Printer Friendly

Corynebacterium pseudogenitalium urinary tract infection.

To the Editor: A 64-year-old man was admitted to the urology department of Cochin Hospital in Paris, France, for acute urinary retention. He had a history of recurrent urolithiasis and undocumented urinary tract symptoms. At admission, a urethral catheter was inserted, and a plain radiograph showed 2 bladder stones and milk of calcium calcifications. Three days later, he underwent extracorporeal shock wave lithotripsy treatment, and empiric antimicrobial drug therapy with intravenous ceftriaxone, 1 g/day for 3 days, was administered. Three consecutive urinalyses showed a pH of 9, crystals of struvite, hematuria, and [10.sup.5] leukocytes/mL. Gram-positive rods with rounded ends and nonparallel sides, arranged in palisades or in V shapes, were observed, which suggested the presence of corynebacteria. Urine cultures were positive and yielded a pure culture of [10.sup.5] CFU/mL of Corynebacterium spp.

The isolated strain showed slight growth after 24 or 48 h of incubation on horse blood agar medium but abundant growth on the same medium containing 1% Tween 80 under aerobic conditions (5% C[O.sub.2]). Colonies were white, opaque, smooth, convex, and nonhemolytic. This lipid-requiring strain was catalase positive and strongly urease positive. Testing with the API-Coryne strip (bioMerieux, Marcy l'Etoile, France) showed that the strain was nitrate-reduction positive and produced acid from glucose, ribose, sucrose, and maltose. However, this strain, which was designated CCH052683, did not hydrolyze gelatin or esculin. It was identified as Corynebacterium group F1 (the corresponding numeric profile of the gallery API-Coryne was 3001325).

The strain was correctly identified to the species level as Corynebacterium pseudogenitalium by using polymerase chain reaction and sequencing 16 rRNA as previously described (1,2). Comparison of 785 nucleotides (546-1,331) gave a 16S rDNA similarity value of 99.9% between the sequences of the isolated strain and C. pseudogenitalium ATCC 33039/NCTC 11860 (European Molecular Biology Laboratory accession no. X81872).

The strain was sensitive to penicillin, ampicillin, gentamicin, rifampin, vancomycin, teicoplanin, tetracycline, sulfamethoxazole, trimethoprim, fusidic acid, ciprofloxacin, and norfloxacin and resistant to erythromycin, lincomycin, and nitrofurantoin. Ceftriaxone was replaced by norfloxacin (400 mg twice a day) for 1 month. The patient improved and remained healthy 6 months after therapy.

Nondiphtheric corynebacteria are of increasing importance. They have been observed in human specimens, and many new taxa of coryneform bacteria have been described (3). Interest in their taxonomy is increasing, and molecular, phenotypic, and biochemical analyses have resulted in the reclassification of this genus (3). C. pseudogenitalium was described in 1979 by Furness et al. (4) for lipophilic corynebacteria isolated from urinary tract and was not considered a pathogen, in contrast to C. genitalium. However, these 2 species were not included in the official list of recognized species.

C. pseudogenitalium was divided into 5 types based on biochemical patterns, and strains of the type C-5 were differentiated from other types on the basis of urease production. The biochemical and physiologic characteristics of this C-5 type were similar of those of the coryneform group F-1 described by the Centers for Disease Control and Prevention (CDC). In 1995, a comprehensive study on lipophilic corynebacteria demonstrated by DNA-DNA hybridization the similarity between a reference strain of C. pseudogenitalium type C-5 and reference strains of the CDC coryneform group F-1 (1). The CDC group F-1 make up 2 genomic groups at the species level. As shown by 16S rDNA gene comparisons, isolate CCH052683 belongs to the genomic group, including a reference strain of C. pseudogenitalium type C-5 ATCC 33039 (CCUG 27540, sequence X81872) and a reference strain of CDC group F-1 (CDC G4330, sequence X81905) (Figure). The other genomic group of CDC group F-1 is represented by strain CDC G5911 (sequence X81904). The molecular genetic investigations identified our isolate as C. pseudogenitalium and placed it in 1 of the 2 genomic groups of CDC group F-1, which cannot be differentiated by biochemical tests (1).

The pathogenicity of this bacterium was associated with strong urease activity. This activity is similar to that of other urease-positive microorganisms, such as C. urealyticum and Proteus spp. (5,6), which infect the urinary tract. Unfortunately, the bladder stones were not analyzed after extracorporeal shock wave lithotripsy treatment. The C. pseudogenitalium isolate was sensitive to most antimicrobial drugs, particularly [beta]-lactams, aminoglycosides, and quinolones. Thus, urinary tract infections caused by this species of bacteria respond more readily to treatment than those caused by multidrug-resistant C. urealyticum (3).

In conclusion, we show that C. pseudogenitalium (CDC coryneform group F-1) can cause urinary tract infection (7) and produce urease, and like C. urealyticum, cause stone formation in humans. Thus, urease-positive microorganisms isolated by urinalysis that shows urinary alkalinization and struvite and pyuria crystallization should be considered pathogenic. Our results also confirm the difficulty in phenotypic identification of these strains and the need to use a molecular approach to identify coryneform bacteria with clinical relevance.

Gerard Vedel, *([dagger]) Gaele Toussaint, *([dagger]) Philippe Riegel, ([double dagger]) Jean-Luc Fouilladieu, *([dagger]) Annick Bilioet, *([dagger]) and Claire Poyart *([dagger])

* Groupe Hospitalier Cochin Saint-Vincent-de-Paul La Roche-Guyon, Paris, France; ([dagger]) Universite Paris Rene Descartes, Paris, France; and ([double dagger]) Universite Louis-Pasteur, Strasbourg, France

References

(1.) Riegel P, Ruimy R, de Briel D, Prevost G, Jehl F, Christen R, et al. Genomic diversity and phylogenetic relationships among lipid-requiring diphtheroids from humans and characterization of Corynebacterium macginleyi sp. nov. Int J Syst Bacteriol. 1995;45:128-33.

(2.) Tang, YW, von Graevenitz A, Waddington MG, Hopkins MK, Smith DH, Li H, et al. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol. 2000;38:1676-8.

(3.) Funke G, von Graevenitz A, Clarridge JE III, Bernard KA. Clinical microbiology of coryneform bacteria. Clin Microbiol Rev. 1997;10:125-59.

(4.) Furness G, Sambury S, Evangelista AT. Corynebacterium pseudogenitalium sp. nov. Commensals of the human male and female urogenital tracts. Invest Urol. 1979; 16:292-5.

(5.) Digenis G, Dombros N, Devlin R, Rosa SD, Pierratos A. Struvite stone formation by Corynebacterium group F1: a case report. J Urol. 1992;147:169-70.

(6.) Soriano F, Ponte C, Santamaria M, Castilla C, Fernandez Roblas R. In vitro and in vivo study of stone formation by Corynebacterium group D2 (Corynebacterium urealyticum). J Clin Microbiol. 1986;23:691-4.

(7.) Soriano F, Ponte C. A case of urinary tract infection caused by Corynebacterium urealyticum and coryneform group F1. Eur J Clin Microbiol Infect Dis. 1992; 11:626-8.

Address for correspondence: Gerard Vedel, Service de Bacteriologie, Groupe Hospitalier Cochin Saint-Vincent-de-Paul La Roche-Guyon, 75679 Paris, France; fax: 33-1-58-4115-48; email: gerard.vedel@cch.aphp.fr
COPYRIGHT 2006 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:examination of isolated strains
Author:Poyart, Claire
Publication:Emerging Infectious Diseases
Date:Feb 1, 2006
Words:1076
Previous Article:Borrelia burgdorferi and Anaplasma phagocytophilum Coinfection.
Next Article:Puumala virus RNA in patient with multiorgan failure.
Topics:


Related Articles
Vesicoureteral Reflux.
Urinary Tract Infections in Children.
Engineering Out the Risk for Infection with Urinary Catheters.
Vaccine prevents urinary-tract infections. (Science News of the week).
Antimicrobial drug resistance in pathogens causing nosocomial infections at a University Hospital in Taiwan, 1981-1999. (Research).
Urinary tract infection in adults.
Antimicrobial resistance of Escherichia coli O26, O103, O111, O128, and O145 from animals and humans. (Research).
Homegrown defender: urinary infections face natural guard.

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |