Printer Friendly

Do-it-yourself DNA: scientists assemble first synthetic genome.

Starting from custom-made segments of DNA, scientists have succeeded in putting together an entire microbial genome in the lab. The researchers plan to transplant this genome into a microbe in the hope that the cell will "boot up" and use the synthetic DNA.

The completed genome is a single DNA molecule with about 583,000 letters of genetic code--18 times the size of the previous record for laboratory-made DNA.

Researchers at the J. Craig Venter Institute in Rockville, Md., based their homemade genome on that of Mycoplasma genitalium, a single-celled parasite that infects people's genitals. The parasite has one of the smallest known genomes.

To distinguish the synthetic genome from a natural one, team leader Hamilton O. Smith and his colleagues added telltale "oar codes" of genetic code to their recipe. The researchers also crippled the gene that makes the parasite infectious.

Smith's team then divided the recipe into 101 pieces and bought made-to-order copies of each piece from biotech supply companies in Washington State, California, and Germany. "Gene sequencing is now a commodity," explains researcher John I. Glass, but the largest made-to-order DNA available commercially is only about 5,000 to 6,000 letters long.

The scientists stitched together these 101 pieces of DNA in stages. The ends of each piece overlapped those of its neighbors in the sequence by about 80 letters of code, enabling the scientists to join consecutive pieces using enzymes. By building groups of neighboring pieces into progressively larger segments, the team eventually created four long chunks, each containing about one-quarter of the genome.

At that point, the project hit a snag. The four giant DNA molecules were too big to put into Escherichia coli bacteria, which the researchers had used to make copies of the DNA segments at each earlier stage. Without lots of copies of these large segments, stitching them together in lab dishes would be difficult.

To solve that problem, Smith and colleagues inserted the segments into cells of brewer's yeast (Saccharomyces cerevisiae). The yeast's DNA-repair enzymes put the four pieces together, the team reports in the Jan. 24 online edition of Science.

"The exciting thing is that the yeast assembly did work. We weren't sure that it would," Glass says. When the scientists checked the sequence of letters in the resulting DNA, it matched their recipe exactly.

George Church, a geneticist at Harvard Medical School in Boston, says he applauds the work but wonders about the technique's long-term usefulness. "It was a giant step for mycoplasma-kind, and a slightly more modest one for human beings," Church comments. For biotech applications, he says, "I just ask what is it that we can't do in E. coli that they'll be able to do with mycoplasma."

Smith and coworkers previously showed that they could transplant the entire genome of one species of mycoplasma into a related species (SN: 6/30/07, p. 403). The researchers are now attempting to repeat this feat using a synthetic genome instead of a natural one. If they succeed, the resulting cell will be the first living organism with a human-made genome (SN: 1/12/08, p. 27).
COPYRIGHT 2008 Science Service, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2008, Gale Group. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:This Week
Author:Barry, Patrick
Publication:Science News
Date:Jan 26, 2008
Words:519
Previous Article:Big foot: eco-footprints of rich dwarf poor nations' debt.
Next Article:Scanner darkly: tiny venetian blinds enhance radiography.


Related Articles
Life swap: switching genomes converts bacteria.
Life from scratch: learning to make synthetic cells.
A life encoded: how the bad boy of synthetic biology is changing the world.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters