Printer Friendly

Determination of Seroprevalence of Borrelia burgdorferi IgG in Adult Population Living in Trabzon.

Background: Lyme borreliosis is a tick-borne, multi-systemic infectious disease that is thought to be wide spread in Turkey even though studies on its seroprevalence are limited.

Aims: To determine the seroprevalence of Lyme borreliosis in part of north-eastern Turkey (in the city of Trabzon), and to identify possible relationships between seropositivity and various factors such as location, gender, age group, occupation, income, and educational level.

Study Design: Retrospective cross-sectional study.

Methods: A total of 884 blood samples collected from provincial and district health centers serving a population of about 800,000 were included in this study. ELISA was used to determine the anti-Borrelia IgG antibody levels in the samples. Samples that yielded positive results by ELISA were further subjected to western blot (WB).

Results: IgG antibodies were found in 128 samples (14.5%). Statistical analysis revealed significant differences between age groups and educational levels in terms of the incidence of seropositivity, whereas location, gender, occupational group and income level had no effect (p<0.001, p<0.001, p=0.948, p=0.645, p=0.131, p=0.080 respectively).

Conclusions: The risk of contracting Lyme borreliosis in Trabzon is high, and necessary measures need to be taken to avoid the spread of disease.

Keywords: Lyme borreliosis, seroprevalence, tick, ELISA, western blot

Lyme borreliosis (LB) is a tick-borne disease caused by a group of pathogenic spirochetes belonging to B. burgdorferi sensu lato complex or Lyme borrelia and is transmitted by Ixodes spp ticks (1). Within this group of bacteria B. burgdorferi sensu stricto, B. garinii, and B. afzelii are known to be responsible for causing LB in humans. The most common agent that causes LB in the United States is B. burgdorferi sensu stricto while in Asia LB is commonly caused by B. garinii and B. afzelii. All three species are reported to be common in Europe. In recent years, it has been reported that other species of Borrelia such as B. spielmanii, B. valaisiana, and B. lusitania are also associated with LB (2).

Lyme borreliosis is a multisystemic zoonosis that can be divided into three clinical phases. Although the early localized phase is characterized by erythema migrans (EM), non-specific flu-like symptoms may also be seen at this stage (3). In addition to two or more EM, neurological, rheumatic, and cardiac manifestations may also occur in the early disseminated phase. The late phase emerges with arthritis or acrodermatitis chronica atrophicans (ACA), and neurological symptoms may occur, but only rarely (4,5).

Lyme borreliosis can be clinically diagnosed if the classical signs and symptoms are present. However, the same signs and symptoms cannot be observed in all patients at every stage. In addition, the disease may exhibit similarities to different diseases in different clinical situations (1,3). For this reason, various laboratory tests are needed to diagnose LB. In order to determine the etiological agent, microscopy, culture, and polymerase chain reaction (PCR) can be used. However, these methods are most sensitive in the detection of B. burgdorferi from the EM lessions, that is not a common laboratory test, and also time-consuming, labor-intensive, as well as it is not sensitive enough (1,3). For these reason serological tests are important in diagnosis. The Centers for Disease Control and Prevention (CDC) proposed a two-step approach for serological testing in order to identify active disease or past infections. An ELISA or immunofluorescent antibody test (IFA) is recommended as the first-line test, after which western blot (WB) is required as a second-line confirmatory test (6-8). The IgM and/or IgG antibodies occur in only 20-50% of patients in the early localized stage. In the early disseminated phase, the seropositivity of IgM and/or IgG is 70-90%. IgG antibodies are detectable in all patients in the late phase (9).

Lyme borreliosis is the most common tick-borne disease in North America, Europe, parts of Asia, and northern Japan (4). There are a limited number of studies evaluating B. burgdorferi antibody positivity in Turkey. The majority of studies were carried out on patients with arthritis, rheumatism and similar complaints, uveitis, Behcet's disease, morphea, lichen sclerosis, facial paralysis, aseptic meningitis or manifestations similar to those of LB using ELISA, and B. burgdorferi antibodies were found at different levels of prevalence (0-66.6%) in these groups. Other studies performed using ELISA included only individuals considered to be in the at-risk group due to living in a village or dealing with livestock farming, and in these the positivity rate ranged from 3.28 to 35.9% (9). Ixodes spp. ticks are frequently seen in the Eastern Black Sea Region including the city of Trabzon. The prevalence of Ixodes spp. infected with B. burgdorferi sensu lato was reported as 15.9% in the Black Sea Region (10). A case study was carried out in 1990 concerning the presence of LB in the city of Trabzon (9). The study included 90 serum samples obtained from people including those involved in livestock farming. The samples were analyzed by ELISA, and the proportion with anti-Borrelia IgG antibodies was 6.6% (11). However, there are no recent data on the incidence of LB in the north-eastern part of Turkey. The aim of the study was to determine the seroprevalence of B. burgdorferi sensu lato infection among healthy people from Trabzon province and its districts and the relation between anti-Borrelia IgG antibodies and selected socio-demographic factors.

MATERIALS AND METHODS

Study population

The serum samples used in this study were collected from 884 healthy adult individuals between the ages of 20 and 79 living in Trabzon city center and nine counties during the period from August 2007 to August 2008 and were stored at -80 [degrees]C until analysis performed in 2012. The mean age of the study group was 40.8 years, and the female/male distribution was 51.24% and 48.76%, respectively. This study was approved by the local Ethics Committee of Karadeniz Technical University School of Medicine. Individuals whose serum samples were included in this study were informed about the aim of the study, and they gave verbal consent. The sample size required was calculated as at least 884 with 50% expected prevalence, 95% confidence level, and 3% deviation using the formula (where n is sample size, is z-score, p is estimated proportion, and d is desired precision). Nine of 17 counties in the province of Trabzon were selected for sampling based on the geographical features of the provinces (12).

Serological tests

A commercial IgG ELISA kit (Immunolab GmbH; Kassel, Germany) was used to determine the B. burgdorferi s.l. IgG antibodies. According to the manufacturer, the Immunolab B. burgdorferi IgG ELISA test kit contains a whole cell antigen extract of B. burgdorferi sensu stricto, which cross-reacts with B. afzelii and B. garinii, plus pure OspC, which increases the specificity and sensitivity of the assay. In the western blot (WB), a commercial B. burgdorferi IgG (Euroimmun; Lubeck, Germany) kit was used to evaluate the samples that had been found to be positive by ELISA. These kits were prepared using complete antigens of B. afzelii, and a recombinant VlsE antigen. Tests were conducted in accordance with the manufacturer's instructions, and WB results were evaluated using the EUROLINEScan (Euroimmun; Lubeck, Germany) program. Only the serum samples that gave positive results for both ELISA and WB were accepted as positive and included in the statistical analysis.

Socio-demographic data

In order to determine the factors affecting the anti-Borrelia antibodies, the results were compared in terms of socio-demographic data (e.g. location, gender, age, educational level, occupational group, and income level). The participants were classified as high-risk and low-risk groups in terms of occupation (Table 1). Farmers, skilled and unskilled workers, police officers, soldiers, housewives, and retirees were considered as being in the high-risk group, whereas teachers, health personnel, office workers, directors, secretaries, craftsmen, engineers, clergy, drivers, media, accountants, students, and unemployed people were classified in the low-risk group.

Statistical analysis

Chi-square tests were conducted using Statistical Package for the Social Sciences 13.0 software (SPSS Inc.; Chicago, IL, USA), and differences were considered significant at p<0.05.

RESULTS

A total of 236 (26.7%) out of 884 examined serum samples were found to be seropositive for anti-Borrelia IgG antibodies by ELISA. Of these, 128 (14.5%) were also positive in the WB (Table 2). To evaluate the positivity rates according to location, residential areas were classified as being in the city center or the rest of the city. According to the western blot, anti-Borrelia IgG antibodies were present in 78 (14.4%) out of 541 samples from the city center, and in 50 (14.6%) of 343 samples obtained from individuals living in other districts (Table 3). The difference in incidence of Lyme seropositivity between the city center and the districts (14.4%, 14.6%; respectively) was not significant (p=0.948). However, there was a significant relationship between B. burgdorferi IgG positivity and age group and the educational level of patients (p<0.001, p<0.001; respectively) (Table 2). B. burgdorferi IgG positivity increased as educational level decreased, and was more common in those without formal education. Examination of the positivity results in terms of gender, occupation, and income level did not yield any significant difference between groups (p=0.645, p=0.131, p=0.080 respectively) (Table 2).

DISCUSSION

A total of 884 serum samples obtained from individuals living in Trabzon city center and districts was screened by ELISA first, and then positive samples were further examined by WB in order to determine the seropositivity of B. burgdorferi. A total of 26.7% of examined individuals were positive according to the ELISA results while 128 of those (14.5%, overall) were also found to be positive according to the WB results. These findings led to the conclusion that when working with the ELISA method only, a high rate of false positivity may be obtained, and therefore the results should be confirmed with further WB tests as recommended by the CDC (6). The number of previous studies specific to the north-eastern part of Turkey is limited and included fewer samples than in the current study. One study reported a seropositivity of 6.6% according to ELISA of 60 samples only (11). The relation between positive results and investigated parameters was quite limited. A review of the literature identified two publications from the eastern Black Sea region about LB (11,13). One presented a case of LB in 1990 (13). In the other, 60 individuals engaged in animal husbandry (30 of them settled in mountainous areas, the other 30 people settled in coastal areas), and 30 healthy individuals not engaged in animal husbandry living in Trabzon were sampled, with a 6.6% seropositivity rate according to ELISA in both groups (11).

In another study carried out along the north-western coast of Turkey (Duzce province) the seroprevalence of IgG among 349 forest workers and farmers was 10.9%, while 2.6% of 193 healthy controls showed seropositivity. The difference between the two groups was statistically significant (14). A wide range of seroprevalence levels for B. burgdorferi IgG antibodies was reported in similar studies conducted in Turkey, such as 2.0% in Erzurum (15), 17.6% in northern Cyprus (16), 35.9% in Antalya (17), 3.3% in Samsun (18), 0.0% in Sivas, 6% in Ankara, 7.8% in Izmir, 18.9% in Denizli, and 17% in Isparta (9).

According to the National Notifiable Disease Surveillance System's data collected from 1992 to 2006 in the USA, the number of reported cases increased by 101% over this period (9908 cases in 1992, 19 931 cases in 2006). Looking at the average ratio of the incidence of LB in states during this period, it was determined that the ratio changed from 0.01 to 73.6/100,000 persons. The lowest incidence was 0.01 in Colorado and Montana, while it was 73.6 in the state of Connecticut (4). Numerous studies have been conducted on the seroprevalence of LB in Europe. The seroprevalence of B. burgdorferi IgG was reported to be 54% in Austria in 2006 (19), 2.27% in Northern Italy in 2010 (20), 25% in Southern Poland in 2009 (21), 9.4% in Germany (22), 9.6% in Western Norway (23), and 9.6% in Northern Spain (24). In a study carried out in eight provinces in China, the seroprevalence of B. burgdorferi IgG was 3-15% (25). The incidence of LB in southern Sweden was 69/100 000 in 1995 (26), whilst the rate of seroprevalence of Borrelia IgG antibodies was 3.2% among young children in 2010 (27).

In some studies, seropositivity was assessed according to the socio-demographic characteristics of individuals as reported in the current study. The distribution of the rates of seropositivity according to place of residence was analyzed in Germany, revealing higher rates in rural areas (22). Similarly, the seroprevalence was higher outside the city center in this study. Similarly, the seroprevalence was higher outside the city center in this study.

When the IgG seroprevalence was examined according to sex, it was more common in men in the USA (4), Austria (19), Southern Poland (21), Germany (22), Western Norway (23), and China (25), whereas in Northern Spain (24) it was more common among women; meanwhile the incidence was almost the same in men and women in South Sweden (26). In studies conducted in Turkey, it was reported as being more common among men in Duzce (14), and more common among women in Antalya (17) and Samsun (18). In this study, the seropositivity was comparable in women (15.0%) and men (13.9%) with no significant difference between the two.

In studies that evaluated the IgG seroprevalence with regard to age, a bimodal distribution was found in the USA (mostly in ages 5-9 and 55-59) (4) and South Sweden (mostly in ages 5-9 and 60-74) (26). In other studies, the highest rates were found between the ages 60-69 in Austria (18), [greater than or equal to]50 in Southern Poland (21), 70-79 in Germany (22), 60-69 in Western Norway (23), 11-20 in Northern Spain (24), and 40-49 in China (25). In Turkey, on the other hand, the highest rates were found between the ages 10-20 in Duzce (14), 20-39 in Antalya (17), and 15-39 in Samsun (18). The highest rate of seropositivity was found in those aged [greater than or equal to]70 in the current study (32.7%). This result was attributed to the fact that retired individuals spend more time in rural areas.

In terms of the relationship between seropositivity and profession, it was found that seropositivity was more common among site workers than among office workers in Southern Poland (21), while no difference in seroprevalence was found in terms of occupation in Northern Spain (24). In our study, seropositivity was more common in the high-risk group of occupations (15.9%) than in the low-risk group of occupations (12.2%), which is consistent with the literature.

Analysis of the data according to income level showed no significant difference in seropositivity between groups (15.7% in the group earning [less than or equal to]1000 TRY, 11.0% in the group earning >1000 TRY; p=0.080). In contrast there was a significant correlation between level of education and seropositivity: 27.0% in those without a formal education, 15.8% in those who graduated from primary school, and 10.4% in those who graduated from high school and higher (p<0.001).

The occurrence of negative results in WB from some of the samples that gave positive results in the ELISA may be due to cross reaction of Lyme borrelia with other pathogens. The 14.5% seropositivity rate obtained in this study indicates that there is a high risk of getting LB in Trabzon. The lack of significant difference in the positivity rates between the city center and districts and between males and females could be due to the high mobility of the city's residents. The increase in seropositivity with age could be due to older individuals spending more time in nature and/or rural areas than younger individuals. The lower seropositivity in those with a higher educational level could be attributed to their higher awareness and the taking of necessary precautions when performing outdoor activities.

The different seropositivity rates in the different regions of Turkey indicate that environmental factors such as climate and living conditions might affect the seropositivity of LB, and this needs further investigation. The climate is suitable for both ticks and the reservoir animals found in Turkey, which could increase the seropositivity of LB in Turkey. These findings indicate that the disease should be kept in mind as a differential diagnosis for patients with Lyme-like symptoms.

Conflict of Interest: No conflict of interest was declared by the authors.

REFERENCES

(1.) Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet 2012;379:461-73.

(2.) Cook MJ. Lyme borreliosis: a review of data on transmission time after tick attachment. Int J Gen Med 2014;8:1-8.

(3.) Potok OV, Brassard A. Lyme Borreliosis: An Update for Canadian Dermatologists. J Cutan Med Surg 2013;17:13-21.

(4.) Bacon RM, Kugeler KJ, Mead PS. Surveillance for Lyme disease-United States, 1992-2006. Centers for Disease Control and Prevention. http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5710a1.htm. (Access 08.07.2014)

(5.) Bhate C, Schwartz RA. Lyme disease: Part I. Advances and perspectives. J Am Acad Dermatol 2011;64:619-36.

(6.) United States Centers for Disease Control and Prevention (CDC). Two-step aboratory testing process. (cited 13.04.2015) Available from: http://www.cdc.gov/lyme/diagnosistesting/labtest/twostep/index.html

(7.) Bhate C, Schwartz RA. Lyme disease: Part II. Management and prevention. J Am Acad Dermatol 2011;64:639-53.

(8.) Aguero-Rosenfeld ME, Wang G, Schwartz I, Wormser GP. Diagnosis of Lyme borreliosis. Clin Microbiol Rev 2005;18:484-509.

(9.) Ozkurt Z. turkiye'de Borrelia burgdorferi enfeksiyonlari ve tani ilkeleri. XII. turk Klinik Mikrobiyoloji ve Infeksiyon Hastaliklari Kongresi Tzet Kitabi. KLIMIK Derg. 2007;20 (Ek-Tzel Sayi):109-20.

(10.) Gunes, T, Kaya S, Poyraz O, Engin A. The Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus Ticks in the Sinop Region of Turkey. Turk J Vet Anim Sci 2007;31:153-8.

(11.) Aydin K, Koksal I, Caylan R, Karaguzel A, Volkan S, Kaygusuz S et al. Trabzon yoresinde Lyme seropozitifligi. Infek Derg 2001;15:141-4.

(12.) Yavuzyilmaz A. Trabzon ilinde 40 yas ve uzeri eriskinlerin tetanoz antitoksin duzeyleri ve etkileyen faktorler [Dissertation]. Trabzon: Karadeniz Technical University School of Medicine;2010.

(13.) Koksal I, Saltoglu N, Bingul T, Ozturk H. Bir Lyme hastaligi olgusu. Ankem Derg 1990;4:284.

(14.) Kaya AD, Parlak AH, Ozturk CE, Behcet M. Seroprevalence of Borrelia burgdorferi infection among forestry workers and farmers in Duzce, Northwestern Turkey. New Microbiol 2008;31:203-9.

(15.) Uyanik MH, Yazgi H, Ayyildiz A. Erzurum yoresinde Lyme seropozitifliginin arastirilmasi. Infek Derg 2009;23:69-72.

(16.) Altindis M, Yilmaz S, Bilici D. Kuzey Kibris bolgesinde Borrelia burgdorferi antikor sikliginin arasltirilmasi. Infek Derg 2002;16:163-6.

(17.) Mutlu G, gultekin M, Ergin C, Sayin F, Kursun AE. Antalya yoresinde Borrelia burgdorferi antikorlarinin ve vektorlerinin arastirilmasi. Mikrobiyol Bul 1995;29:1-6.

(18.) Aslan Basbulut E, Gozalan A, Sonmez C, Coplu N, Kohasan B, Esen B et al. Seroprevalence of Borrelia burgdorferi and tickborne encephalitis virus in a rural area of Samsun, Turkey. Mikrobiyol Bul 2012;46:247-56.

(19.) Cetin E, Sotoudeh M, Auer H, Stanek G. Paradigm Burgland: Risk of Borrelia burgdorferi sensu lato infection indicated by variable seroprevalence rates in hunters. Wien Klin Wochenschr 2006;118:677-81.

(20.) Calderaro A, Montecchini S, Gorrini C, Piccolo G, Chezzi C, Dettori G. Presence of anti-Borrelia burgdorferi antibodies and Borrelia burgdorferi sensu lato DNA in samples of subjects in an area of the Northern Italy in the period 2002-2008. Diagn Microbiol Infect Dis 2011;70:455-60.

(21.) Buczek A, Rudek A, Bartosik K, Szymanska J, Wojcik-Fatla A. Seroepidemiological study of Lyme borreliosis among forestry workers in southern Poland. Ann Agric Environ Med 2009;16:257-61.

(22.) Wilking H, Fingerle V, Klier C, Thamm M, Stark K. Antibodies against Borrelia burgdorferi sensu lato among Adults, Germany, 2008-2011.

Emerg Infect Dis 2015;21:107-10.

(23.) Hjetland R, Nilsen R M, Grude N, Ulvestad E. Seroprevaence of antibodies to Borrelia burgdorferi sensu lato in healthy adults from western Norway: risk factors and methodological aspects. APMIS 2014;122:1114-24.

(24.) Lledo L, Gegundez M I, Gimenez-Pardo C, Alamo R, Fernandez-Soto P, Nuncio MS et al. A seventeen-year epidemiological surveillance study of Borrelia burgdorferi infections in two provinces of Northern Spain. Int J Environ Res Public Health 2014;11:1661-72.

(25.) Hao Q, Geng Z, Hou X X, Tian Z, Yang ZJ, Jiang WJ et al. Seroepiedmiological investigation of lyme disease and human granulocytic anaplasmosis among people living in forest areas of eight provinces in China. Biomed Environ Sci 2013;26:185-9.

(26.) Berglund J, Eitrem R, Ornstein K, Lindberg A, Ringer A, Elmrud H, et al. An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 1995;333:1319-27.

(27.) Skogman BH, Ekerfelt C, Ludvigsson J, Forsberg P. Seroprevalence of Borrelia IgG antibodies among young Swedish children in relation to reported tick bites, symptoms and previous treatment for Lyme borreliosis: a population-based survey. Arch Dis Child 2010;95:1013-6.

Merve Cora (1), Nese Kaklikkaya (1), Murat Topbas (2), Gamze Can (2), Asuman Yavuzyilmaz (3), Ilknur Tosun (1), Faruk Aydin (1)

(1) Department of Medical Microbiology, Karadeniz Technical University School of Medicine, Trabzon, Turkey

(2) Department of Public Health, Karadeniz Technical University School of Medicine, Trabzon, Turkey

(3) Trabzon Provincial Health Directorate, Trabzon, Turkey

This study has been presented as a poster at the 35th Turkish Microbiology Congress, 3-7 November 2012, Aydin, Turkey.

Address for Correspondence: Dr. Merve Cora, Karadeniz Technical University School of Medicine, Trabzon, Turkey

Phone: +90 462 377 77 86

Received: 30 March 2015

e-mail: mcora@ktu.edu.tr

Accepted: 07 January 2016

Available at www.balkanmedicaljournal.org

Cite this article as:

Cora M, Kaklikkaya N, Topbas M, Can G, Yavuzyilmaz A, Tosun I, et al. Determination of seroprevalence of Borrelia burgdorferi IgG in adult population living in Trabzon. Balkan Med J 2017;34:47-52

(c) Copyright 2017 by Trakya University Faculty of Medicine / The Balkan Medical Journal published by Galenos Publishing House.
TABLE 1. Grouping the samples according to socio-demographic
characteristics

Location (n= 884)                      # of Samples   Percentage (%)

City center                                 541            61.2
     Akcaabat                                95            10.7
     Arakli                                  49             5.5
     Caykara                                  6             0.7
     Duzkoy                                  12             1.4
     Macka                                   22             2.5
     Of                                      48             5.4
     Surmene                                 37             4.2
     Vakfikebir                              44             5.0
     Yomra                                   30             3.4
Gender (n=884)
     Female                                 453            51.24
     Male                                   431            48.76
     Age (n=884)
     20-29                                  262            29.64
     30-39                                  203            22.96
     40-49                                  173            19.57
     50-59                                  122            13.80
     60-69                                   69             7.81
     70+                                     55             6.22
Educational Levels (n=881) (*)
     Illiterate                              59             6.7
     Literate                                30             3.4
     Primary School                         307            34.7
     Secondary School                        99            11.2
     High School                            263            29.8
     University and higher education        123            13.9
Occupation (n=884)
     Low-Risk Group                         329            36.4
     High-Risk Group                        555            63.6
Income Levels (n=884) (**)
     Under 500                               77             9.0
     500-999                                397            46.2
     1000-1499                              212            24.8
     1500-1999                               81             9.4
     2000 and above                         117            10.6

(*) Three individuals without precise information about educational
level were excluded from the statistical evaluation. In statistical
analysis they were divided into three groups.
(**) Numbers denote the income in Turkish Lira. In statistical
analyses, income levels per month were grouped as above and below 1000
Turkish Lira (TRY).

TABLE 2. Distribution of seropositivity according to socio-demographic
characteristics of samples

                                Anti-B. burgdorferi IgG Antibodies
                                              ELISA             WB
                             #of          Positive   %    Positive   %
                             individuals
Gender
   Female                       453          116    25.6     68     15.0
   Male                         431          120    27.8     60     13.9
Age
   20-29                        262           50    19.1     23      8.8
   30-39                        203           42    20.7     21     10.3
   40-49                        173           52    30.1     26     15.0
   50-59                        122           41    33.6     24     19.7
   60-69                         69           29    42.0     16     23.2
   >70                           55           22    40.0     18     32.7
Educational level
   Without formal education      89           38    42.7     24     27.0
   Primary school graduate      406          114    28.1     64     15.8
   High school and higher       386           84    21.8     40     10.4
graduates
Occupation
   Low-risk group               329           80    24.3     40     12.2
   High-risk group              555          156    28.1     88     15.9
Income level
[less than or equal to]         656          182    27.7    103     15.7
1000 TRY
>1000 TRY                       228           54    23.7     25     11.0

                                Anti-B. burgdorferi IgG Antibodies
                                    p (*)

Gender                            p=0.645
   Female
   Male
Age                               p<0.001
   20-29
   30-39
   40-49
   50-59
   60-69
   >70
Educational level                 p<0.001
   Without formal education
   Primary school graduate
   High school and higher
graduates
Occupation                        p=0.131
   Low-risk group
   High-risk group
Income level                      p=0.080
[greater than or equal to]
1000 TRY
>1000 TRY

(*) p values were calculated according to the results of the WB. WB:
western blot; ELISA: enzyme-linked immunosorbent assay

TABLE 3. Number of positive results and corresponding percentages
according to area of residence

                              Anti-B. Burgdorferi   IgG Antibodies
                                    ELISA                  WB
Residence         # of        n          %            n        %
              individuals

City center       541        146        27.0         78       14.4
Akcaabat           95         11        11.6          4        4.2
Arakli             49         18        36.7         11       22.4
Caykara             6          3        50.0          3       50.0
Duzkoy             12          3        25.0          0        0.0
Macka              22          6        27.3          2        9.1
Of                 48         11        22.9          7       14.6
Surmene            37         10        27.0          5       13.5
Vakfikebir         44         16        36.4         10       22.7
Yomra              30         12        40.0          8       26.7
TOTAL             884        236        26.7        128       14.5

WB: western blot; ELISA: enzyme-linked immunosorbent assay
COPYRIGHT 2017 Galenos Yayinevi Tic. Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Original Article; immunoglobulin g
Author:Cora, Merve; Kaklikkaya, Nese; Topbas, Murat; Can, Gamze; Yavuzyilmaz, Asuman; Tosun, Ilknur; Aydin,
Publication:Balkan Medical Journal
Article Type:Report
Geographic Code:7TURK
Date:Jan 1, 2017
Words:4284
Previous Article:The Predictors of Obesity Hypoventilation Syndrome in Obstructive Sleep Apnea.
Next Article:Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters