Printer Friendly

Design requirements of a human-powered planter/Requisitos de projeto de uma semeadora acionada por forca humana.

Planters with various characteristics, such as good seeding quality (TEIXEIRA et al., 2009) and use of human traction (STEFANELLO et al., 2014), are required for use in small holders (SH). Farmers usually suffer from muscle pain after performing various agricultural activities, particularly those that require physical labor (GEMMA et al., 2010). Moreover, farmers are not technologically advanced and have low investment capacity (ROMEIRO FILHO, 2012). Methodologies (BACK et al., 2008) can be deployed throughout different phases to overcome the abovementioned obstacles, namely, informational design phase (for identifying client needs and converting them into specifications); conceptual phase (for elaborating a functional structure with functional solution principles and conceptual development) (STEFANELLO et al., 2014); and embodyment and detailed phase (layout, materials, manufacturing, and assembly processes, components and technical documentation). The existing gap in this field of expertise can be bridged by designing human traction planters. This study aimed to obtain client requirements (CR) and design requirements (DR) for a human-powered planter used for no tillage and conventional seeding of maize and beans to meet the small holders (SH) needs.

Bibliographic research was conducted along with an analysis of similar technical systems and specialist's consultation to identify both the customer's needs and requirements. The functional accuracy and the desirable and undesirable aspects cited below were considered the most important: production, manufacturing characteristics, assembly, availability of preformed components and materials, marketing, advantages of using such planter, acquisition costs and purchase motivation, usage, sowing problems, characteristics and operational aspects, regulation and maintenance. Data were collected from 184 SH in the municipalities of Cangucu, Herval, Jaguarao, Pelotas and Sao Lourenco do Sul (STORCH et al., 2004; TEIXEIRA et al., 2009; MACHADO et al., 2010). Customer needs (CN) that were identified throughout the life cycle were converted into CR (REIS & FORCELLINI, 2006a), subsequently valued by a Mudge Diagram (SANTOS et al., 2008; FRANTZ et al., 2015), and finally converted into DR.

Farmers generally use portable manual planters in conventional maize and bean sowing. The income and willingness to invest in equipment is diverse and the farming land is generally smaller than 10 ha. Corn and beans, partly intended for subsistence, do not entirely reflect their financial value. Thus, manufacturing cost was equated with the gain in technical performance (suitable crop stands) and not entirely with crop revenue. Seeds used are of recommended cultivars, home grown seeds, and not recommended (beans), possibly classified by size, depending on the origin and availability of equipment. A suitable machine should sow more than one crop with precision and minimal seed damage while properly sowing them in the soil at regular depths (REIS & FORCELLINI, 2006b). EMATER/ RS (2013-Personal Report) and EMBRAPA (2013-Personal Report) report deficient population densities of those crops.

Spacing between sowing lines should allow for equipment transit while weeding, fertilizing, and spraying. Despite requiring larger spacing, this allowed a more equidistant plant distribution as well as increased water, nutrients, and sunlight absorption (ARGENTA, et al., 2001). The planter must be regularly, easily, and intuitively adjusted to avoid incorrect regulation. Sowing, assembly, and disassembling of seed drill should be easy and quick without injuring the farmer.

Safety encompasses accidents and occupational health problems (ergonomic and farmer energy demand). Energy required to physically sow can be determined on the basis of a person's physical condition. According to ALMEIDA & SILVA (1999), continuous groove opening is not preferred as it requires superhuman effort (735 N). Punchers offer an alternative (FRABETTI et al., 2011), corroborated by the massive use of portable manual planters in no-tillage fields. Mass of seed drills affects the health and safety of the person operating it and thus must be dimensioned in observance of such restrictions.

To avoid compromising on the crop's quality or equipment's durability and performance, the maintenance of the equipment should be quick, easy, and inexpensive. The planter should be durable to avoid reinvestment. Its components must withstand use (abrasion, impact, and twisting) under various soil conditions (slopes, bumps, depressions, presence of stone, compaction, vegetation cover, or other adversities). At the time of sowing, tools are generally unavailable, thus requiring that the adjustment and assembly of the sowing machine is performed without its use. Several companies are able to manufacture and assemble seed drills with traditional components, having the equipment and professionals educated locally, allowing a technological exchange. However, some workshops and blacksmiths adopt less precision, thus requiring a design that can be manufactured using simpler and less advanced machines/tools operated by low educated staff. Tailoring design to these necessities would facilitate the decentralization of equipment manufacture, thus favoring its acquisition.

The following CNs were converted to 13 CR (Table 1): simple manufacturing, manufacturing feasibility in workshops and blacksmiths, using common standardized processes and materials in addition to reduce the number and complexity of components; low cost for feasible acquisition; easy adjustment by less skilled farmers; toolless assembly to facilitate maintenance and adjustments; operator's safety, thus allowing proper user posture, minimal effort in operation, absence of sharp corners and edges, and protected moving components; mass and accessories easily transported by a single person; metering precision, seeds singulation with minimum doubles and failures; seed deposition precision at regular depth and distance patterns between seeds, according to agronomic requirements; minimizing seed damage, safeguarding germination and emergence of seedlings; reduced maintenance, requiring less lubrication and component replacement; regular maintenance with low cost lubricants and spare parts. Easy lubrication, assembly and disassembly with less tools; durable, mechanically resistant to abrasion, avoiding frequent replacement.

CRs evaluation emphasized on the importance of functionality, ease of use, and maintenance. The better ranked CRs refer to metering accuracy, deposition accuracy, and seed damage in accordance with REIS & FORCELLINI (2006a) and VIANNA et al. (2014). The worst rated; however, disagree with the facilitated regulation and easy maintenance to which they attributed less importance, whereas REIS & FORCELLINI (2006a) ranked ease of regulation at the seventh position. Divergences can be attributed to the different clients. Supporting the present study, FRANTZ et al. (2015) gave greater importance to the final quality of the operation which, in this case, depends on the first three CRs, followed by acquisition cost, tool-less assemblies, and reduced maintenance. Primarily, machines must address the technical aspects reported by FRANTZ et al. (2015).

Thirteen DR have been established (Table 1), which satisfactorily meet the CN and CR. Among these, 7 coincide with those listed by VIANNA et al. (2014) for seed meters, except production and maintenance costs and maintenance intervals and duration. TEIXEIRA (2008) considers the manufacturing costs, sowing accuracy, useful life and frequency, and maintenance time identical for mechanically and animal powered planters. With the exception of DR being "easy to conduct," the remaining 12 were also predicted by REIS & FORCELLINI (2006b) for seed meters. Despite their often similar DRs during the design phases, different equipment may present differing degrees of importance, depending on each design's intent and client.

CR evaluation gave the planter's functionality and ease of use greater importance than its constructive or economic aspects, evidencing that machine performance during sowing should be prioritized throughout the design. The valued CR list and the DR list allow the seeder's design process to evolve while constantly guiding the customers' needs.

Associa?ao Rio-grandense de Empreendimentos de Assistencia Tecnica e Extensao Rural: Rua Felix da Cunha, 626, Pelotas, RS. pelotas@emater.tche.br. Presential interview. Empresa Brasileira de Pesquisa Agropecuaria, Centro de Pesquisa Agropecuaria de Clima Temperado. BR 392, km 78, Pelotas, RS. iraja.antunes@embrapa.br. Presential interview.

http://dx.doi.org/ 10.1590/0103-8478cr2016Q743

Received 08.08.16

Approved 02.22.17

Returned by the author 04.13.17

CR-2016-0743.R1

REFERENCES

ALMEIDA, R. de A.; SILVA, J.G. da. Performance evaluation of an animal traction planter with different soil opener systems, coulter settings and mulchings for black beans direct drilling (Phaseolus vulgaris L). Pesquisa Agropecuaria Tropical, v.2, n.29, p.56-66, 1999. Available from: <https://www.revistas.ufg.br/ pat/article/view/2851/2900>. Accessed: Sept. 21, 2014.

ARGENTA, G. et al. Maize plant arrangement: analysis of the state of the art. Ciencia Rural, v.31, n.6, p.1075-1084, 2001. Available from: <http://dx.doi.org/10.1590/S0103-84782001000600027>. Accessed: Jan. 15, 2014.

BACK, N. et al. Projeto integrado de produtos: planejamento, concepcao e modelagem. Barueri: Manole, 2008. 601p.

FRABETTI, D.R. et al. Development and evaluation performance of a punch planter for direct sowing of corn. Revista Brasileira de Engenharia Agrfcola e Ambiental, v.15, n.2, p. 199-204, 2011. Available from: <http://dx.doi.org/10.1590/S1415 43662011000200013>. Accessed: Nov. 07, 2014.

FRANTZ, U.G. et al. Customer requirements for development of an implement for closing levees opened for drainage. Ciencia Rural, v.45, n.4, p.667-673, 2015. Available from: <http://dx.doi. org/10.1590/0103-8478cr20140071>. Accessed: Oct. 12, 2015.

GEMMA, S.F.B. et al. Complexity and ergonomy: the manager work at the organic agriculture in Campinas--SP Brazil. Ciencia Rural, v.40, n.2, p.318-324, 2010. Available from: <http://dx.doi. org/10.1590/S0103-84782010005000005>. Accessed: July 25, 2015.

MACHADO, A.L.T. et al. Characterization family-based farmers in the south of Rio Grande do Sul--Brazil with respect to agricultural mechanization. In: CONGRESO LATINOAMERICANO Y

DEL CARIBE DE INGENIERIA AGRTCOLA--CLIA, 9., 2010; CONGRESSO BRASILEIRO DE ENGENHARIA AGRICOLA CONBEA, 39., 2010, Vitoria--ES. Anais... Vitoria: SBEA, 2010. V.1 cd.

REIS, A.V.; FORCELLINI, F.A. The design specifications of a precision meter for small seeds. Engenharia Rural, v.17, n.1, p.47-57, 2006a. Available from: <http://wp.ufpel. edu.br/nimeq/files/2011/04/Engenharia-Rural-v17-n1.pdf>. Accessed: June 08, 2014.

REIS, A.V.; FORCELLINI, F.A. Identification of client's requirements to design a precision meter for small seeds. Engenharia Agricola, v.26, n.1, p.309-302, 2006b. Available from: <http://dx.doi.org/10.1590/S0100-69162006000100033>. Accessed: Oct. 19, 2014.

ROMEIRO FILHO, E. An user centered approach to the design of animal traction agricultural machinery. Gestao & Producao, v.19, n.1, p.93-102, 2012. Available from: <http://dx.doi.org/10.1590/ S0104-530X2012000100007>. Accessed: Jan. 07, 2013.

SANTOS, P.M. dos et al. Requirement priorities for the design of tractor workplaces related to ergonomics and safety. Pesquisa Agropecuaria Brasileira, v.43, n.7, p.869-877, 2008. Available from: <http://dx.doi.org/10.1590/S0100-204X2008000700011>. Accessed: Oct. 07, 2014.

STEFANELLO, G. et al. Functional structure of a human-powered seeder. Ciencia Rural, v.44, n.9, p. 2118-2121, 2014. Available from: <http://dx.doi.org/10.1590/0103 8478cr20160262>. Accessed: Jan. 20, 2015.

STORCH, G. et al. Characterization of a group of agroecological producers of the south region of the state of rio grande do sul, brazil. Revista Brasileira de Agrociencia, v.10, n.3, p.357-362, 2004. Available from: <https://periodicos.ufpel.edu.br/ojs2/index. php/CAST/article/viewFile/972/911>. Accessed: Oct. 22, 2013.

TEIXEIRA, S.S. et al. Agro ecological production characterization in the south of the State of Rio Grande do Sul related to farm machinery. Engenharia Agricola, v.29, n.1, p.162-171, 2009. Available from: <http://dx.doi.org/10.1590/S0100 69162009000100016>. Accessed: Nov. 11, 2014.

TEIXEIRA, S.S. Projeto conceitual de uma semeadora de milho e feijao voltada para a agricultura familiar de base ecologica. 2008. 113f. Dissertaqao (Mestrado em Ciencias)--Universidade Federal de Pelotas, Pelotas, RS.

VIANNA, L.R. et al. Development of a horizontal plate meter with double seed outlets. Revista Brasileira de Engenharia Agricola e Ambiental, v.18, n.10, p.1086-1091, 2014. Available from: <http:// dx.doi.org/10.1590/1807-1929/agriambi.v18n10p1086-1091>. Accessed: Oct. 02, 2016.

Giusepe Stefanello (1) * Antonio Lilies Tavares Machado (2) Angelo Vieira dos Reis (2) Cesar Silva de Morais (2) Andre Oldoni (3)

(1) Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas (UFPEL), Rua Gomes Carneiro, 1, Porto, 96100-000, Pelotas, RS, Brasil. E-mail: giusepe.stefanello@ufpel.edu.br. 'Corresponding author.

(2) Departamento de Engenharia Rural, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brasil.

(3) Instituto Federal Sul-rio-grandense, Pelotas, RS, Brasil.
Table 1--Client requirements valued and categorized by the Mudge
Diagram and design requirements for a human-powered planter.

Sequence   Score     Category * (%)

1            46        10 (22,1)
2            45        10 (21,6)
3            34         8 (16,4)
4            26         6 (12,5)
5            16         4 (7,7)
6            13         3 (6,3)
7             8         2 (3,9)
8             7         2 (3,8)
9             5         1 (2,4)
10            3         1 (1,4)
11            3         1 (1,4)
12            1         1 (0,5)
13            1         1 (0,5)

Sequence   CR **

1            To have metering accuracy
2           To have deposition accuracy
3          To cause minimal seed damage
4              To be easy to adjust
5            To have easy maintenance
6          To have low acquisition cost
7           To have toolless assemblies
8           To have reduced maintenance
9              To be easy to conduct
10         To have low cost maintenance
11         To have simple manufacturing
12          To be safe to the operator
13                 To be durable

Sequence   DR ***

1          Longitudinal distribution of seeds
2                    Seed deposition
3                      Seed damage
4                  Adjustment duration
5                 Maintenance duration
6                    Production cost
7                   Manual assemblies
8             Interval between maintenance
9            Standardized standard materials
10                  Maintenance cost
11            Usual manufacturing processes
12                     Total mass
13                      Lifespan

* CRs Division into categories from 1 to 10 according to relative
importance.

** CR: Client requirements: short phrases composed of the verbs "to
be" or "to have" followed by one or more nouns.

*** DR: Design requirements: parameters, physical quantities,
functions, and constraints. Each DR may be associated with one CR or
several and vice versa.
COPYRIGHT 2017 Universidade Federal de Santa Maria
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:BIOLOGY
Author:Stefanello, Giusepe; Machado, Antonio Lilies Tavares; Reis, Angelo Vieira dos; de Morais, Cesar Silv
Publication:Ciencia Rural
Date:Jun 1, 2017
Words:2240
Previous Article:Ensiling on chemical composition and in vitro fermentation in rabbits of different forages/Diferentes silagens sobre a fermentacao in vitro em...
Next Article:Bacterial culture and antibiotic sensitivity from the ocular conjunctiva of horses/Cultura e sensibilidade bacteriana da conjuntiva ocular de equinos.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |