ([R.sup.2]=0.66). La relacion lineal entre los ultimos metodos de evaluacion demostro que los dos sistemas, el habitual y el digital, tienden a calificar a las vacas de manera similar. Esta comparacion represento un progreso en la comprension de la relacion entre estos dos sistemas. Se puede sugerir ademas que la aplicacion para telefonos inteligentes BCS Cowdition puede ser una buena alternativa para la interpretacion de la CC.

En conclusion, las CC subjetivas de los sistemas USBCS y de la aplicacion para telefonos inteligentes Cowdition, recolectadas para las mismas vacas durante 4 semanas sucesivas, fueron relativamente congruentes. Ambos sistemas de CC parecen medir las reservas de energia corporal de una manera similar, el cual fue tema de un estudio anterior evaluado por los sistemas UKCC y USBCS (4). Se justifica la realizacion de otros estudios en una investigacion con un mayor alcance donde se incluya una poblacion mas grande y una escala mayor, aplicando probablemente esta nueva herramienta a las vacas en su primera etapa de la lactancia y en relacion con la condicion corporal, dos semanas antes de que la vaca de a luz.

INTRODUCTION

Body condition score (BCS) has been recognized as a significant tool for dairy cattle management. Moreover BCS is the foremost method for interpretation of body energy reserves in dairy cows (1-9). It is quite simple and a repeatable system for evaluation of body fat stores (1, 1014) and a considerable attention has been paid to BCS, in terms of estimating tissue mobilization (15). Also, this system is used to preparation of suitable feed plans and determination of nutritional status of cows in dairy farm (16).

There are some difficulties within the interpretation of BCS systems, through range and variation (2). Furthermore different scoring scales varying from 0 to 4.0 to 5.1 to 4.1 to 5 and 1 to 9 (1). Similarly to US system, the most commonly and probably the foremost scare range applies a scale from 1 to 5, with 1 being emaciated, 2 thin, 3 average, 4 fat and finally 5 obese in Turkey (17). The latter system was then adopted to a method previously described elsewhere (18), was based entirely upon visual assessment, where as another body condition scoring system involved palpation of the specific body parts, employed in some countries such as UK, Ireland and New Zealand (4).

There is a general consensus regarding benefits of BCS, whereas only a few percentage of farms (solely 5%), adopted and explored the feasibility of estimating BCS in US. It should also be stressed that the BCS should be updated on each cattle, reinforcing the cost at the farm (5). The feasibility of BCS interpretation from digital images has been the subject of some prior studies (1,4). Regarding the disperancies among aforementioned studies, the present author decided to perform this study. The present author interest to this subject was aroused following awareness of Bayer Healthcare Animal Health's Innovative BCS Cowdition Smartphone Application, designed for simplification and standardization of the BCS for dairy cows. Therefore the objective of the present work was to better understand and compare the methods of assessing dairy cow BCS, namely visual assessment and digital reports. Hence, the results of this study might have helped researchers and consultants in an attempt to estimate and compare BCS presented from other relevant studies.

MATERIAL AND METHODS

Animals. Data for the present study were collected from 50 head Holstein-Friesian cows at 1st-4rd parity (mid-lactation), have made one or more birth, without any problems related to reproduction, raised at a private dairy farm located in Aydin, Turkey.

Experimental design. The United States BCS (USBCS) system (1,18) is based completely upon visual estimation by use of a 1-5 scale with 0.25 intervals, as was also used by some researchers (4). After morning milking in farm, BCS data were collected from 16 January 2015 to 16 February 2015 (4 weeks).This BCS were assessed by two experienced researcher (involving the present author, having MS and PhD degrees in Department of Animal Science, Agricultural Faculty) while assessing BCS on visual observing, flowcharts developed by some authors was used (18). Comparatively and as a second method BCS Cowdition Smartphone Application was enhanced. BCS Cowdition is an innovative enhancement from Bayer Healthcare Animal Health's. Assessor with detailed descriptive images of cows having different health conditions, and may be downloaded from the internet at available sources. The program is currently available also in English and Turkish. BCS Cowdition may be used to assess health condition, thus BCS for dairy cows. This innovative smart phone technology programme has a five-step BCS system, lasting after downloading of the cow's photograph, and then was installed on to the smartphone. Afterwards the automated system assesses the BCS.

Briefly, the application is based on Bayer Healthcare Animal Health Division's established 5-step BCS system, allowing the investigator to measure BCS simply by taking photos of each cow individually (Figure 1).

Statistical analysis. Data were analyzed performed by ANOVA using General Linear Model (GLM) procedure of SPSS 18.0 for Windows was used for statistical analysis of data (20). The significance of the differences between groups was compared by Duncan's multiple range tests (21). The relationship between two methods was determined by using Pearson's correlation analyses and the regression models were estimated by using linear regression analysis (20).

RESULTS

In figure 2 the assessment of a cow was shown with BCS Cowdition system by assessor. Finally at step (5th step), the BCS value of cow was found as 3.25 by BCS Cowdition system.

The descriptive statistics of BCS that was estimated according to BCS Cowdition and USBCS system were given in table 1. The overall means of BCS were found as 3.37 [+ or -] 0.068 and 3.45 [+ or -] 0.060 for BCS Cowdition and USBCS, respectively. The means of BCS for BCS Cowdition ranged from 3.16 to 3.54, while the means of BCS were ranged from 3.33 to 3.55 in USBCS system (Table 1). The effects of parity on BCS were found non-significant in two systems (p>0.05).

The mean differences among BCS were determined 0.08 unit lower in BCS Cowdition than USBCS systems and this differences were found statistically non-significant (p>0.05).

The positive correlation among BCS Cowdition and USBCS systems was found as 0.81 in evaluating body condition (p<0.01).

The relationship among BCS Cowdition and USBCS systems was shown in figure 3. The positive linear relationship (p<0.001) was found between two systems (Figure 3). The regression equation for estimating COWDITION from USBCS was COWDITION=0.168 + 0.928 x USBCS ([R.sup.2]=0.66). The equation for estimating USBCS from COWDITION was USBCS=1.042 + 0714 x COWDITION ([R.sup.2]=0.66).

DISCUSSION

The overall means of BCS Cowdition and USBCS systems for BCS were found as 3.37 [+ or -] 0.068 and 3.45 [+ or -] 0.060, respectively. This result was found lower than from findings of Roche et al (22), the same as results of Berry et al (23) and higher from findings of some researchers (9,18,24-27).

BCS become important at different lactation stage (Fresh cows, early lactation, mid-lactation, late lactation and dry period). BCS is generally approximately 3 (5-point scale) or 5 (9-point scale) in mid-lactation stage. If cows occur over-form throughout mid-lactation, BCS is become 3.5 to 4.0 (5-point scale) or 6.0 to 7.0 (9-point scale)(6). The results of this study are accordance with literature.

Some researchers reported that BCS<2.5 and 4.0<BCS of cows is largely shown impairment of animal welfare (28). The alterations of BCS may originate from different causes. This may be briefly explained within a proper level of nutrition and a well-designed ration, as was also described previously other authors (29). Moreover, these changes are regard to alteration of body weight of cows and conversion of organism tissues in high productivity (12).

In this study, the effect of parity on BCS was found statistically non-significant (p>0.05). Similarly, Edmonson et al (18) and Berry et al (25) recorded that parity did not affect BCS.

The vast majority of the cows (58%) were evaluated for BCS at 2.5-3.25 points in this study, similarly to what have been described elsewhere (9). One author reported that most of the cows (42%) were situated for BCS at 3-4 points. In other study, Estonian Holstein cows were categorized as thin (28%, BCS [less than or equal to] 3.0), moderate (46%, BCS 3.25-3.5) and fat (26%, BCS [greater than or equal to] 3.75) (30). Some researchers found that 5% of cows were evaluated BCS [greater than or equal to] 6.0 points at calving and 23% of cows were assessed BCS [less than or equal to] 4.0 points.

The Pearson correlation coefficient was found as 0.81 in the present study (p<0.01). In a prior study comparing two methods for assessing BCS of dairy cows Scotland, weekly BCS were collected for 3 months. Paired scores (n=2088) between the primary systems utilized in United Kingdom and USA, were moderately correlated (r=0.75, p<0.0001)(4).

The positive linear relationship among two systems declared ([R.sup.2]=0.66) in the present study is similar to Australian and New Zealand BCS systems ([R.sup.2]= 0.61) reported by Roche et al (2). This relationship between USBCS and UKBCS systems were found as 0.56 in another study (4). Also, Isensee et al (14) reported that the dBCS (dependent BCS) was able to explain the BFT (back fat thickness) better than iBCS (independent BCS) ([R.sup.2] =0.67).

In case of lacking detail, the interpretation of BCS system is not easy. Some researchers were based on photographs with insufficient assessment, and other relevant ones written in lengthy details. All aforementioned factors prevent repetition of the systems (18). New BCS systems should be improved for this reason. Hereby, BCS will be given of beneficial as importance clues in terms of animal health and management practices beneficial. Due to this reasons, widespread distribution of researches in relation to BCS may be used to help interpret results from scores obtained in terms of producer and dairy cattle industry.

The positive linear relationship (p<0.001) was found between BCS Cowdition and USBCS systems (R2=0.66). The linear relationship between the latter assessment methods demonstrated that both usual and digital systems tended to scare cows similarly. This comparison represented progress within the understanding of the relationship between these two systems. Moreover, it may be suggested that BCS Cowdition Smartphone App. may be a good alternative for interpretation of BCS.

In conclusion subjective BCS from the USBCS and Body Cowdition Smarthphone App. Systems, collected on the same cows in successive 4 weeks, were relatively congruent. Both BCS systems appear to measure body energy reserves in a similar manner, as was also the subject of a prior study assessing UKBCS and USBCS systems (4). Further studies involving more cow population and a larger scale possessing a larger investigation, probably applying this new tool to cows in 1st phase of lactation, and in relation to the corporal condition two weeks before the cow gives birth may be warranted.

REFERENCES

(1.) Ferguson JD, Galligan DT, and Thornsen N. Principal descriptors of body condition score in Holstein cows. J Dairy Sci 1994; 77:2695-2703.

(2.) Roche JR, Dillon PG, Stockdale CR, Baumgard LH, VanBaale MJ. Relationships among international body condition scoring systems. J Dairy Sci 2004; 87(9):3076-3079.

(3.) Bewley JM, Schutz MM. An interdisciplinary review of body condition scoring for dairy cattle. The Professional Anim Sci 2008; 24(6):507-529.

(4.) Bewley JM, Boyce RE, Roberts DJ, Coffey MP, Schutz MM. Comparison of two methods of assessing dairy cow body condition score. J Dairy Sci 2010; 77(1):95-98.

(5.) Battiato S, Farinella GM, Guarnera GC, Puglisi G, Azzaro G, Caccamo M, Licitra G, Ferguson JD. Estimation of cow's body condition score from images. 2010; (access February 5, 2015). URL available in: http://homepages.inf.ed.ac.uk/rbf/ VAIB10PAPERS/gfVAIB2010Final.pdf

(6.) Klopcicl M, Hamoen A, Bewley J. Body condition scoring of dairy cows. Republika Slovenija Ministrstvo Za Kmetijstvo, Gozdarstvo in Prehrano 2011, 42p. (access February 5, 2015). URL available in: https:// rodica.bf.uni-lj.si/web/gov/pub/2011_ Klopcic_et_al_Body_condition_of_dairy_ cows.pdf

(7.) Azzaro G, Caccamo M, Ferguson JD, Battiato S, Farinella GM, Guarnera GC, Puglisi G, Petriglieri R, Licitra G. Objective estimation of body condition score by modeling cow body shape from digital images. J Dairy Sci 2012; 94(4):2126-2137.

(8.) Thorup VM, Edwards D, Friggens NC. Onfarm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J Dairy Sci 2012; 95(4):1784-1793.

(9.) Sablik P, Kobak P, Skrzypiec A, Klenowicz A, Derezi'nska D. Comparison of body condition scores in Polish Holstein-Friesian Cows of Black-and-White variety managed in different housing systems. Acta Sci Pol Zootech 2014; 13(1):57-66.

(10.) Yaylak E, Kumlu S. The effects of body condition score and some environmental factors on 305-day milk yield of Holstein cows. Ege Univ Zir Fak Derg 2005; 42(3):55-66.

(11.) Garnsworthy PC. Body condition score in dairy cows: Targets for production and fertility. Rec Adv Anim Nut 2006; 1: 61-86.

(12.) Grubic G, Novakovic Z, Aleksic S, Sretenovic Lj, Pantelic V, Ostojic-Andric D. Evaluation of the body condition of high yielding cows. Biotech Anim Husb 2009; 25(1-2):81-91.

(13.) Roche JR, Friggens NC, Kay JK, Fisher MW, Stattford KJ, Berry DP. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci 2009; 92(12):5769-5801.

(14.) Isensee A, Leiber F, Bieber A, Spengler A, Ivemeyer S, Maurer Vi Klocke P. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle. Animal 2014; 8(12):1971-1977.

(15.) Domecq JJ, Skidmore AL, Lloyd JW, Kaneene JB. Relationship between body condition scores and milk yield in a large dairy herd of high yielding Holstein cows. J Dairy Sci 1997; 80(1):101-112.

(16.) Garcia A, Hippen A. Feeding dairy cows for body condition score. Progressive Dairyman 2011; (access February 5, 2015). URL available in: http://www.thecattlesite.com/ articles/1512/feeding-dairy-cows-for-bodycondition-score

(17.) Wildman EE, Jones GM, Wagner PE, Bowman RL. A dairy cow body condition scoring system and its relationship to selected production characteristics. J Dairy Sci 1982; 65(3):495-501.

(18.) Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G. A body condition scoring chart for Holstein dairy cows. J Dairy Sci 1989; 72(1): 68-78.

(19.) Bayer HealthCare. New BCS Cowdition App. Animal Health 2014, (access February 5, 2015). URL available in: http://animalhealth. bayer.com/ah/5942.0.html

(20.) SPSS. SPSS release 18.0.0, Standard version for windows, 2009.

(21.) Duncan DB. Multiple range and multiple F test. Biometrics 1995; 11:42.

(22.) Roche JR, Macdonald KA, Burke CR, Lee JM, Berry DP. Associations among body condition score, body weight, and reproductive performance in seasonal-calving dairy cattle. J Dairy Sci 2007; 90(1): 376-391.

(23.) Berry DP, Buckley F, Dillon P. Body condition score and live-weight effects on milk production in Irish Holstein-Friesian dairy cows. Animal 2007; 1(9):1351-1359.

(24.) McCarthy S, Berry DP, Dillon P, Rath M, Horan B. Influence of Holstein-Friesian strain and feed system on body weight and body condition score lactation profiles. J Dairy Sci 2007; 90(4):1859-1869.

(25.) Berry DP, Buckley F, Dillon P. Relationship between live weight and body condition score in Irish Holstein-Friesian dairy cows. Irish J Agric Food Res 2011; 50, 141-147.

(26.) Gergovska Z, Mitev Y, Angelova T, Yordanova D, Miteva T. Effect of changes in body condition score on the milk yield of Holstein-Friesian and Brown Swiss cows. Bulg Agric J Sci 2011; 17(6): 837-845.

(27.) Bayram B, Aksakal V, Akbulut O. Effect of the body condition score on some reproduction and milk yield traits of Swedish red and white cows. J Anim Plant Sci 2012; 22(3):545-551.

(28.) Vasseur E, Gibbons J, Rushen J and de Passille AM. Development and implementation of a training program to ensure high repeatability of body condition scoring of dairy cows. J Dairy Sci 2013; 96(7): 4725-4737.

(29.) Alic Ural D. A Study on body condition score of Holstein-Friesian cows raised at Bozdogan. Kocatepe Vet J 2012; 5(2):9-15.

(30.) Samarutel J, Ling K, Jaakson H, Kaart T, Kart O. Effect of body condition score at parturition on the production performance, fertility and culling in primiparous Estonian Holstein cows. Vet Zootech 2006; 36(58):69-74.

Deniz Alic Ural, Ph.D.

Adnan Menderes University, Veterinary Faculty, Isikli, Aydin, Turkey. Corresponding: alicdeniz@gmail.com

Received: March 2015; Accepted: September 2015.

Caption: Figure 1. The steps of BCS Cowdition system (19).

Caption: Figure 2. The assessment of a cow with BCS Cowdition.

Caption: Figure 3. The relationship among methods.
Table 1. Least square means and standard errors of BCS
for two systems

Parity    N       BCS Cowdition             USBCS

1         10   3.22 [+ or -] 0.176   3.37 [+ or -] 0.154
2         5    3.35 [+ or -] 0.100   3.40 [+ or -] 0.100
3         12   3.16 [+ or -] 0.151   3.33 [+ or -] 0.124
4         23   3.54 [+ or -] 0.898   3.55 [+ or -] 0.888
Overall   50   3.37 [+ or -] 0.068   3.45 [+ or -] 0.060

*: P< 0.05, **: P< 0.01, N.S.: Non-significant
COPYRIGHT 2016 Universidad de Cordoba
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2016 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:ORIGINAL
Author:Alic Ural, Deniz
Publication:Revista MVZ (Medicina Veterinaria y Zootecnia)
Date:Jan 1, 2016
Words:4980
Previous Article:Comportamiento productivo de pollos cuello desnudo que se alimentaron con harina de hojas de arbustos.
Next Article:Efecto del Glycoline[R] sobre la eficiencia reproductiva en vacas lecheras de alta produccion.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters