Printer Friendly

Diabetes Care. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: a randomized controlled trial.

Hypoglycemia and wide glucose excursions continue to be major obstacles to achieving target HbA(1c) values and the associated reductions in long-term complications (and economic costs) in people with insulin-treated diabetes. In this study we evaluated the accuracy, safety, and clinical effectiveness of a continuous glucose-sensing device. RESEARCH DESIGN AND METHODS: A total of 91 insulin-requiring patients with type 1 (n = 75) and type 2 (n = 16) diabetes were enrolled in this multicenter randomized study. Subjects wore a transcutaneous, 3-day, continuous glucose-sensing system for three consecutive 72-h periods. Subjects were randomly assigned (1:1 ratio) to either a control group (continuous glucose data not provided) or a display group (continuous glucose data not provided during period 1 but displayed during periods 2 and 3). During periods 2 and 3, patients in the display group had real-time access to sensor glucose values, could review glucose trends over the preceding 1, 3, and 9 h, and were provided with high (> or = 200 mg/dl) and low (< or = 80 mg/dl) alerts and a low (< or = 55 mg/dl) alarm. Sensors were inserted by patients, and both groups used (or wore) the system during daily activities. Device accuracy was assessed by comparing continuous glucose values to paired self-monitoring of blood glucose (SMBG) meter readings. Clinical effectiveness was evaluated by analyzing between-group (control vs. display, periods 2 and 3) and within-group (display, period 1 vs. period 3) differences in time spent in high, low, and target (81-140 mg/dl) glucose zones.

When compared with control subjects, the display group spent 21% less time as hypoglycemic (<55 mg/dl), 23% less time as hyperglycemic (> or = 240 mg/dl), and 26% more time in the target (81-140 mg/dl) glucose. Nocturnal (10:00 p.m. to 6:00 a.m.) hypoglycemia, as assessed at two thresholds, was also reduced by 38% (<55 mg/dl; P < 0.001) and 33% (55-80 mg/dl) in the display group compared with control subjects.

The authors concluded that real-time continuous glucose monitoring for periods up to 72 h is accurate and safe in insulin-requiring subjects with type 1 and type 2 diabetes. This study demonstrates that availability of real-time, continuously measured glucose levels can significantly improve glycemic excursions by reducing exposure to hyperglycemia without increasing the risk of hypoglycemia, which may reduce long-term diabetes complications and their associated economic costs.

2006 Jan;29(1):44-50

COPYRIGHT 2007 American Medical Technologists
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Garg, S.; Zisser, H.; Schwartz, S.
Publication:Journal of Continuing Education Topics & Issues
Geographic Code:1USA
Date:Jan 1, 2007
Previous Article:Scientific American: obesity: an overblown epidemic?
Next Article:Diabetes Technol Ther. Validation of the Continuous Glucose Monitoring System (CGMS) by the use of two CGMS simultaneously in pregnant women with...

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters