Printer Friendly

Cracking the water code using bioinformatics.

When it comes to tackling public health threats, an ounce of prevention is worth a pound of cure. That's the thinking behind the U.S. Environmental Protection Agency's decision to award two grants--totaling $9 million--to further bioinformatics studies at two university research centers.

Bioinformatics is the art of using computers in biological research to analyze or predict molecular composition and evaluate changes to genes and proteins--computational molecular biology. The data generated can help scientists further understand normal biological processes, the malfunctions in these processes that lead to diseases, and how chemicals and pathogens can affect the environment and public health. While bioinformatics is not a new science, widespread interest in the field has taken hold in the past 10 to 15 years.


The EPA began looking closely at bioinformatics in 2002, after the U.S. National Research Council recommended in its report Classifying Drinking Water Contaminants for Regulatory Consideration that the EPA incorporate biogenetics in identifying and assessing emerging waterborne pathogens. In 2004, the EPA opened the National Center for Computational Toxicology (NCCT), dedicated to research and application of bioinformatics studies. The center's work--which brings together several disciplines--is complex.

"You can't just look at this data in the classical sense and do analysis with a hand-held calculator," said Jerry Blancato, NCCT deputy director. "Bioinformatics uses the latest computational and data-mining techniques and tries to look for things those data show that wouldn't otherwise be visible."

The Research Center for Environmental Bioinformatics and Computational Technology at the University of Medicine and Dentistry of New Jersey, Piscataway--recipient of a $4.5 million, five-year grant--brings together a team of computational scientists with backgrounds in bioinformatics, chemistry, modeling, and environmental studies with Rutgers, Princeton, and other schools. The Carolina Environmental Bioinformatics Research Center at the University of North Carolina, Chapel Hill, another grant recipient, boasts a similarly diverse staff of experts. Research at the two centers is designed to complement the EPA's body of work in increasing understanding of public health risks and, down the road, help determine which substances make the list of drinking water contaminants regulated by the agency.

"The multidisciplinary research approach at these two centers will lead to more efficient, effective assessment of the hazards and risk of chemicals to humans and the environment," said Robert Kavlock, NCCT director.

Research at the centers will focus on how chemicals can negatively affect public health and the environment, and provide predictive models to screen and test various chemicals. While the research has the potential to impact many areas, the implications for increasing the safety of America's water supply is of particular interest to public works officials.

"Our work, as well as the excellent toxicological efforts at the EPA, will produce a more refined understanding of acceptable levels of risk and exposures, while acknowledging that some levels of exposure may be unavoidable," said Fred Wright, director of the Carolina center. "Thus, the greatest impact is in terms of improving the health of humans and ecosystems."

RELATED ARTICLE: A short history of bioinformatics
1953  Scientists propose double-helix model for DNA
1958  The first integrated circuit is constructed
1969  The ARPANET--linking computers at Stanford, UCSB, University of
      Utah, and UCAL--is created
1986  The term "genomics"--describing the discipline of mapping,
      sequencing, and analyzing genes--is coined
1987  The National Center for Biotechnology Information is established
2001  A report by the U.S. National Research Council recommends that the
      EPA incorporate the use of bioinformatics in identifying and
      assessing waterborne pathogens
2002  EPA opens the National Center for Computational Toxicology

Source: Allen B. Richon,
COPYRIGHT 2006 Hanley-Wood, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Out of the Ordinary
Author:Spinner, Jenni
Publication:Public Works
Date:Jan 1, 2006
Previous Article:EnviroSafe[TM] modular stormwater catch basin filtration technology.
Next Article:Large or small.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters