Printer Friendly

Cytogenetics in three species of Polybetes Simon 1897 from Argentina (Araneae, Sparassidae) I. karyotype and chromosome banding pattern.

ABSTRACT. Species of Polybetes are known exclusively from South America. Currently there are 13 described species, 9 occurring in Argentina. Cytogenetic studies in spiders are scarce; the cytogenetics of only about 1% of nearly 39,500 described species are known. Within the Sparassidae, 38 species out of 1,009 (< 4%) have been cytogenetically analyzed; the most frequent chromosome number is 2n = 43/46 (male/female), n = 20 + [X.sub.1] [X.sub.2] [X.sub.3], present in almost half of the species studied. Female diploid chromosome number is only known for four species: Heteropoda venatoria (Linnaeus 1767) (2n = 44); Pediana regina (L. Koch 1875), Isopeda sp. and Olios sp. (2n = 46). Within the genus Polybetes, only P. pythagoricus (Holmberg 1875) had been previuosly cytogenetically analyzed. In the present work, the karyotype, heterochromatin content and distribution, and silver stained nucleolus-organizer regions of P. pythagoricus, P. rapidus (Keyserling 1880) and P. punctulatus Mello-Leitao 1944 are described and compared. In P. pythagoricus the identification of the chromosome pairs by means of G-banding is also performed. Females of the three species show a chromosome complement of 44 telocentric chromosomes, with a similar karyotype. Males of P. pythagoricus show 42 telocentric chromosomes, the two sex chromosomes being the largest and of different size. In the three species, two pairs of telomeric NORs and small pericentromeric positive C-bands in all chromosomes were detected. This C-banding pattern seems to be characteristic of spiders. Comparative analysis of chromosome complements in Sparassidae indicates that 2n = 42/44 ([X.sub.1] [X.sub.2]0/[X.sub.1][X.sub.1][X.sub.2][X.sub.2]) (male/female) may represent the ancestral karyotype for Polybetes.

Keywords: Chromosome number, telocentric chromosomes, heterochromatin, nucleolus-organizing regions

**********

Species of Polybetes are known exclusively from South America. To date there are thirteen described species, nine of them occurring in Argentina (Platnick 2006): P. germaini Simon 1897, P. martius (Nicolet 1849), P. obnuptus Simon 1896, P. pallidus Mello-Leitao 1941, P. punctulatus Mello-Leitao 1944, P. pythagoricus (Holmberg 1875), P. quadrifoveatus (Jarvi 1914), P. rapidus (Keyserling 1880), and P. trifoveatus (Jarvi 1914). In nature, they are found under the bark of trees (e.g., P. pythagoricus is common under the bark of Eucaliptus), in the branches of trees (P. rapidus), and others are found in grasses such as Cortaderia spp. (P. punctulatus). Polybetes pythagoricus and P. rapidus are also common in cities where they are found in parks, gardens or even in the roofs of buildings. They are nocturnal and sometimes enter houses on stormy days. Despite their usual aggressiveness, they possess venom of low toxicity that causes little local injury and is harmless to humans (Scioscia, personal observations).

Cytogenetic studies in spiders are scarce, with only approximately 1 % of nearly 39,500 described species determined. Within the Sparassidae, 36 species out of 1,009 (< 4%) had been previously cytogenetically analyzed; male diploid chromosome numbers range from 21 to 44; female diploid chromosome number is only known for four species: Heteropoda venatoria (Linnaeus 1767) (2n = 44); Pediana regina (L. Koch 1875), Isopeda sp. and Olios sp. (2n = 46). The most frequent sex chromosome determination system is [X.sub.1][X.sub.2][X.sub.3]O/ [X.sub.1][X.sub.1][X.sub.2][X.sub.2][X.sub.3][X.sub.3] (male/female) (Hackman 1948; Suzuki 1950; Suzuki & Okada 1950; Bole-Gowda 1952; Suzuki 1952; Mittal 1961; Diaz & Saez 1966a, b; Mittal 1966; Benavente & Wettstein 1978; Olivera 1978; Datta & Chatterjee 1983; Rowell 1985; Srivastava & Shukla 1986; Parida & Sharma 1986, 1987; Rowell 1991a, b; Hancock & Rowell 1995; Platnick 2006). Within the genus Polybetes, only P. pythagoricus had been previously cytogenetically analyzed (Diaz & Saez 1966a, b; Benavente & Wettstein 1978; Olivera 1978).

There are only a few studies in spiders that characterize banding patterns of chromosomes; the distribution of C heterochromatin is known in eleven Sparassidae, eight Araneidae, five Lycosidae, four Tetragnathidae, two Nephilidae, two Sicariidae, one Scytodidae, and one Salticidae species, and G-banding was performed only in Lycosa thorelli (Keyserling 1877) (Lycosidae) and P. pythagoricus (Brum-Zorrilla & Cazenave 1974; Olivera 1978; Brum-Zorrilla & Postiglioni 1980; Rowell 1985; Datta & Chatterjee 1988; Rowell 1991b; Gorlova et al. 1997; Silva et al. 2002; De Araujo et al. 2005a, b).

In the present work, the karyotype, hetero-chromatin content and distribution, and silver stained nucleolus-organizer regions (NORs) of Polybetes pythagoricus, P. rapidus and P. punctulatus are described and compared. Furthermore, in P. pythagoricus the identification of the chromosome pairs by means of G-banding was performed.

METHODS

Adult females and males were collected in the field and were bred at the Arachnology Division of the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN). Voucher specimens of all species in this study have been deposited in the National Collection of Arachnology (MACN-Ar, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Cristina Scioscia): Polybetes pythagoricus, five females and three males from Buenos Aires City, 34[degrees]35'15"S, 58[degrees]40'21"W, and Buenos Aires Province (Los Polvorines, 34[degrees]30'00S, 58[degrees]41'00"W; Villa Madero, 34[degrees]42'00"S, 58[degrees]30'00"W; San Isidro, 34'28'15"S, 58[degrees]31'43'W; and Martin Garcia Island Natural Preserve, 34[degrees]11'15"S, 58[degrees]16'52"W); P. rapidus, six females from Buenos Aires Province (Bella Vista, 35[degrees]14'00"S, 59[degrees]53'00"W; Merlo, 34[degrees]40'12"S, 58'45'10'W-, Villa Madero and Martin Garcia Island Natural Preserve); P. punctulatus, one female from Martin Garcia Island Natural Preserve and two immature females born in the lab.

For cytogenetic preparations, the specimens were cooled; and injected with 0.1 ml of 0.01% colchicine solution. After 1.25 h, several drops of hemolymph were removed from the coxal joints, and gonads together with some digestive tissues were dissected. Each sample was dispersed in 2 ml of hypotonic solution (KCI 0.56%) for 15 min, centrifuged at 800 rpm for 5 min, and fixed in 1 ml of 3 : 1 (methanol: acetic acid). The cell suspension was dropped onto clean slides, air-dried and stained with Giemsa 3% for chromosome counts and karyotyping.

C-band preparations were made following Sumner (1972) with some modifications: 0.2 N HCl for 1 h; saturated solution of Ba[(OH).sub.2] for 30 s-1 min; 2 x SSC at 60[degrees] C for 1 h. Slides were air-dried and stained with 3% Giemsa.

G-bands preparations were made as follows: PBS solution for 15 min; 0.1% trypsin for 45 s-1 min. Slides were air-dried and stained with 3 % Giemsa. NOR-banding was performed following Howell & Black (1980).

Eight to fifteen well-spread mitotic metaphases were measured to determine the karyotype of each species. Chromosome measurements were made using the computer application Micromeasure version 3.3 (Reeves & Tear 2000). The total haploid complement length (TCL) in females was calculated by adding the mean value of each chromosome pair (in arbitrary units). In males of P. pythagoricus, the relative length of all chromosomes was analyzed to identify the two chromosomes that have no homologues (sex chromosomes), and TCL was afterwards calculated. The idiogram of each species was drawn on the basis of the relative percentage of each chromosome pair length to the TCL. Chromosome measurements were also made using a vernier calliper to estimate TCL in microns.

[FIGURES 1-4 OMITTED]

RESULTS

Chromosome complement.--Females of P. rapidus, P. punctulatus and P. pythagoricus show a chromosome complement of 44 telocentric chromosomes, and 42 telocentric chromosomes in males of P. pythagoricus. The sex chromosomes cannot be distinguished by their differential pycnosis in somatic metaphases of males and females (Figs. 1-4).

The total haploid complement length (TCL) is similar in the three species: 67.29 [+ or -] 4.91 [micro]m in P. rapidus, 66.28 [+ or -] 6.91 [micro]m in P. pythagoricus and 63.70 [+ or -] 1.52 [micro]m in P. punctulatus.

Females of the three species show a similar karyotype: there are three large pairs of differently-sized chromosomes that can be distinguished; the rest of the chromosomal complement gradually decreases in size, except for the last pair that is slightly smaller. The largest chromosome pair shows slight size differences in the three species (P. pythagoricus, 7.00%; P. punctulatus, 6.80%; and P. rapidus, 6.63%), while the second pair is longer in P. pythagoricus (6.45%) (P. punctulatus, 6.12%; and P. rapidus, 6.16%) (Figs. 5, 7-9). In males of P. pythagoricus, the length analysis of all chromosomes of the complement makes it possible to determine that the two largest chromosomes of different sizes are the sex chromosomes [X.sub.1] [X.sub.2] (Figs. 6, 10). Meiotic studies performed in males of P. punctulatus and P. rapidus (Rodriguez Gil 2006) demonstrated that in these species the sex chromosomes are also the largest of the complement.

[FIGURES 5-6 OMITTED]

C-banding and NORs silver staining.--In females of the three species, small positive C-bands in the pericentromeric region of all chromosomes were detected, except in the [X.sub.2] pair of P. pythagoricus where they are more prominent (Figs. 11, 12). The number of chromosomes with telomeric nucleolus-organizer regions (NORs) silver stained varied from I to 4 in different cells of the three species (Figs. 13, 14). It was not possible to determine precisely the NOR pairs; one pair was medium sized and the other was among the smaller ones.

[FIGURES 7-10 OMITTED]

G-banding.--Despite applying the G-banding technique to the three species, only P. pythagoricus females yielded reproducible results, making it possible to determine the chromosome pair's identification (Figs. 16, 17). In P. punctulatus, only a few dark bands, with little contrast, were obtained in all the chromosomes (Fig. 15); therefore, the chromosome pair's identification was not possible. In P. rapidus no bands were obtained.

DISCUSSION

Chromosome complement and karyotype. --Polybetes punctulatus and P. rapidus were here cytogenetically characterized for the first time. Polybetes pythagoricus had been previously analyzed in Uruguayan populations; Benavente & Wettstein (1978) performed an ultrastructural study of sex chromosomes pairing in meiosis, and Diaz & Saez (1966a, b) reported 2n = 42 and n = 20 + [X.sub.1][X.sub.2] in males. However, Olivera (1978), in a preliminary report of P. pythagoricus, described contradictory data reporting a 2n = 40/42 (male/female) with sex determination system [X.sub.1][X.sub.2]/[X.sub.1][X.sub.1][X.sub.2][X.sub.2] at mitosis but in male meiosis described the presence of 10 chromosomes plus 2 Xs at one pole and 10 chromosomes at the other one in anaphase I. The three species of Polybetes analyzed in this work have 2n = 44 = 40 + [X.sub.1][X.sub.1][X.sub.2][X.sub.2] in females and 2n = 42 = 40 + [X.sub.1][X.sub.2] in P. pythagoricus males; they show very similar karyotype and total haploid complement length, with all the chromosomes telocentric. The sex chromosomes are the largest ones, the [X.sub.1] show slight size differences in the three species and [X.sub.2] is longer in P. pythagoricus. The conservative karyotype present in the three species could be considered characteristic for the genus.

Currently, cytogenetic studies in Sparassidae have been performed on 38 species from 17 genera (Table 1). Usually the chromosomes are telocentric and one of the sex chromosomes is the largest of the complement. The predominant diploid numbers in this family are 2n = 43, n = 20 + [X.sub.1][X.sub.2][X.sub.3], 15 species; and 2n = 41, n = 19 + [X.sub.1][X.sub.2][X.sub.3], 10 species. In other genera, besides Polybetes, there seems to be karyotypic conservation as in Heteropoda (n = 19 + [X.sub.1][X.sub.2][X.sub.3], in 5 of 6 species studied) and Isopeda (n = 20 + [X.sub.1][X.sub.2][X.sub.3], in the 4 species analyzed). Bole-Gowda (1952) stated that Heteropoda sexpunctata Simon 1885 has a derived karyotype, 2n = 20 + X (male) with 19 metacentric (including the X chromosome) and two acrocentric autosomes, on the basis of Robertsons law. On the other hand, in the genus Sparassus, there is variation not only in chromosome numbers (2n = 22 to 44) but in the sex chromosome determination system as well ([X.sub.1][X.sub.2], [X.sub.1][X.sub.2][X.sub.3], [X.sub.1][X.sub.2][X.sub.3][X.sub.4]); although none of the entities was identified at the species level, and it is possible that the genus may be misidentified in some of them (Parida & Sharma 1987). Ancestral populations of Delena cancerides Walckenaer 1837 also show n = 20 + [X.sub.1][X.sub.2][X.sub.3], but this species has a number of chromosomal races that differ by the presence of particular combinations of chromosomal fusions, either in homozygous or heterozygous condition (Rowell 1985, 1990, 1991a, b; Hancock & Rowell 1995). A reduced complement is also present in Micrommata virescens (Clerck 1757), but neither the chromosome number nor the sex chromosome complement is known with certainty (Hackman 1948).

[FIGURES 11-16 OMITTED]

[FIGURE 17 OMITTED]

Heterochromatin characterization.--The three species of Polybetes analyzed here show only small pericentromeric heterochromatic bands in all the chromosomes with no differential pycnosis of the sex chromosomes, although Olivera (1978) reported that "substantial" heterochromatic blocks were present in P. pythagoricus mitotic and meiotic chromosomes. Polybetes pythagoricus [X.sub.2] chromosomes showed a larger C-band than in the other two species, which may explain the differences in these chromosomes' size.

Since the pioneer characterization of Schizocosa malitiosa (Tullgren 1905) (Lycosidae) by Brum-Zorrilla & Cazenave (1974), few spider species have been analyzed with regard to the heterochromatin content and distribution. Our results fit with previous data of most of the other spider species analyzed that have a small amount of pericentromeric heterochromatin in the autosomes and sex chromosomes; this condition seems to be characteristic in spiders. In Loxosceles intermedia Mello-Leitao 1934 (Sicariidae) and Isopeda species, pericentromeric C-bands are more conspicuous (Brum-Zorrilla & Postiglioni 1980; Rowell 1985, 1991b; Datta & Chatterjee 1988; Gorlova et al. 1997; Silva et al. 2002). In a few species, telomeric localization of heterochromatin (telomeric C-bands) has also been described in some chromosomes of the complement; these bands have usually appeared in a polymorphic condition (Rowell 1985; Datta & Chatterjee 1988; Rowell 1991b; De Araujo 2005a). In Nephilengys cruentata (Fabricius 1775) (Nephilidae) interstitial C-bands are present in some autosomes; the same occurs in some autosomes and the sex chromosomes of one unidentified species of Scytodes (De Araujo et al. 2005a, b).

In spermatogonial mitosis, after C-banding, sex chromosomes have shown two different patterns. In three species of Lycosidae and in Delena cancerides the sex chromosomes were more darkly stained than the autosomes, while there was no difference in the sex chromosomes and autosomes in Isopeda and Araneidae species. In the three Polybetes species presented here and in four araneids, there is also no difference in the sex chromosomes and autosomes in female somatic and gonial cells. In one species, Schizocosa malitiosa, only one X chromosome was notable in that it exhibited complete heterochromatinization (Brum-Zorrilla & Cazenave 1974; Brum-Zorrilla & Postiglioni 1980; Rowell 1985; Datta & Chatterjee 1988; Rowell 1991b).

NORs silver staining and G-banding.--The variation in the number of chromosomes per cell bearing nucleolus-organizer regions observed in Polybetes species is common in the Ag-technique. It is characteristic of silver staining that not all the NORs are usually silver stained in species with multiple NORs, but only those transcriptionally active during the preceding interphase (Sumner 2003). It can be concluded that two chromosomal pairs with telomeric NORs are present in the three species here analyzed. Although the identification of the NOR pairs should be regarded as tentative, it seems possible that they correspond to the same pairs in the three species. Only a pair of NORs was detected at early somatic stages of P. pythagoricus Uruguayan specimens (Olivera 1978).

G-banding allows the precise identification of homologues and facilitates karyotypic comparisons between related species. Although good quality G-bands can be produced in reptiles, birds, mammals, in some fishes and amphibians, and in a few plants, this method does not yield consistent results in invertebrate chromosomes and only in a few species of insects have well-defined G-bands been obtained. The difficulty in obtaining good quality G-bands in invertebrates may reflect differences in mitotic chromosome substructure, e.g., tight compaction of the chromatin compared to vertebrates (Lorite et al. 1996; Appels et al. 1998; Baldanza et al. 1999; Sumner 2003). In spiders, G-banding had been performed in three species of Lycosidae (but only Lycosa thorelli showed consistent G-banding), and in P. pythagoricus from Uruguay (where only a few pairs could be identified) (Olivera 1978; Brum-Zorrilla & Postiglioni 1980). In the present work, the identification of all chromosome pairs was possible in P. pythagoricus. Taking into account that the pattern of pachytene chromomeres resembles that of G-bands on the same chromosome (Sumner 2003), it would be interesting to perform a comparative analysis of the chromomere pattern of the three species in order to know if the scarcity and absence of G-bands in P. punctulatus and P. rapidus respectively is due to structural differences or to technical procedures.

The three species of Polybetes here analyzed are easily distinguished by morphological characters, but they are very conservative karyotypically. This fact could be useful in future for the delimitation of genera in a systematic revision of the family.

ACKNOWLEDGMENTS

The present study was supported by grants from the National University of Buenos Aires (UBA) (Ex 317 to Drs. L. Poggio and L. Mola) and from the National Council of Scientific and Technological Research (CONI-CET) (PIP 02296 and 05927 to Drs. L. Poggio and L. Mola and PIP 02202 and 05654 to Drs. A. Gonzalez and C. Scioscia). The authors wish to thank to Mr. Herndn Dinapoli for technical assistance, to Lic. Pablo Rebagliati, Lic. Mariana Lopez and the student Luis Piacentini for collecting some of the specimens, and to Dr. Maria Ines Pigozzi for critical reading of the manuscript. The authors wish to dedicate this paper to the memory of Dr. Carlos A. Naranjo.

Manuscript received 2 August 2005, revised 19 January 2007.

LITERATURE CITED

Appels, R., R. Morris, B.S. Gill & C.E. May. 1998. Chromosome Biology. Kluwer Academic Publishers, Boston, Massachusetts. 401 pp.

Baldanza, E, L. Gaudio & G. Viggiani. 1999. Cytotaxonomic studies of Encarsia Forster (Hymenoptera: Aphelinidae). Bulletin of Entomological Research 89:209-215.

Benavente, R. & R. Wettstein. 1978. Ultrastructural cytogenetics of the sex determination mechanisms of araneids. Revista de Microscopia Electronica 5:320-321.

Bole-Gowda, B.N. 1952. Studies on the chromosomes and the sex-determining system in four hunting spiders (Sparassidae). Proceedings of the Zoological Society, Bengal 5:51-70.

Brum-Zorrilla, N. & A. Postiglioni. 1980. Kariological studies on Uruguayan spiders. I. Banding pattern in chromosomes of Lycosa species (Araneae-Lycosidae). Genetica 54:149-153.

Brum-Zorrilla, N. & A.M. Cazenave. 1974. Heterochromatin localization in the chromosomes of Lycosa malitiosa (Arachnida). Experientia 30: 94-95.

Datta, S.N. & K. Chatterjee. 1983. Chromosome number and sex-determining system in fifty-two species of spiders for north-east India. Chromosome Information Service 35:6-8.

Datta, S.N. & K. Chatterjee. 1988. Chromosome and sex determination in 13 araneid spiders of North-Eastern India. Genetica 76:91-99.

De Araujo, D., D.M. Cella & A.D. Brescovit. 2005a. Cytogenetic analysis of the neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): Standard staining, Nors, C-Bands and base-specific fluorochromes. Brazilian Journal of Biology 65:193-202.

De Araujo, D., D.M. Cella & A.D. Brescovit. 2005b. Variabilidade cromossomica em tres especies de Scytodes Latreille, 1804 (Araneae, Haplogynae, Scytodidae). Primer Congreso Latinoamericano de Aracnologia (Minas, Uruguay) Actas: 107.

Diaz, M. & EA. Saez. 1966a. Karyotypes of South American Araneida. Memorias do Instituto Butantan Commemorativo 33:153-154.

Diaz, M. & EA. Saez. 1966b. Investigaciones citogeneticas sobre algunas especies de araneidos uruguayos. Anales (II) Congreso Latinoamericano de Zoologia (San Pablo):3-9.

Gorlova, O.Y, J.P. Gorlov, E. Nevo & D.V. Logunov. 1997. Cytogenetic studies on seventeen spider species from Israel. Bulletin of the British Arachnological Society 10:249-252.

Hackman, W. 1948. Chromosomenstudien an Araneen mit besonderer Berucksichtigung der Gechlechtschromosomen. Acta Zoologica Fennica 54: 1-101.

Hancock, A.J. & D.M. Rowell. 1995. A chromosomal hybrid zone in the Australian huntsman spider, Delena cancerides (Araneae: Sparassidae). Evidence for a hybrid zone near Canberra, Australia. Australian Journal of Zoology 43:173-180.

Howell, W.M. & D.A. Black. 1980. Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014-1015.

Lorite, P, E. Chica & T Palomeque. 1996. G-banding and chromosome condensation in the ant, Tapinoma nigerrimum. Chromosome Research 4:77-79.

Mittal, O.P. 1961. Chromosome number and sex mechanism in twenty-one species of the Indian spiders. Research Bulletin (N. S.) of the Panjab University 12:271-273.

Mittal, O.P. 1966. Karyological studies on Indian spiders. IV Chromosomes in relation to taxonomy in Eusprassidae, Selenopidae and Thomisidae. Genetica 37:225-234.

Olivera, G. 1978. Estudio citogenetico en Polybetes pythagoricus (Araneomorphae-Sparassidae). XX. Semana Univisitaria Gaucha de Debates Biologicos, Porto Allegre 24(Abstracts):251-253.

Parida, B.B. & G.P Sharma. 1986. Karyotype and spermatogonia in an Indian hunting spider, Sparassus sp. (Sparassidae: Arachnida) with multiple sex chromosomes. Chromosome Information Service 40:28-30.

Parida, B.B. & G.P Sharma. 1987. Chromosome number, sex mechanism and genome size in twenty seven species of Indian spiders. Chromosome Information Service 43:11-13.

Platnick, N.I. 2006. The World Spider Catalog, version 7.0. American Museum of Natural History, New York. Online at http://research.amnh.org/ entomology/spiders/catalog/index.html.

Reeves, A. & J. Tear. 2000. Micromeasure for Windows. Version 3.3 free program distributed by the author from http://www.colostate.edu/Depts/ Biology/Micromeasure.

Rodriguez-Gil, S.G. 2006. Citogenetica de aranas sinantropicas de Argentina (Arachnida: Araneae). Ph. D. Thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 155 pp.

Rowell, D.M. 1985. Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma (Berlin) 93:169-176.

Rowell, D.M. 1990. Fixed fusion heterozygosity in Delena cancerides Walck. (Araneae: Sparassidae): an alternative to speciation by monobranchial fusion. Genetica 80:139-157.

Rowell, D.M. 1991 a. Chromosomal fusion and meiotic behaviour in Delena cancerides (Araneae: Sparassidae). I. Pairing behaviour and X-chromosome segregation. Genome 34:561-566.

Rowell, D.M. 1991b. Chromosomal fusion and meiotic behaviour in Delena cancerides (Araneae: Sparassidae). II. Chiasma position and its implications for speciation. Genome 34:567-573.

Silva, R.W., D.D.R. Klisiowicz, D.M. Cella, O.C. Mangili & I.J. Sbalqueiro. 2002. Differential distribution of constitutive heterochromatin in two species of brown spider: Loxosceles intermedia and L. laeta (Araneae, Sicariidae), from the metropolitan region of Curitiba, PR (Brazil). Acta Biologica Paranaense, Curitiba 31:123-136.

Srivastava, S.C. & S. Shukla. 1986. Chromosome number and sex determining mechanism in forty-seven species of Indian spiders. Chromosome Information Service 41:23-26.

Sumner, A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75:304-305.

Sumner, A.T. 2003. Chromosomes: Organization and Function. Blackwell Publishing, Oxford, UK. 287 pp.

Suzuki, S. 1950. Sex determining mechanism and karyotypes in spiders. Zoological Magazine (Tokyo) 59:31-32.

Suzuki, S. 1952. Cytological Studies in spiders II. Chromosomal investigation in the twenty two species of spiders belonging to the four families, Clubionidae, Sparassidae, Thomisidae, and Oxyopidae, which constitute Clubionoidea, with special reference to sex chromosomes. Journal of Science of the Hiroshima University, Series B, Division. 1 13:1-52.

Suzuki, S. & A. Okada. 1950. A study on the chromosomes of a spider, Heteropoda venatoria, with special reference to X1-, X2- and X3- chromosomes. Journal of Science of the Hiroshima University, Series B, Division 1. 11:1-47.

Sergio Gustavo Rodriguez-Gil: Laboratorio de Citogenetica y Evolucion, Departamento de Ecologia, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Guiraldes y Costanera Norte, C1428EHA. Ciudad Autonoma de Buenos Aires, Argentina. E-mail: rodrigil@bg. fcen.uba.ar

Maria Susana Merani: Centro de Investigaciones en Reproduccion, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Ciudad Autonoma de Buenos Aires, Argentina.

Cristina Luisa Scioscia: Division Aracnologia, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Angel Gallardo 470, C1405DJR, Ciudad Autonoma de Buenos Aires, Argentina.

Liliana Maria Mola: Laboratorio de Citogenetica y Evolucion, Departamento de Ecologia, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Guiraldes y Costanera Norte, C1428EHA. Ciudad Autonoma de Buenos Aires, Argentina.
Table 1.--Karyotype characteristics and collecting locality of the
Sparassidae species cytogenetically analyzed (f = female).

 Species 2 n n (male)

Bhutaniella sikkimensis 42 19 + [X.sub.1][X.sub.2]
 (Gravely 1931) [X.sub.3][X.sub.4]
Delena cancerides Wal- 43 20 + [X.sub.1][X.sub.2]
 ckenaer 1837 (ancestral [X.sub.3]
 karyotype)
Delena sp. 43 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Heteropoda leprosa Si- 41 19 + [X.sub.1][X.sub.2]
 mon 1884 [X.sub.3]
Heteropoda phasma Si- 41 19 + [X.sub.1][X.sub.2]
 mon 1897 [X.sub.3]
Heteropoda procera (L. 41 19 + [X.sub.1][X.sub.2]
 Koch 1867) [X.sub.3]
Heteropoda sexpunctata 21 10 + X
 Simon 1885
Heteropoda venatoria 41-44 f 19 + [X.sub.1][X.sub.2]
 (Linnaeus 1767) [X.sub.3]

Heteropoda sp. nov. 41 19 + [X.sub.1][X.sub.2]
 [X.sub.3]
Holconia immanis (L. 43 20 + [X.sub.1][X.sub.2]
 Koch 1867) [X.sub.3]
Isopeda vasta (L. Koch 43 20 + [X.sub.1][X.sub.2]
 1867) [X.sub.3]
Isopeda villosa L. Koch 43 20 + [X.sub.1][X.sub.2]
 1875 [X.sub.3]
Isopeda sp. 43-46 f 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Isopeda sp. nov. 43 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Isopedella leai Hogg 43 20 + [X.sub.1][X.sub.2]
 1903 [X.sub.3]
Micrommata virescens 35 16 + [X.sub.1][X.sub.2]
 (Clerck 1757) [X.sub.3] (?)

Neosparassus diana (L. 43 20 + [X.sub.1][X.sub.2]
 Koch 1875) [X.sub.3]
Olios lamarcki (Latreille 42 20 + [X.sub.1][X.sub.2]
 1806)
Olios sp. 1 43 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Olios sp. 2 43-46 f 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Parapalystes whiteae (Po- 43 20 + [X.sub.1][X.sub.2]
 cock 1902) [X.sub.3]
Pediana regina (L. Koch 43-46 f 20 + [X.sub.1][X.sub.2]
 1875) [X.sub.3]
Pediana sp. nov. 43 20 + [X.sub.1][X.sub.2]
 [X.sub.3]
Polybetes punctulatus 44 f 20 + [X.sub.1][X.sub.2]
 Mello-Leitao 1944
Polybetes pythagoricus 42-44 f 20 + [X.sub.1][X.sub.2]
 (Holmberg 1875)
 40-42 f

Polybetes rapidus (Key- 44 f 20 + [X.sub.1][X.sub.2]
 serling 1880)

Pseudopoda prompta (O. 41 19 + [X.sub.1][X.sub.2]
 P.-Cambridge 1885) [X.sub.3]
Sinopoda forcipata 41 19 + [X.sub.1][X.sub.2]
 (Karsch 1881) [X.sub.3]
Sparassus sp. 1 44 21 + [X.sub.1][X.sub.2]
Sparassus sp. 2 42 20 + [X.sub.1][X.sub.2]
Sparassus sp. 3 41 19 + [X.sub.1][X.sub.2]
 [X.sub.3]
Sparassus sp. 4 41 19 + [X.sub.1][X.sub.2]
 [X.sub.3]
Sparassus sp. 5 22 10 + [X.sub.1][X.sub.2]
Sparassus sp. 6 42 20 + [X.sub.1][X.sub.2]

Sparassus sp. 7 44 20 + [X.sub.1][X.sub.2]
 [X.sub.3][X.sub.4]
Sparassus sp. 8 42 20 + [X.sub.1][X.sub.2]
Spariolenus tigris Simon 41 19 + [X.sub.1][X.sub.2]
 1880 [X.sub.3]
Thelcticopis severa (L. 43 Possibly [X.sub.1]
 Koch 1875) [X.sub.2][X.sub.3]

 Species Locality References

Bhutaniella sikkimensis India Datta & Chatterjee 1983
 (Gravely 1931)
Delena cancerides Wal- Australia Rowell 1985, 1991a, b;
 ckenaer 1837 (ancestral Hancock & Rowell 1995
 karyotype)
Delena sp. McIntosh in Suzuki 1952

Heteropoda leprosa Si- India Datta & Chatterjee 1983
 mon 1884
Heteropoda phasma Si- India Srivastava & Shukla 1986
 mon 1897
Heteropoda procera (L. Australia Rowell 1985
 Koch 1867)
Heteropoda sexpunctata India Bole-Gowda 1952
 Simon 1885
Heteropoda venatoria India, Japan Suzuki & Okada 1950;
 (Linnaeus 1767) Bole-Gowda 1952; Sri-
 vastava & Shukla 1986
Heteropoda sp. nov. Australia Rowell 1985

Holconia immanis (L. Australia Rowell 1991a, b (sub Iso-
 Koch 1867) poda)
Isopeda vasta (L. Koch Australia Rowell 1991b (sub Isopoda
 1867) vaster (sic))
Isopeda villosa L. Koch Australia Rowell 1991a, b (sub Iso-
 1875 poda)
Isopeda sp. Australia Rowell 1985 (sub Isopoda)

Isopeda sp. nov. Australia Rowell 1991b (sub Isopo-
 da)
Isopedella leai Hogg Australia Rowell 1991b (sub Isopoda
 1903 tepperi Hogg)
Micrommata virescens Finland Hackman 1948 [sub Mi-
 (Clerck 1757) crommata viridissima
 (De Geer)]
Neosparassus diana (L. Australia Rowell 1991b (sub Olios)
 Koch 1875)
Olios lamarcki (Latreille India Bole-Gowda 1952
 1806)
Olios sp. 1 McIntosh in Suzuki 1952

Olios sp. 2 Australia Rowell 1985

Parapalystes whiteae (Po- India Mittal 1961, 1966 (sub Pa-
 cock 1902) lystes)
Pediana regina (L. Koch Australia Rowell 1985, 1991b
 1875)
Pediana sp. nov. Australia Rowell 1991b

Polybetes punctulatus Argentina this work; Rodriguez Gil
 Mello-Leitao 1944 2006
Polybetes pythagoricus Uruguay Diaz & Saez 1966a, b (sub
 (Holmberg 1875) P. pitagorica (sic))
 Argentina this work; Rodriguez Gil
 2006
 Uruguay Olivera 1978 (sub P.
 pithagorius (sic))
Polybetes rapidus (Key- Argentina this work; Rodriguez Gil
 serling 1880) 2006

Pseudopoda prompta (O. India Srivastava & Shukla 1986
 P.-Cambridge 1885) (sub Heteropoda)3
Sinopoda forcipata Japan Suzuki 1952 (sub Hetero-
 (Karsch 1881) poda)
Sparassus sp. 1 India Parida & Sharma 1987
Sparassus sp. 2 India Parida & Sharma 1987
Sparassus sp. 3 India Parida & Sharma 1986,
 1987
Sparassus sp. 4 India Parida & Sharma 1987

Sparassus sp. 5 India Parida & Sharma 1987
Sparassus sp. 6 India Datta & Chatterjee 1983
 (sub Parassus sp. 1)
Sparassus sp. 7 India Datta & Chatterjee 1983
 (sub Parassus sp. 2)
Sparassus sp. 8 India Datta & Chatterjee 1983
Spariolenus tigris Simon India Bole-Gowda 1952
 1880
Thelcticopis severa (L. Japan Suzuki 1950, 1952 (sub
 Koch 1875) Thelticopis (sic))
COPYRIGHT 2007 American Arachnological Society
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Author:Rodriguez-Gil, Sergio Gustavo; Merani, Maria Susana; Scioscia, Cristina Luisa; Mola, Liliana Maria
Publication:The Journal of Arachnology
Article Type:Report
Geographic Code:3ARGE
Date:May 1, 2007
Words:4966
Previous Article:Geographical distribution of two species of Mesobuthus (scorpiones, buthidae) in China: insights from systematic field surveys and predictive models.
Next Article:A review of some Australasian Chernetidae: Sundochernes, Troglochernes and a new genus (pseudoscorpiones).
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters