Printer Friendly

Ecology and ontogenetic variation of diet in the pigmy short-horned lizard (Phrynosoma douglasii).


Ontogenetic variation in insectivorous lizards is often correlated with prey size, volume and type (Castilla et al., 1991; Herrel et al., 2006; Preest, 1994; Teixera-Filho et al., 2003). Mechanically, young lizards have reduced gape size and bite force capacity due to an overall reduced body size compared to adults (Herrel et al., 2006). This often results in younger lizards consuming smaller and potentially more soft-bodied insects than adults. For instance, horned lizards show a positive correlation between body size and prey item size (Rissing, 1981; Pianka, 1973; Schoener, 1977; Powell and Russell, 1984; Suarez et al., 2000; Suarez and Case, 2002). However, it is also suggested that the correlation between the sizes of the predator and its prey are influenced by other factors including an innate preference for prey items proportional to lizard size (Whitford and Bryant, 1979), prey availability based on habitat and seasonality (Rissing, 1981; Pianka, 1979) and optimal foraging strategies (Schoener, 1971). Lizards with a preference for or that specialize on a particular prey type are likely to have modified morphologies associated with feeding and foraging habits, life history strategies, or behaviors that reflect this prey preference or specialization.

Horned lizards (genus Phrynosoma) are considered dietary ant specialists, yet there is much variation in the degree of myrmecophagy among the 13 currently recognized species (Montanucci, 1989). Some species feed almost exclusively on native ants while others consume higher proportions of other insects and arthropods. For instance, throughout its range P. platyrhinos consumes ants in highest proportions (88.7%), followed by beetles (7.6%) (Pianka and Parker, 1975). In contrast, the diet of P. hernandesi (formerly P. douglassi) contains nearly equal proportions of ants (48.9%) and beetles (44.9%) at one locality while throughout its greater range, P. hernandesi diets contains 81% ants on average (Pianka and Parker, 1975).

Differences in diet among species of Phrynosoma correspond to morphologies associated with feeding behaviors and function (Meyers et al., 2006). Most horned lizards from the long-horned lizard clade are considered highly myrmecophagous, having increased cranial morphologies that contrast with species that consume large numbers of non-ant prey (Montanucci, 1989; Meyers et al., 2006). Morphologies associated with myrmecophagy include a more robust skull, a larger and taller coronoid process with a larger posterior area, longer epipterygoid and mandible, greater number of teeth, and a taller and wider head that corresponds to greater bite force (Montanucci, 1989; Meyers et al., 2006). In the short- horned lizard clade (P. douglasii, P. hernandesi, P. ditmarsi and P. orbiculare), lizard diets are not typically dominated by ants and cranial morphologies are greatly reduced (Meyers et al., 2006). The divergence in morphologies among lizards in the short-horned lizard clade associated with feeding is likely an adaptation for a generalized insectivorous diet consisting of larger and harder prey items (Meyers et al., 2006; Montanucci, 1981, 1989; Pianka and Parker, 1975; Powell and Russell, 1984).

Phrynosoma douglasii, the pigmy short-horned lizard, is a recently elevated species, previously grouped as a subspecies (=P. douglasii douglassii) belonging to P. douglassii along with two other currently recognized species, P. hernandesi and P. ditmarsi (Zamudio et al., 1997). Phrynosoma douglasii (sensu stricto) is unique in having the most reduced body form and horn length of all Phrynosoma species and does not occupy any true desert habitat throughout its range. It occurs at elevations up to 2200 m throughout the Pacific Northwest primarily in shrub-steppe habitat but it also occurs in a variety of other habitats including open pinion juniper, mesic forests and farm fields (Dvornich and Petersen, 2005; Lahti et al., 2007; Stebbins, 2003; St. John, 2002).

Little is known about patterns of variation in the diets of horned lizards, especially in the short-horned lizard clade. Zamudio (1996) reported stomach contents for 83 female Phrynosoma douglasii in Siskiyou County, California which occurs at the far southwest corner of its current range. The highest frequency of prey items consumed was ants (68.8%) followed by Coleopterans (20.4%); however, diets also consisted of low proportions of Orthopterans (1.0%), larvae (0.2%) and Arachnids (0.1%). Organic and non-organic debris consisted of up to 15.4% of female diets (Zamudio, 1996). Diet data for studies conducted prior to Zamudio (1996) remain inconclusive for P. douglasii (sensu stricto) because samples include lizards now considered P. hernandesi (Pianka, 1986; Pianka and Parker, 1975; Montanucci, 1989; Stebbins, 1985) and, therefore, obscure possible differences between these taxa.

To gain a further understanding of the unique diet of homed lizards and to investigate the role of age, sex, habitat and season on homed lizard diets, we report the results of a 2-y study on Phrynosoma douglasii in central Washington. We address the following questions: (1) does P. douglasii specialize on ants or is it a more generalist insectivore as are other Phrynosoma species with reduced cranial morphologies and (2) does P. douglasii show changes in diet that are associated with ontogenetic/size changes, sex, habitat and/or season.


We studied two lizard populations in central Washington: (1) Quilomene Wildlife Area (Quilomene) (650-700 m elevation) located approximately 32 km east of Ellensburg, Washington and (2) Umtanum Canyon (Umtanum) (800-850 m elevation) located approximately 13 km west of Ellensburg, Washington. Both sites consist of shrub-steppe habitat with three recognized terrain types based on soils and vegetation associations (Daubenmire, 1988; Taylor, 1992). Lithosol terrain is composed of rocky soils overlaying basalt bedrock, sparse vegetation and reduced growth forms of the dominant plant species: stiff sage (Artemisia rigida) and thyme leaf buckwheat (Eriogonum thymoides). Loamy terrain is composed of deep sandy soils, dense vegetation, and large growth forms of the dominant plant species: big sage (Artemisia tridentata) and bluebunch wheatgrass (Pseudoroegneria spicata). Ecotone terrain contains soils intermediate between the lithosol and loamy terrains and dominant vegetation includes stiff sage and bluebunch wheatgrass.

We haphazardly searched each study site when lizards were active (May-Aug.) in 2004 and 2005. Quilomene was the primary study site and more effort was spent searching for lizards here than at Umtanum. We recorded sex, snout-to-vent length (SVL in cm) and mass (grams) for each lizard encountered. We held lizards in captivity for up to two days for fecal pellet collection. We then measured the dry mass of each fecal pellet to 0.001 g and examined the contents using a dissecting microscope.

We identified and tallied head capsules from prey items to order (Borror and DeLong, 1964). We counted the presence of a particular insect order as one individual if only body parts other than head capsule from that particular insect order was observed. We verified body part identification either from insects captured at one of the study sites or from museum specimens in the Central Washington University Department of Biological Sciences Entomology Collection. We also recorded organic debris (pieces of leaf or stem vegetation) and pebbles. We treated multiple fecal pellets collected from one individual at one time as one fecal pellet by averaging head capsule counts for each prey item.

We categorized lizards were into four groups based on sex and age: adult male, adult female, yearling and neonate. Adult males and females were greater than 3.80 cm SVL yearlings (lizards entering their first full year of life) were between 2.80 cm and 3.80 cm SVL, and neonates were lizards with SVL less than 2.80 cm. We used analysis of covariance (GLM ANCOVA) to determine variation in fecal pellet mass relative to SVL and body mass for each lizard group (SAS Institute Inc., 2007).

We compared proportions of each insect order from fecal pellets collected at Quilomene between years, seasons, terrain types and lizard age and sex classes using multi-response permutation procedure (MRPP) and indicator species analysis (ISA) (PC-ORD4, 1999). MRPP is essentially a nonparametric version of the MANOVA test; differences among multiple groups are calculated based on a Euclidian distance matrix (McCune and Grace, 2002). The chance-correlated within-group agreement (A) indicates the difference between groups compared to random where A = 0 corresponds to no difference and A = 1 corresponds to complete difference. Indicator species analysis discriminates which variables detected by the MRPP analysis are statistically significant (McCune and Grace, 2002).

To determine if there is ontogenetic variation in prey item size among lizard age and sex classes, we analyzed a sub-sample of ant head capsules from Quilomene lizard fecal pellets. Five ant head capsules were haphazardly selected from fecal pellets of each of 10 different adult male, adult female, yearling and neonate lizards. An ocular micrometer was used to measure each ant head width and length to the nearest 0.1 mm. Length was measured along the median longitudinal line from the forehead apex to the anterior tip of the clypeus and width was measured at the widest distance between the distal portion of the eyes (Fig. 1). We used ANCOVA to test for differences in head capsule size among lizard groups and linear regression to investigate relationships between SVL and body mass relative to ant head capsule size for each lizard group. We used Chi-square analysis (Zar, 1999) to test for differences in proportions of ant species consumed by each lizard group and for differences in proportions of Camponotus soldiers and worker ants consumed. Because ant head size varies continuously (not discretely) between worker and soldier ants, we divided ant head capsules into five size classes (length*width) prior to Chi-square analyses. Soldier ants were differentiated from workers based on head shape; soldiers have a more pronounced squared head with prominent incisors while workers have a more rounded head with reduced incisors.



We collected a total of 157 fecal pellets from 117 lizards; 132 fecal pellets from 102 lizards were from Quilomene and 25 fecal pellets from 15 lizards were from Umtanum. We did not encounter any neonate fecal pellets from Umtanum during either year.

Overall, females had the greatest fecal pellet mass (0.088 [+ or -] 0.059 g), followed by males (0.062 [+ or -] 0.042 g), yearlings (0.031 [+ or -] 0.020 g) and neonates (0.010 [+ or -] 0.006 g). Fecal pellet mass did not vary among lizard groups relative to SVL (ANCOVA GLM: F = 1.33, df = 3, P = 0.27) or body mass (ANCOVA GLM: F = 1.87, df = 3, P = 0.14).

At Quilomene, season influenced diet (A = 0.016, P = 0.070) (Tables 1, 2); lizards consumed higher amounts of Coleopteran insects during spring (P = 0.010) and more organic debris during summer (P = 0.022). During 2005, lizards consumed significantly greater proportions of ants (P = 0.004), Coleopteran (P = 0.041) and Dipteran (P = 0.001) insects than lizards in 2004 (Tables 1, 2). Lizards showed no differences in diet composition among the lithosol, loamy or ecotone terrains.


For all lizards at Quilomene, ants were consumed in highest numbers (n = 1906.6 prey items), followed by Coleopterans (n = 295.6 prey items) (Table 1). Neonates consumed the highest proportion of ants (88.8%), whereas yearlings consumed the highest proportion of Coleopterans (15.4%). Hemipteran and Dipteran insects occurred in low numbers across all lizard diets (n = 43 and 21, respectively). Hemipterans consisted of less than 2.0% of lizard diets for all age/sex classes while dipterans, although consumed in low proportions by all lizards, were consumed at least four times greater by females (1.2%) than males, yearlings or neonates (Tables 1, 2). We stomach-flushed five lizards from Quilomene and expelled soft-bodied Dipterans, a caterpillar larva ~2.5 cm length, a juvenile grasshopper and a tick. However, we did not include these data in our analyses and we acknowledge that certain soft-bodied prey may have gone undetected in our analyses of fecal samples.

At Umtanum, ants were also consumed in the highest numbers (n = 223), followed by Coleopterans (n = 27.5) (Table 1). At Umtanum, ants were consumed by adults in nearly equal proportions (females = 75.5%, males = 77.1%) while yearlings consumed only 40% ants. Although only two fecal pellets from one yearling individual were obtained, yearlings consumed the highest proportion of Coleopterans (40%). Only female fecal pellets contained Hemipteran (8.2%) or Dipteran (0.9%) insects.

Organic debris and pebbles were also consistently found in fecal pellets from both sites. At Quilomene, organic debris accounted for 2.2% of all items found (n = 58) and pebbles accounted for 13.2% of all items found (n = 353.3). At Umtanum, organic debris consisted of 3.6% of all items found (n = 10.5) while pebbles consisted of 6.4% of all items found (n = 19). At both sites, 20% of yearling diets consisted of pebbles which tends to be higher than males, females and neonates (P = 0.067) (Tables 1, 2). Organic debris was consumed in highest proportions at Quilomene by males (3.3%) and at Umtanum by females (4.2%). Neonates consumed the least amount of organic debris (1.0%) and pebbles (6.3%). In the field, we tossed pebbles within proximity of foraging adult lizards and if the pebble landed within ~0.5 m of the lizard, the lizard would almost always lunge toward the pebble. Often, lizards would lick the pebbles into their mouths and spit them out or swallow them; other lizards approached the pebble but lost interest.

The average head capsule size (length*width) of ants consumed by adult males was 0.419 [+ or -] 0.269 mm, 0.415 [+ or -] 0.169 mm for adult females, 0.274 [+ or -] 0.155 mm for yearlings and 0.199 [+ or -] 0.129 mm for neonates. Although ant head capsule size varied significantly between lizard groups (ANOVA: F = 3.67, df = 3, P = 0.021), ant head capsule size did not vary significantly among lizard groups relative to SVL (ANCOVA: F = 0.52; df = 3; P = 0.67). Adult males and females consumed higher proportions of larger ant head capsules, whereas neonates consumed higher proportions of smaller ant head capsules and yearlings showed an intermediary preference for ant head sizes ([chi square] = 63.19, df = 12, P < 0.0001) (Fig. 2).


Mean ant head size (length*width) showed an overall positive correlation with lizard SVL when all lizard classes were pooled ([R.sup.2] = 22.6%, ANOVA: F = 11.08, P = 0.002) however, the within group correlations for male, female, yearling and neonate lizards were not significant (Fig. 3). Adult pregnant females showed a strong negative correlation of mean ant head size compared to SVL ([R.sup.2] = 70.6%; ANOVA df = 4, F = 7.19, P = 0.075), adult non-pregnant females showed no correlation ([R.sup.2] = 1.8%; ANOVA df = 4, F = 0.05, P = 0.831), adult males showed a strong positive correlation ([R.sup.2] = 34.2%; ANOVA df = 9, F = 4.15, P = 0.076), yearlings showed no correlation ([R.sup.2] = 1.6%; ANOVA df = 9, F = 0.13, P = 0.730) and neonates showed a weak positive correlation ([R.sup.2] = 5.1%; ANOVA df = 9, F = 0.43, P = 0.532).

Lizard groups consumed significantly different proportions of ant genera ([X.sup.2] = 221.8, df = 8, P < 0.001); adult male and female lizard consumed almost exclusively on the largest ant species, Camponotus (94% and 96%, respectively). Pregnant females consumed minimal numbers of Tetramorium (8%), which are of intermediate size, while non-pregnant females consumed Camponotus species exclusively. Yearlings consumed mostly Camponotus species (75%), but also the smallest ant species, Pheidole (21%), while neonates consumed almost equal proportions of Pheidole (53%) and Camponotus (45%) species. Tetramorium species were absent from adult male diets and consisted of 5% or less in diets of all other lizard classes.

Soldiers and workers of Camponotus ants were consumed in significantly different proportions among lizard groups ([X.sup.2] = 20.6, df = 4, P < 0.001). Typically soldiers are larger-sized than adults however, soldiers do overlap in size with workers. Adult males consumed nearly equal proportions of workers (49%) and soldiers (51%) and adult females consumed more workers (61%) than soldiers (39%). However, pregnant females consumed more workers (77%) than soldiers (23%) while non-pregnant females consumed equal amounts of workers and soldiers (50%). Yearling lizards consumed only 22% workers and 78% soldiers while neonates consumed 32% soldiers and 68% workers (Fig. 5).



In many lizard species diet composition is influenced by environmental variables including prey availability, season and habitat (Pianka, 1973), and by ontogenetic variation (Castilla et al., 1991; Preest, 1994). Phrynosoma douglasii shows variation of its diet in response to year, season and age/sex classes. Because prey populations are subject to seasonal changes and microhabitat differences, it should not be surprising that the diet of an insectivorous predator also shows variation over time and within different habitats. Similarly, many insects and all insect larvae remain undetectable in fecal pellets because they lack chitin and are digested beyond recognition. However, this information, in addition to diet data from Zamudio (1996) suggests that P. douglasii consumes a variety of other, nonchitinous invertebrates.

Although adult, yearling and neonate lizards occupy the same habitat and, thus, likely experience the same prey resource availability, these age classes show differences in diet composition; neonates feed almost exclusively on ants, whereas adults consume fewer ants and greater proportions of Coleopteran and Hemipteran insects. Similarly, neonate and yearling lizards consume ants, that are significantly smaller and more taxonomically diverse than adults. We cannot say whether this pattern reflects a preference of neonates (or yearling lizards) for smaller ant taxa (e.g., Pheidole and smaller individuals of Camponotus) and/or morphological limitations of smaller lizards. The latter limitation, if present, might represent an instance of constraints from morphology (reduced jaw size and gape, proportional head size relative to body size), physiology (reduced bite force and tongue capture ability), less experience with handling larger prey items than adults, dietary niche partitioning (intraspecific competition reduction), differences in food nutrient and energy assimilation and/or increased success rates of preying on smaller insects (i.e., costs of increased prey handling time) (Rutsche, 2004; Suarez et al., 2000).


Thus, the trend for Phrynosoma douglasii appears to be that neonate lizards gradually shift from a diet of high proportions of smaller ants towards a diet of more Coleopterans and fewer, albeit, larger ants, as adults. However, yearling lizards do not align with this trend; yearling lizards consume the lowest proportion of ants and the highest proportion of Coleopterans and pebbles. Interestingly, yearling lizards are not always larger or heavier than neonates, particularly upon emergence from their first hibernation. At Quilomene, yearlings overlap in SVL and mass with neonates, however, no fecal pellets from these small yearling lizards were collected and thus the composition of their diets and sizes of prey items is not known.

Ontogenetic variation in resource allocation is a function of life history variation and directly affects individual fitness (Dudycha and Lynch, 2005). The high proportion of pebbles and Coleopterans in yearling diets might be a result of yearling lizards attempting to capture larger prey items, independent of the energetic costs associated with capturing and ingesting a large prey item. In the absence of reproduction, immature organisms primarily allocate energy towards maximizing growth. Hence, the energetic cost of consuming larger prey items is reduced. As adults, particularly pregnant females, Phrynosoma douglasii might return to consuming a higher proportion of small prey items that require less energy to capture and ingest since more energy is allocated towards reproduction and energy storage (Tracy, 1998). This might also explain the greater variety of prey item sizes consumed by adult lizards, particularly by pregnant females where sizes of ants consumed shows a negative correlation with SVL.

Based on the amount of organic debris and pebbles consumed, in addition to responses elicited by tossing pebbles at actively foraging lizards, lizards might also be selecting prey items based on movement rather than type. This foraging behavior is described by Schoener (1969) as a Type I predator whereby lizards passively seek out and evaluate the prey potential based on size and distance and is typical of horned lizards (Powell and Russell, 1984). Milne and Milne (1950) noted that movement is likely the primary determinant of prey consumption; Weese (1907, 1919) also noted Phrynosoma modestum ingesting a lead shot rolling downhill and windblown sand grains. Wind is common at both Quilomene and Umtanum where gusts exceed 30 mph, especially during spring and early summer. Foraging lizards might consume higher numbers of pebbles and vegetation in response to the wind blowing the objects. Yearlings also consume the highest proportion of pebbles and it is likely that behaviors associated with foraging techniques and optimization of those, are likely an effect of this.

Although lizards belonging to the short-horned lizard clade have more robust morphologies, including a greater bite force, compared to all other horned lizard species, morphological data for Phrynosoma douglasii were not included in Meyers et al.'s (2006) study because no diet data were available for this species. Thus, it is not known whether P. douglasii has reduced morphologies congruent with other lizards from the short horned lizard clade. Though, based on its phylogenetic relatedness in addition to diet data from this study, P. douglasii is likely congruent with P. hernandesi, P. ditmarsi and P. orbiculare in its broad dietary niche and generalist feeding habits (Meyers et al., 2006).

In light of its dietary composition, Phrynosoma douglasii does not appear to be as highly myrmecophagous compared to other horned lizard species, particularly those outside of the short horned lizard clade. Variation in P. douglasii's diet across seasons and years, in addition to the foraging behavior and diversity and quantity of non-ant prey items consumed, suggests that P. douglasii is a generalist feeder compared to other horned lizard species. Ontogenetic differences in its diet also support generalist feeding behaviors; although neonates consume primarily ants, adults and especially yearling lizard diets, include high proportions of non-ant prey items. Similarly, body size is not a limiting factor of prey items consumed by lizards, particularly yearling and females, further suggesting that optimal foraging in lizards is associated with variables other than prey item size exclusively.

Even though Phrynosoma douglasii is not an ant specialist relative to other highly myrmecophagous horned lizard species, ants are obviously an important component of their diet, especially for neonates. At least three different ant genera, in a diversity of sizes, were represented in the diets of P. douglasii. Our results suggest that management efforts aimed at protecting P. douglasii populations and habitats should also consider maintaining the biodiversity of the invertebrate taxa on which this lizard depends.

Acknowledgments.--This research was partially supported by Central Washington University (CWU) Department of Biological Sciences and by the Research Fund of CWU, Ellensburg, Washington. Research was conducted under Washington DFW Scientific Collecting Permits 04-231 and 05-033. We thank the following people for various contributions to this research: Dr. Tom Cottrell for statistical analyses, Dr. James Pitts for ant head capsule and caste identification, Dr. Edmund Brodie Jr. for guidance and discussion and Robert Weaver, three anonymous reviewers and USU Department of Biology Herp group for manuscript comments and review.




BORROR, D.J. AND J. M. DE LONG. 1964. Introduction to the study of insects. Holt, Reinhart, and Winston, New York, New York. 819 p.

CASTILLA, A. M., D. BAUWENS AND G. A. LLORENTE 1991. Diet composition of the lizard Lacerta lepida in central Spain. J. Herpetology, 25:30-36.

DAUBENMIRE, R. 1988. Steppe vegetation of Washington. Washington Agricultural Experimental Station Technical Bulletin 62. 131 p.

DUCYCHA, J. L. AND M. LYNCH. 2005. Conserved Ontogeny and Allometric Scaling of Resource Acquisition and Allocation in the Daphniidae. Evolution, 59:565-576.

DVORNICH, K. M. AND D. PETERSEN. 2005. Waterville Elementary School, Adopt-a-Farmer Project. Nature Mapping Program.

HERREL, A., R. JOACHIM, B. VANHOOYDONCK AND D. J. IRSCHICK. 2006. Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus. Biol. J. Linn. Soc., 89:443-454.

LAHTI, M. E., C. D. LUTON AND T. JONES. 2007. Phrynosoma douglasii (Pigmy short-horned lizard) Maximum Elevation. Herpetological Rev., 38:462.

MJM SOFTWARE. 1999. PC-ORD4: multivariate Analysis of Ecological Data v. 4.25. Glenden Beach, Oregon.

McCuNE, B. AND J. B. GRACE. 2002. Analysis of ecological communities. MjM Software, Gleneden Beach, Oregon. 304 p.

MCINTYRE, N. E. 2003. Effects of conservation reserve program seeding regime on harvester ants (Pogonomyrmex), with implications for the threatened Texas horned lizard (Phrynosoma cornutum). Southwest. Nat., 48:274-277.

MEYERS, J. J., A. HERREL AND K. C. NISHIKAWA. 2006. Morphological correlates of ant eating in horned lizards (Phrynosoma). Biol. J. Linn. Soc., 89:13-24.

MILNE, L.J. AND M.J. MILNE. 1950. Notes on the behavior of horned toads. Am. Midl. Nat., 44:720-741.

MONTANUCCI, R. R. 1981. Habitat separation between Phrynosoma douglasii and Phrynosoma orbiculare (Lacertilia: iguanidae) in Mexico. Copeia, 1:147-153.

--. 1989. The relationship of morphology to diet in the horned lizard genus Phrynosoma. Herpetologica, 45:208-216.

MUNGER, J. 1984. Optimal foraging? Patch use by horned lizards (Iguanidae: phrynosoma). Am. Nat., 123:654-680.

NUSSBAUM, R. A., E. D. BRODIE, JR. AND R. M. STORM. 1983. Reptiles and amphibians of the Pacific Northwest. University of Idaho Press, Moscow, Idaho. 336 p.

PIANKA, E. R. AND W. S. PARKER. 1975. Ecology of horned lizards: a review with special reference to Phrynosoma platyrhinos. Copeia, 1:141-162.

--. 1986. Reproductive tactics, p. 61-63. In: Ecology and natural history of desert lizards: analysis of the ecological niche and community structure. Princeton University Press, Princeton, New Jersey. 208 p.

POWELL, G. L. and A. P. RUSSELL. 1984. The diet of the eastern short-homed lizard (Phrynosoma douglasii brevirostre) in Alberta and its relationship to sexual size dimorphism. Can. J. Zool, 62:428--440.

PREEST, M. R. 1994. Sexual size dimorphism and feeding energetics in Anolis carolinenesis: why do females take smaller prey than males? J. Herpetology, 28:292-294.

RISSING, S. W. 1981. Prey preferences in the desert horned lizard: influence of prey foraging method and aggressive behavior. Ecology, 62:1031-1040.

RUTSCHE, R. D. 2004. Ontogenetic variation in digestion by the herbivorous lizard Ctenosaurus pectinata. Physiol. Biochem. Zool., 77:459-470.

SAS INSTITUTE, INC. 2007. SAS/STAT Software v. 8 for Windows. Cary, North Carolina.

SCHOENER, T. W. 1969. Models of optimal size for solitary predators. Am. Nat., 103:277-313.

--. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Sys., 2:369-404.

--. 1979. Generality of the size-distance relations in models of optimal feeding. Am. Nat., 114: 902.

SHERBROOKE, W. C. 2003. Introduction to horned lizards of North America. University of California Press, Los Angeles, California. 178 p.

STEBBINS, R. C. 1985. A field guide to western reptiles and amphibians, 2nd ed. Houghton Mifflin New York, New York. 336 p.

St. JOHN, A. 2002. Reptiles of the Northwest: california to Alaska, Rockies to the Coast. Lone Pine Publishing, Auburn, Washington. 272 p.

SUAREZ, A. V. AND T.J. CASE. 2002. Bottom-up effects on the persistence of a specialized predator: ant invasions and coastal horned lizards. Ecol. Applic., 12:291-298.

--, J. Q. RICHMOND AND T.J. CASE. 2000. Prey selection in horned lizards following the invasion of argentine ants in southern California. Ecol. Applic., 10:711-725.

TAYLOR, R.J. 1992. Sagebrush country: a wildflower sanctuary. Mountain Press, Missoula, Montana. 221 p.

TEIXERA-FILHO, P. F., C. F. D. ROCHA AND S. C. RIBAS. 2003. Relative feeding specialization may depress ontogenetic, seasona, and sexual variations in diet: the endemic lizard Cnemidophorus littoralis (Teiidae). Braz. J. Biol., 63:321-328.

TRACY, C. R. 1998. Differences in Body Size among Chuckwalla (Sauromalus obseus) Populations. Ecology, 80:259-271.

WEESE, A. O. 1917. An experimental study of the reactions of the horned lizard, Phrynosoma modestum Gir., a reptile of the semi-desert. Biol. Bull., 32:98-116.

--. 1919. Environmental reactions of Phrynosoma. Am. Nat., 53:33-54.

WHITFORD, W. G. AND M. BRYANT. 1979. Behavior of a predator and its prey: the horned lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology, 60:686-694.

WHITING, M. J., J. R. DIXON AND R. C. MURRAY. 1993. Spatial distribution of a population of Texas horned lizards (Phrynosoma cornutum: Phrynosomafidae) relative to habitat and prey. Southwest. Nat., 38:150-154.

ZAMUDIO, K. R. 1996. Ecological, evolutionary, and applied aspects of lizard life histories. Doctorate of Science Dissertation, University of Washington. 165 p.

--., K. B. JoNES AND R. H. WARD. 1997. Molecular systematics of short-horned lizards: biogeography and taxonomy of a widespread species complex. Sys. Biol., 46:284-305.


Utah State University, Department of Biology, 5305 Old Main Hill, Logan 84322


Central Washington University, Department of Biological Sciences, 400E. University Way, Ellensburg 98926

(1) Corresponding author: Telephone: 435.899.9380; e-mail:
TABLE 1.--Diet composition consumed by Phrynosoma douglasii at
Umtanum and Quilomene. Terrain, season and year represent lizards
from Quilomene only. Insect prey items are represented by head
capsule counts. Insect counts from multiple fecal pellets obtained
during one collection event from one individual are averaged.
Percentage (italicized) indicates proportion of diet consumed
within each lizard group

                          Formicidae       Dipteran        Hemiptera

                         n        %        n       %       n      %

Umtanum (n = 15)        223     75.6%      1.5    0.5%    13.5   4.6%
Male (n = 7)             96     77.1%      0      0.0%     0     0.0%
Female (n = 7)          125     75.5%      1.5    0.9%    13.5   8.2%
Yearling (n = 1)          2     40.0%      0      0.0%     0     0.0%

Quilomene (n = 102)    1906.6   71.2%     21      0.8%    43     1.6%
Male (n = 20)           287.5   72.4%      1      0.3%     7.5   1.8%
Female (n = 45)        1103.6   72.4%     19      1.2%    25.3   1.6%
Yearling (n = 25)       329.5   60.4%      1      0.2%     8     1.5%
Neonate (n = 12)        186     88.8%      0      0.0%     2.2   1.0%

Terrain (n = 102)
Lithosol (n = 66)       952.3   66.7%     16      1.1%    24.7   1.7%
Loamy (n = 6)           187.5   79.0%      0      0.0%     6     2.5%
Ecotone (n = 30)        766.8   75.9%      5      0.5%    12.3   1.2%

Season (n = 102)
Spring (n = 46)         920.6   73.5%      9      0.6%    14.8   1.2%
Summer (n = 48)         915     68.8%     12      0.9%    25.7   1.9%
Fall (n = 8)             71     74.8%      0      0.1%     2.5   2.6%

Year (n = 102)
2004 (n = 53)           717.6   70.4%      3      0.3%    22     2.2%
2005 (n = 49)          1189     71.7%     18      1.0%    21     1.3%

                          Coleoptera       Pebbles          debris

                         n        %        n       %       n      %

Umtanurn (n = 15)        27.5    9.3%       19    6.4%    10.5   3.6%
Male (n = 7)              8.5    6.8%     16.5   13.3%     3.5   2.8%
Female (n = 7)           17     10.3%      1.5    0.9%     7     4.2%
Yearling (n = 1)          2     40.0%        1   20.0%     0     0.0%

Quilomene (n = 102)     295.6   11.0%    353.3   13.2%    58     2.2%
Male (n = 20)            41.5   10.5%     46.5   11.7%    13     3.3%
Female (n = 45)         164.1   10.8%      180   11.8%    33.3   2.2%
Yearling (n = 25)        84     15.4%    113.5   20.8%     9.5   1.7%
Neonate (n = 12)          6      2.9%     13.3    6.3%     2.2   1.0%

Terrain (n = 102)
Lithosol (n = 66)       194.3   13.6%    210.8   14.7%    31.5   2.2%
Loamy (n = 6)            18.5    7.8%     19.5    8.2%     6     2.5%
Ecotone (n = 30)         82.8   58.2%      123   12.2%    20.5   2.0%

Season (n = 102)
Spring (n = 46)         171.1   13.7%    128.5   10.3%     8.3   0.7%
Summer (n = 48)         120.5    9.1%    208.8   15.7%    48.2   3.6%
Fall (n = 8)                4    4.2%       16   16.8%     1.5   1.6%

Year (n = 102)
2004 (n = 53)            88.1    8.6%    163.3   16.0%    25     2.5%
2005 (n = 49)           207.5   12.5%      190   11.5%    33     2.0%

TABLE 2.--Indicator Species Analysis of significant differences in
Phrynosoma douglasii's diet among years, seasons and lizard groups.
No significant differences in diet were found across terrain types

                                      Indicator           Significant
Variable              Food item         value    p-value     group

Year (2004, 2005)     Formicidae        64.2      0.004      2005
                      Diptera           14.1      0.041      2005
                      Coleoptera        65.9      0.001      2005
Season (spring,       Coleoptera        34.4      0.010     Spring
  summer, fall)       Organic Debris    19.3      0.022     Summer

Sex/Age (male,        Formicidae        35.5      0.091     Female
  female, yearling,   Diptera           14.7      0.060     Female
  neonate)            Coleoptera        32.1      0.070     Female
                      Pebbles           16.8      0.077    Yearling
COPYRIGHT 2008 University of Notre Dame, Department of Biological Sciences
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2008 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Lahti, Megan E.; Beck, Daniel D.
Publication:The American Midland Naturalist
Article Type:Report
Geographic Code:1USA
Date:Apr 1, 2008
Previous Article:Effects of the pitcher plant mining moth Exyra semicrocea on the hooded pitcher plant Sarracenia minor.
Next Article:Measuring fluctuating asymmetry in plastron scutes of yellow-bellied sliders: the importance of gender, size and body location.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters