Printer Friendly

Corticolous lichen flora on Quercus suber L. in the wetlands of El Kala national park (North-Eastern Algeria).

INTRODUCTION

More than a century ago, more precisely in 1840, naturalists: Nylander [1, 2, 3, 4, 5], Cosson [6], Stitzenberger [7] and others began publishing the first collections of Algerian lichen discovered during their scientific explorations. At that time, however, research on lichens was limited to only collecting samples. It was not until the end of the 19th century that lichenology developed and became more popular with the efforts of Flagey [8, 9, 10, 11, 12], followed by Werner [13, 14, 15, 16] and Faurel et al. [17, 18, 19, 20, 21, 22, 23], whose contribution to the study of lichens in North Africa, and particularly in Algeria, was ground-breaking in the region and led to the first publications devoted to lichens.

In the 1980s, Algerian and foreign researchers began studying lichenology, although, aside from the study of the use of lichens as bioindicators of atmospheric pollution [24, 25, 26, 27], a comprehensive survey of epiphytic lichens had yet to be published. Surveys that touch on lichens have been conducted in Eastern Algeria: Tebessa [28], Guelma, Annaba and El Tarf [29], Azaba [30]; Western Algeria: Oran, Mostaganem, Thniet El Had and Tenes [31, 32, 33, 34, 35] and Central Algeria: Alger and Tipaza [35]; Tizi Ouzou, Bouira and Bejaia [36, 37, 33, 38, 39].

None of these surveys focus on a specific phorophyte, but rather on random samples or even on specimens gathered by collectors and subsequently identified by specialists.

Research conducted in a number of Southern European countries: Spain [40, 41, 42, 43, 44, 45], France [46, 47, 48, 49, 50], Italy [51, 52, 53, 54, 55] and Portugal [56, 57, 58, 59], have shown that cork oak is the substrate that bears the widest variety of lichens.

The aim of this research project is to study corticolous lichen flora on Quercus suber in the wetlands of El Kala National Park. The lichens in this world-renowned protected area have never been the subject of a lichenological publication.

General characteristics of the site:

Geographical location:

Part of the North-Eastern Algerian Tell, El Kala National Park occupies an area of 76,438 ha in the El Tarf province and encompasses wetlands of international importance on the Ramsar list. It is bordered on the North by a dune ridge along the Mediterranean Sea, on the East by the Algerian-Tunisian border, on the South by Medjerda Mountains, and on the West by the city of El Tarf and the extensive Mekhada marshes (Fig. 1). Its geographical coordinates extend from 36[degrees]43' to 36[degrees]57' North and 7[degrees]43' to 8[degrees]37 East [60].

General climate:

El Kala National Park is part of the hot-subhumid Mediterranean bioclimate. The average annual temperatures range from 12.2[degrees]C to 25.9[degrees]C. Average annual precipitation varies between 936.7 mm in the littoral zone to 1191 mm in the mountainous zone. The prevailing winds are from the North-West to South-East, with maximum speeds of between 9 m/s and 23 m/s [61].

Plant formations:

A number of types of vegetation prosper in El Kala National Park. From North to South, the main formations are: Quercus coccifera in the littoral dunes, Quercus suber, the most common tree species, which extends from the wetlands to the massifs, and Quercus canariensis, found only in the fresh and humid upland forests [62].

Methodology:

Choice of phorophyte:

The choice of cork oak as phorophyte takes into account the importance of this species not only in the area being investigated, but in the greater (surrounding) area [63]. In addition, the genus Quercus presents a very strong affinity for lichens, as shown by [53, 64, 65].

Choice and description of stations:

The choice of the study stations reflects ecological factors such as the homogeneity of the plant growth, the abundance of supports promoting this growth, as well as certain physical factors, such as the topography and accessibility of the given environment [66].

Six study stations were chosen where cork oak can be found in large, homogeneous formations (Fig. 2). It is important to mention that the forest stations chosen have not been harvested, and that the trunks of the phorophytes studied have not been stripped. These stations are located at the following study sites:

Site 1--Lake Tonga: naturally endorheic and artificially exorheic system.

--Station 1: Cork oak forest of Feid M'Rad (Western Lake), N 36[degrees]51.332' and E 008[degrees]28.244'

--Station 2: Cork oak forest of Ain T'bib (Southern Lake). N 36[degrees]49.088' and E 008[degrees]31.695'

Site 2--Lake Oubeira: freshwater lake that does not flow into the sea.

--Station 1: Cork oak forest of Boumerchene (N-N.E. Lake), N 36[degrees]52.079' and E 008[degrees]23.746'

--Station 2: Cork oak forest of El Ach Lahmer (Western Lake). N36[degrees]50.018' and E008[degrees]21.376'

Site 3--Lake Mellah: marine lagoon right at sea level.

--Station 1: Cork oak forest of El Frin (Western Lake), N36[degrees]52.553' and E008[degrees]19.109'

--Station 2: Cork oak forest of El Melha (S-S.W. Lake). N36[degrees]52.077' and E008[degrees]19.217'

Sampling method:

In 2005, six forest formations were studied in the wetlands of El Kala National Park surrounding Lakes Tonga, Oubeira and Mellah. Three hundred sixty lichen surveys were conducted on sixty cork oak trees. These surveys systematically included all four sides of the phorophyte (N.S.E.W).

Systematic sampling:

Serves the qualitative and quantitative assessment of the forest lichen flora and their spatial distribution [68, 69]. It was done on ten trees per station, selecting such with the richest lichen growth and with diameter at breast height greater than 20 cm.

The observations were performed on the four sides of the trunk, at 1.50 to 2.0 m above soil-level in order to avoid the basal protection offered by the grass cover and the eutrophication caused by animal feces [66, 70]. The samples were distributed in such way as to reflect the diversity of potential ecological situations to the greatest possible extent [49].

Technique for the determination of lichens:

In order to determine the gathered lichen specimens, we have used the following sources, using for the chemical characters the usual reagents P, K and C:

-- Les lichens, etude biologique et flore illustree, Ozenda and Clauzade [71],

--Likenoj de occidenta europo, illustrita determinlibro, Clauzade and Roux [72],

--Guide des lichens, Van Haluwyn and Lerond [66],

--Guide des lichens, Tievant [73],

--Guide des lichens de France: Lichens des arbres, Van Haluwyn et al. [74].

Statistical analysis:

Statistical analyses were carried out using MINITAB version 13.1-2002.

Results:

Inventory of lichens:

List of lichen taxa:

The list of lichen species found in the study area in alphabetical order is as follows:

1. Acrocordia gemmata (Ach.) A. Massal.

2. Alyxoria lichenoides (Pers.)

3. Alyxoria varia (Pers.) Ertz et Tehler

4. Amandinea punctata (Hoffm.) Coppins & Scheid.

5. Anaptychia ciliaris (L.) Korb. ex A. Massal.

6. Arthonia atra (Pers.) A. Schneid.

7. Arthonia cinnabarina (DC.) Wallr.

8. Arthonia dispersa (Schrad.) Nyl.

9. Arthonia galactites (DC.) Dufour

10. Arthonia granosa B. de Lesd.

11. Arthonia melanophthalma Dufour

12. Arthonia radiata (Pers.) Ach.

13. Bacidia igniarii (Nyl.) Oksner

14. Bacidia rosella (Pers.) De Not.

15. Bacidia rubella (Hoffm.) A. Massal.

16. Bacidinaphacodes (Korb.) Vezda

17. Buellia disciformis (Fr.) Mudd

18. Buellia griseovirens (Turner & Borrer ex Sm.) Almb.

19. Caloplaca cerina (Ehrh. ex Hedw.) Th. Fr.

20. Caloplaca ferruginea (Huds.) Th. Fr.

21. Caloplacapollinii (A. Massal.) Jatta

22. Caloplacapyracea (Ach.) Th. Fr.

23. Candelariella reflexa (Nyl.) Lettau

24. Candelariella xanthostigma (Ach.) Lettau

25. Chrysothrix candelaris (L.) J. R. Laundon

26. Cladonia chlorophaea (Florke ex Sommerf.) Spreng.

27. Cladonia coniocraea (Florke) Spreng.

28. Cladoniafimbriata (L.) Fr.

29. Cladoniapyxidata (L.) Hoffm.

30. Collema conglomeratum Hoffm.

31. Collema fasciculare (L.) Weber ex F. H. Wigg.

32. Collema furfuraceum (Arnold) Du Rietz

33. Collema nigrescens (Huds.) DC. f. nigrescens

34. Collema subflaccidum Degel.

35. Collema subnigrescens Degel.

36. Dendrographa decolorans (Turner & Borrer ex Sm.) Ertz & Tehler (morphotype decolorans)

37. Diploicia canescens (Dicks.) A. Massal.

38. Dirina ceratoniae (Ach.) Fr.

39. Enterographa crassa (DC.) Fee

40. Evernia prunastri (L.) Ach. (chemotype prunastri)

41. Evernia prunastri (L.) Ach. (chemotype herinii)

42. Flavoparmelia caperata (L.) Hale

43. Flavoparmelia soredians (Nyl.) Hale

44. Fuscopannaria mediterranea (Tav.) P. M. Jorg.

45. Graphis scripta (L.) Ach.

46. Hyperphyscia adglutinata (Florke) H. Mayrhofer & Poelt

47. Hypogymniaphysodes (L.) Nyl.

48. Lecanora allophana Nyl. (morphotype allophana)

49. Lecanora carpinea (L.) Vain.

50. Lecanora chlarotera Nyl. subsp. chlarotera f. chlarotera

51. Lecanora chlarotera Nyl. subsp. chlarotera f. crassula (H. Magn.) Poelt

52. Lecanora chlarotera Nyl. subsp. chlarotera f. rugosella (Zahlbr.) Poelt

53. Lecanora expallens Ach.

54. Lecanora glabrata (Ach.) Malme

55. Lecanora hagenii (Ach.) Ach. (morphotype hagenii)

56. Lecanora horiza (Ach.) Linds.

57. Lecanorapulicaris (Pers.) Ach. (chemotypepulicaris)

58. Lecidea exigua Chaub.

59. Lecidella elaeochroma (Ach.) M. Choisy (chemotype elaeochroma)

60. Lecidella elaeochroma (Ach.) M. Choisy (chemotype euphorea)

61. Lepraria incana (L.) Ach.

62. Leptogium saturninum (Dicks.) Nyl.

63. Melanelixia glabratula (Lamy) Sandler & Arup

64. Naetrocymbepunctiformis (Pers.) R. C. Harris

65. Nephroma laevigatum Ach.

66. Nephroma resupinatum (L.) Ach.

67. Normandinapulchella (Borrer) Nyl.

68. Ochrolechia balcanica Vers.

69. Ochrolechia turneri (Sm.) Hasselr.

70. Opegrapha celtidicola (Jatta) Jatta

71. Opegrapha niveoatra (Borrer) J. R. Laundon

72. Opegrapha vulgata Ach.

73. Parmelia saxatilis (L.) Ach. s.l.

74. Parmelia sulcata Taylor s.l.

75. Parmelina carporrhizans (Taylor) Poelt & Vezda

76. Parmelina quercina (Willd.) Hale

77. Parmelina tiliacea (Hoffm.) Hale s.l.

78. Parmeliopsis ambigua (Wulfen) Nyl.

79. Parmeliopsis hyperopta (Ach.) Arnold (morphotype hyperopta)

80. Parmotrema hypoleucinum (J. Steiner) Hale

81. Parmotrema perlatum (Huds.) M. Choisy

82. Parmotrema reticulatum (Taylor) M. Choisy

83. Parmotrema robustum (Degel.) Hale

84. Pertusaria albescens (Huds.) M. Choisy & Werner (morphotype albescens)

85. Pertusaria albescens (Huds.) M. Choisy & Werner (morphotype corallina)

86. Pertusaria amara (Ach.) Nyl. var. amara

87. Pertusaria coccodes (Ach.) Nyl.

88. Pertusaria flavida (DC.) J. R. Laundon

89. Pertusaria hymenea (Ach.) Schaer.

90. Pertusaria leioplaca DC.

91. Pertusaria pertusa (Weigel) Tuck.

92. Phaeophyscia hirsuta (Mereschk.) Essl.

93. Phaeophyscia orbicularis (Neck.) Moberg

94. Phlyctis agelaea (Ach.) Flot.

95. Phlyctis argena (Spreng.) Flot.

96. Physcia adscendens (Fr.) H. Olivier

97. Physcia aipolia (Ehrh. ex Humb.) Furnr.

98. Physcia biziana (A. Massal.) Zahlbr. var. biziana

99. Physcia clementei (Turner) Lynge

100. Physcia leptalea (Ach.) DC.

101. Physcia stellaris (L.) Nyl. (morpho. stellaris)

102. Physcia tenella (Scop.) DC.

103. Physconia distorta (With.) J. R. Laundon var. distorta

104. Physconia enteroxantha (Nyl.) Poelt

105. Physconia grisea (Lam.) Poelt subsp. grisea

106. Physconiaperisidiosa (Erichsen) Moberg

107. Porina aenea (Wallr.) Zahlbr.

108. Punctelia borreri (Sm.) Krog

109. Punctelia subrudecta (Nyl.) Krog

110. Pyrenula chlorospila (Nyl.) Arnold

111. Pyrrhospora quernea (Dicks.) Korb.

112. Ramalina canariensis J. Steiner

113. Ramalina farinacea (L.) Ach. (chemotype farinacea)

114. Ramalina fastigiata (Pers.) Ach.

115. Ramalina fraxinea (L.) Ach. (morphotype fraxinea)

116. Ramalina fraxinea (L.) Ach. (morphotype luxurians)

117. Ramalina lacera (With.) J. R. Laundon

118. Ramalina pusilla Le Prev. ex Duby

119. Rinodina exigua (Ach.) Gray

120. Rinodina pruinella Bagl.

121. Rinodinapyrina (Ach.) Arnold

122. Schismatomma dirinellum (Nyl.) Zahlbr.

123. Scytinium lichenoides (L.) Otalora, P. M. Jerg. & Wedin

124. Staurolemma omphalarioides (Anzi) P. M. Jerg. et Henssen

125. Teloschistes chrysophthalmus (L.) Th. Fr.

126. Tephromela atra (Huds.) Hafellner var. torulosa (Flot.) Hafellner

127. Thelopsis isiaca Stizenb.

128. Tuckermanopsis chlorophylla (Willd.) Hale

129. Usnea ceratina Ach.

130. Usnea fulvoreagens (Rasanen) Rasanen

131. Usnea glabrescens (Nyl. ex Vain.) Vain.

132. Usnea rubicunda Stirt.

133. Varicellaria hemisphaerica (Florke) Schmitt & Lumbsch

134. Xanthoriaparietina (L.) Th. Fr. subsp. parietina

135. Xanthoriapolycarpa (Hoffm.) Rieber

Systematic spectrum of lichen taxa sampled at the site of study:

The 135 species belong to 25 families. The most prominent are the Parmeliaceae with 24 species, the Physciaceae with 22 species, the Lecanoraceae, Pertusariaceae and Ramalinaceae each with 11 species (Fig. 3).

Physionomic spectrum of lichen taxa sampled at the site of study:

An examination of the lichens list reveals that all physiognomic of the categories are represented among the phorophyte at each of the study stations.

According to figure 4, the category of crustose lichens is the most significantly represented numerous at the study site, having 69 species, followed by leafy the foliose lichens, having 37 species. The category of squamulose lichen has only 1single species.

Statistical analysis:

In order to be able to get a better grasp of the interactions that might exist between the lichens and the bryophytes, that is, between inter-category lichens and lichens and the diameter of the given phorophyte, a statistical analysis is clearly indispensable. To this end, correlation matrices were used in the current project. These allow for a characterization of the lichen flora at the different stations studied.

Correlations:

The results related to the correlations between the bryolichen cover and phorophyte diameter are found in the table below.

According to the above table 3, it is clear that in the six stations present a correlation between the lichen cover and phorophyte diameter.

To this end, there is a significant negative correlation between the lichen and the diameter of the phorophyte, where r = - 0.632 *, observed on the Eastern side, at site 1. On the other hand, the bryophytes present a significant correlation vis-a-vis diameter at the same site and vis-a-vis the same phorophyte. This explains the concurrence with respect to the space between the lichen and the bryophytes, that is when one of these increases, the other decreases.

Based on the calculated correlation matrices, as related to the samples taken from the six study stations, the obtained results indicate that there is a very significant high correlation between the bryophyte cover and the lichen cover on the phorophyte at the station 2 of Lake Tonga and station 1 of Lake Mellah, r = -1.000 ***, whereby, the more the first increases, the greater the decrease in the second and vice-versa, this observable regardless of the side of the forest sampled.

In addition, the same results are obtained for the cover across the different categories of lichen, in particular among the foliose lichen and the crustose lichen, where the correlation between the two categories is negative, and very highly significant, r always tending to be -1 ****.

Significant correlations were also observed as existing between the foliose lichen and fruticose lichen, but only at station 1 of Lake Oubeira.

Discussion:

One hundred thirty-five lichen species were surveyed in the study region. A number of the lichen taxa surveyed at the six stations were found on Quercus suber. Zedda [53] inventoried 168 lichen species on the same phorophyte in Sardinia. Our study's findings are similar.

The total numbers were compared with those of lichenologists working in Algeria. The number of corticolous lichen taxa surveyed on Quercus suber in this study is much higher than that of those surveyed on the same phorophyte by Nylander [5] (5 species), Flagey [12] (11 species), Faurel et al. [17, 19, 20, 22] (16, 6, 5 and 5 species, respectively), Torrento and Egea [36, 37] (1 and 1 species), Van Haluwyn et al. [29] (32 species) and Alonso and Egea [35] (18 species).

It is important to mention that, of the 135 species surveyed, only 67 were found by any of the abovementioned lichenologists; the remaining 68 species were found on cork oak through this study.

Our findings were also compared with those of lichenologists who studied the epiphytic lichens of Quercus suber in Kroumirie, Tunisia, which borders our study region. Our inventory is larger than the Tunisian inventory. Thirty species of corticolous lichens are cited by

Pitard and Bouly de Lesdain [75] and El Mokni et al. [76, 77, 78] and the other 105 species of lichen surveyed were not found on cork oaks in Tunisia.

Lichen surveys in Morocco consist merely of lists of species. The location of the stations is often imprecise, and there is no ecological or sociological information about the stands. For example, only fifty or so species of epiphytic lichens found on cork oak have been reported [79, 80, 81, 82, 83, 84].

The largest family of lichens is Parmeliaceae, with 24 species, followed by Physciaceae with 22 species. This corroborates the findings of Zedda [53] and Sipman [64], who explains in his study of lichens on oaks in neotropical mountain areas, that mountainous regions with heavy rainfall and moderate temperatures like our site are favoured by these two families of lichens, in particular the genera Parmotrema and Physcia.

Also, the lichen landscapes on Quercus suber contain a large number of foliose lichens in the genus Parmelia of the family Parmeliaceae. Fos et al. [56], Van Haluwyn et al. [29] and El Mokni et al. [78] made the same observation, indicating that most of the species in the genus require very specific climatic conditions, in particular abundant moisture and plenty of sunshine. This confirms our findings at most of our stations.

With respect to the family of Collemataceae, an indicator of abundant moisture [50], the genera Collema and Leptogium are far more common at the stations in Lake Mellah. This can be explained by the abundant moisture in this wetland and its proximity to the sea. Also, it should be noted that station 1 at this site is located away from shoreline dwellings, and is therefore not affected by grazing, a situation that enabled the abovementioned gelatinous lichens to thrive. This finding is consistent with those of Zedda [53] and Paz-Bermudez et al. [58] which indicate that lichens bearing cyanobacteria are found only in well-preserved forests. To corroborate, Anaptychia cilaris only appears on old phorophytes at this station. This proves that the station has not been disturbed, since this species of lichen is highly sensitive to any environmental disturbance [85].

All morphological types are represented on the phorophyte studied. Crustose lichens dominate the flora surveyed, representing 51.1%, followed by foliose lichens, representing 27.4%. Boqueras and Gomez-Bolea [41] in their study of epiphytic lichens on Quercus suber in Catalonia (Spain), Zedda [53] in his study of epiphytic lichens on Quercus in Sardinia (Italy), and Oran and Ozturk [65] in their study of the diversity of epiphytic lichens on Quercus cerris and Quercus frainetto in Marmara (Turkey), have the same result.

The substrate also has an impact on the establishment and distribution of lichens. Our study takes into account the circumference of the phorophyte. Our findings show that circumference plays an important role in the number of lichen taxa, as well as in coverage. The greater the phorophyte's circumference, the greater the lichen coverage. Phorophytes with a circumference of more than 1 m demonstrate unique epiphytic richness, comprising every morphological type mentioned above. Nascimbene et al. [86] demonstrated the effect of the phorophyte's age and circumference on the diversity of lichens. They also report that the size of the trees, which is relatively easy to measure, is an appropriate structural indicator, while lichen coverage could be another appropriate biological indicator. Also, Johansson et al. [87] mentions that older trees should be richer in lichens and accommodate a more heterogeneous collection of species than immature and mature trees. This is consistent with Scheidegger and Clerc [88], who emphasized the importance of old trees for the preservation of epiphytic lichens on the Swiss Red List. For example, the rarity and potentially threatened status of many epiphytic lichens could be could be attributed to an insufficient number of very old trees in the forests.

The side of the phorophyte's trunk was taken into consideration as a second substrate-related factor. In our variance analysis, we found that the side of the tree has an influence on lichen coverage. This could be caused by differences in exposure to light and moisture of the lichens in each area of vegetation. These findings are consistent with those of Crespo et al. [89], who indicates in their study that the distribution of lichen communities changes with the amount of light and shade, as well as those of Hernandez Gallego et al. [90], who found a difference in lichen diversity between the north and south sides of a tree depending on the amount of light and the surrounding trees in the forests studied.

It is well known that factors such as bark texture, water retention capacity, and bark chemistry affect the distribution of lichens on trees [91]. Similarly, the availability of moisture from the tree trunks affects the diversity and distribution of corticolous lichen communities [92]. For this reason, Quercus suber trunks that are covered with moss are colonized by certain humicolous species such as Nephroma resupinatum and Normandina pulchella, which grow in wet woodlands. These two species of lichen have been found at only one station: Ain T'Bib (station 2 at Lake Tonga), which is known for its old phorophytes covered with bryophytes, lichens and sometimes even pteridophytes. Zedda [53] also recorded these species on trunks of old Quercus pubescens.

Moreover, in their biogeographical study of epiphytic lichens in Calabria in Southern Italy, Incerti and Nimis [54], reports that the species Lecidella elaeochroma, Lecanora chlarotera, Pertusaria amara and Flavoparmelia caperata have a wide ecological range and are the most common on Quercus suber, while others, such as Phlyctis argena, are less frequent and indicate high humidity. This is corroborated by our study's findings.

The depth of the bark crevices is an important factor in the distribution of corticolous species [93, 94]. We found that the bark texture of old Quercus suber subjects is thick and spongy, while that of younger individuals is rough and fissured. Consequently, some crustose lichens grow in cracks of the bark, and others grow on the surface; foliose and fruticulose lichens prefer to be on the surface of the bark. These findings corroborate with those of Rose [95] and Oran and Ozturk [65].

Oak bark is moderately acidic [50]. Consequently, nitrophilous lichens are rarely found on oak tree trunks [96]. Several studies have shown that agriculture and grazing add to the eutrophication of substrates, which causes an increase in the number of nitrophilous species in lichen communities [97, 98, 99, 100]. Several nitrophilous genera, including Parmelia, Parmelina, Phaeophyscia, Physcia, Physconia, Rinodina and Xanthoria, were frequently observed in the study region. This corroborates the findings of Camarda and Zedda [52], Carvalho et al. [101] and Ribeiro et al. [102].

Conclusion:

From a floristics point of view, 135 taxa were identified, which is very representative of the biodiversity of corticolous lichens on Quercus suber. This floristic richness is confirmed by the number of lichen species surveyed, compared with the inventories of our predecessors in both Algeria and Tunisia.

This inventory allows the value of forest biodiversity layout that

is biased by a recurring shortcoming cryptogams are totally ignored as they are an important species richness.

Also, it would have to multiply this kind of study on various types of phorophytes order to make comparisons between lichen groups and phanerogamic groups on a sufficiently large area, to determine a possible correlation.

The interest of this study is to highlight the importance of lichen diversity in Algeria and contribute to the enrichment of "Cheek-list" of Maghreb and Mediterranean lichen species.

ACKNOWLEDGEMENTS

Upon completion of this work, we would like to thank Dr Claude Roux, retired lichenologist CNRS, Laboratory of Mediterranean Botany and Ecology, Mediterranean Institute of Ecology and Paleoecology, Faculty of Science and Technology of Saint-Jerome, Marseille, for introducing me to the techniques for identifying lichens. We also thank Dr Luciana Zedda, co-founder and CEO of the company BIO-Diverse at Institute for Biodiversity Network of Bonn, Dr Errol Vela, Lecturer at the University of Montpellier 2 and Dr Esteve Llop, Assistant Professor at the University of Barcelona, for their help. To them we express our profound gratitude.

REFERENCES

[1] Nylander, W., 1853. Lichenes algerienses. Novi. Ann. Scien. Nat. Bot. Ser., 20(3): 315-320.

[2] Nylander, W., 1854. Etudes sur les lichens de l'Algerie. Memoires de la Societe Imperiale des Sciences Naturelles de Cherbourg, 2: 305-344.

[3] Nylander, W., 1857. Prodromus lichenographie Galliae et algeriae. Actes de la Societe linneenne de Bordeaux, 3eoe ser., 1: 249-467.

[4] Nylander, W., 1858. Enumeration generale des lichens, avec l'indication sommaire de leur distribution geographique. Memoires de la Societe Imperiale des Sciences Naturelles de Cherbourg, 5: 85-146.

[5] Nylander, W., 1878. Symbolae quaedam ad lichenographiam Sahariensem. Flora (Regensburg), 61: 337-345.

[6] Cosson, E., 1857. Liste des plantes observees par le Dr Reboud dans le Sahara algerien pendant l'expedition de de Laghouat a Ouargla. Bull. Soc. Bot. France, 4: 469-473.

[7] Stitzenberger, E., 1890. Lichenaea Africana. Jahresbericht de Saint Gallischen naturwissen schaflichen gessell chaft, Supplemento, Ibid, 1891-1892, pp: 86- 96, 1893-1894, pp: 215-264.

[8] Flagey C., 1888. Herborisation lichenologique dans les environs de Constantine (Algerie). Rev. Mycol., 10eme annee, pp: 126-134.

[9] Flagey C., 1891. Lichens algerienses exsiccati: cent. I--Rev. Mycol., 13eme annee, pp: 107-117.

[10] Flagey C., 1892. Lichens algerienses. Cent. II--Rev. Mycol., 14eme annee, pp: 70-79.

[11] Flagey C., 1895. Lichens algerienses. Cent. III et rectifications aux centuries I et II--Rev. Mycol., 17eme annee, pp: 101-105.

[12] Flagey, C., 1896. Catalogue des lichens de l'Algerie. In Battandier J. et Trabut L., Flore de l'Algerie. Jourdan A. Edit., Alger, 139.

[13] Werner, R.G., 1939. Apergu phytogeographique sur la flore cryptogamique mediterraneenne de l'Afrique du Nord. L'endemisme et les caracteres propres au Maroc, a l'Algerie et a la Tunisie. Soc. Hist. Alger., 4e Cong. Fed. Soc. Sav. Afr. Nord, 1: 219-244.

[14] Werner, R.G., 1940. Contribution a la flore cryptogamique de l'Algerie et de la Tunisie. Bull. Soc. Sci. Nat. du Maroc, 20(1-2): 113-121.

[15] Werner, R.G., 1949. Les origines de la flore lichenique de l'Algerie d'apres nos connaissances actuelles. Trav. Bot. dedies a R. Maire. Mem. hors-ser. Soc. Hist. Nat. Afrique du Nord, 2: 299-312.

[16] Werner, R.G., 1955. Synthese phytogeographique de la flore lichenique de l'Afrique du Nord frangaise d'apres les donnees recentes et essai de paleogeographie lichenique. Bull. Soc. Bot. de France, 102: 35-50, 1 carte.

[17] Faurel, L., P. Ozenda and G. Schotter, 1951. Materiaux pour la flore lichenologique d'Algerie et de la Tunisie. I--Calicaceae, Cypheliaceae, Peltigeraceae, Pertusariaceae. Bull. Soc. Hist. Nat. Afr. Nord, 42: 62-112.

[18] Faurel, L., P. Ozenda and G. Schotter, 1952. Notes lichenologiques Nord africaines. II--Quelques lichens inedits pour l'Algerie. Bull. Soc. Hist. Nat. Afr. Nord, 43: 137-145.

[19] Faurel, L., P. Ozenda and G. Schotter, 1953 (a). Notes lichenologiques Nord africaines. III--Quelques lichens d'Afrique du Nord nouveaux, rares ou peu connus. Bull. Soc. Hist. Nat. Afr. Nord, 44: 367-384.

[20] Faurel, L., P. Ozenda and G. Schotter, 1953 (b). Materiaux pour la flore lichenologique d'Algerie et de la Tunisie. II--Graphidaceae. Bull. Soc. Hist. Nat. Afr. Nord, 44: 12-50.

[21] Faurel, L., P. Ozenda and G. Schotter, 1953 (c). Lichens du Sahara algerien in (Desert Research Proceedings). International Symposium held by Jerusalem Israel research Concyl, Jerusalem, pp: 310-317.

[22] Faurel, L., P. Ozenda and G. Schotter, 1954. Materiau pour la flore lichenologique d'Algerie et de la Tunisie III -Arthoniaceae, Dirinaceae, Roccellaceae. Bull. Soc. Hist. Nat. Afr. Nord, 45: 275-298.

[23] Faurel, L. and G. Schotter, 1958. Lichens. In: Mission Botanique au Tibesti (P. Quezel, ed.), Institut de Recherches Sahariennes, Universite d'Alger, Memoire N[degrees], 4: 67-79.

[24] Semadi, A., 1989. Effet de la pollution atmospherique (pollution globale, fluoree et plombique) sur la vegetation dans la region d'Annaba. These de Doctorat d'Etat es Sciences Naturelles, Universite P. et M. Curie (Paris 6), 339.

[25] Semadi, A. and S. Deruelle, 1993. Detection de la pollution plombique a l'aide des transplants licheniques dans la region de Annaba (Algerie). Pollut. Atmosp. Oct-Dec, 86-102.

[26] Alioua, A., 2001. Detection de la pollution plombique d'origine automobile a l'aide de bio-accumulateurs vegetaux dans l'agglomeration de Skikda (N. E. Algerie). These de Doctorat de l'universite Joseph Fourier, Grenoble, 136.

[27] Rahali, M., 2003. Etude de la pollution plombique et globale dans la region d'Alger, en utilisant les lichens comme indicateurs biologiques. These de Doctorat, I.N.A. El Harrache, 302.

[28] Van Haluwyn, C. and M.A. Letrouit-Galinou, 1990. La flore lichenique de Pinus halepensis dans la region de Tebessa (Algerie orientale). Cryptogamie, Bryologie et Lichenologie, 11 (1): 31-42.

[29] Van Haluwyn, C., A. Semadi, S. Deruelle and M.A. Letrouit, 1994. La vegetation lichenique corticole de la region d'Annaba (Algerie Orientale). Cryptogamie, Bryologie et Lichenologie, 15(1): 1-21.

[30] Knudsen, K. and J. Etayo, 2009. Sarcogyne algerica H. Magn., New to Europe. Opuscula Philolichenum, 7: 61-64.

[31] Esnault, J., 1985. Le genre Aspicilia Mass (Lichen) en Algerie : Etude des caracteres taxonomiques et leur variabilite. These de 3e Cycle, Universite de Rennes, 258 p.

[32] Egea, J.M., 1988. Prospeccionnes liquenologicas en Africa del Norte. III--Liquenes saxicolas del Cabo de tres Forcas (Nador, Marruecos y Cabo Falcon) (Oran, Algelia). Collect. Bot. (Barcelona), 17(2): 185-189.

[33] Egea, J.M., P. P. Torrente and J.G. Rowe, 1990. Contribution a la flora de Argelia y Tunez: Liquenes y hongos lichenicolas. Cryptogamie, Bryol. Lichenol., 11(4): 409-417.

[34] Egea, J.M. and X. Llimona, 1991. Phytogeography of Silicicolous lichens in mediterranean. Europe and N.W. Africa, Botanica Chronica, 10: 179-197.

[35] Alonso, F.L. and J.M. Egea, 2003. Hongos liquenizados y liquenicolas epifitos de algunas localidades costeras de Argelia y Tunez. Anales de biologia, 25: 73-79.

[36] Torrente, P. and J. M. Egea, 1989a. Opegrapha celtidicola (Jatta) Jatta. Nombre correcto para Opegrapha betulinoides B. de Lesd. y Opegrapha thallincola B. de Lesd. Cryptogamie, Bryol. Lichenol., 10(4): 313317.

[37] Torrente, P. and J.M. Egea, 1989b. La familia Opegraphaceae en el Area Mediterranea de la Peninsula Iberica y Norte de Africa. Bibliotheca Lichenologica, 32: 1-282.

[38] Rico, V. J., G. Aragon and J. Esnault, 2007. Aspicilia uxoris, an epiphytic species from Algeria, Morocco and Spain. The Lichenologist, 39(2): 109-119.

[39] Rebbas, K., L. Boutabia, Y. Touazi, R. Gharzouli, Y. Djellouli and D. Alatou, 2011. Inventaire des lichens du Parc National de Gouraya (Bejai'a, Algerie). Phytotherapie, 9(4): 225-233.

[40] Crespo, A. and A.G. Bueno, 1984. Flora liquenica epifitica de Cadiz. I. Los alcornocales de las Sierras de Algeciras. Anal. Biol. (Murcia), 1: 219-231.

[41] Boqueras, M. and A. Gomez-Bolea, 1986. Liquens epifits, i els seus fongs parasits, observats sobre Quercus suber, a Catalunya. Folia Botanica Miscelanea, 5: 49-69.

[42] Boqueras, M. and A. Gomez-Bolea, 1987. La vegetacion liquenica epifitica de Quercus suber L. en Catalunya (Espana). Actas del VI Simposio Nacional de Botanica Criptogamica, 371-382.

[43] Fos, S. and P. Clerc, 2000. The lichen genus Usnea on Quercus suber in iberian cork-oak forests. The Lichenologist, 32: 67-88.

[44] Atienza, V., J.G. Segarra and S. Fos, 2004. Lichen data as a contribution to the identification of Important Plant Areas (IPAs) in the Valencian Community.

[45] http://www.nerium.net/plantaeuropa/Proceedings.htm

[46] Van Den Boom, P. and J. Etayo, 2014. New records of lichenicolous fungi and lichenicolous lichens from the Iberian Peninsula, with the description of four new species and one new genus. Opuscula Philolichenum, 13: 44-79.

[47] Guilloux, F., A. Bellemere and C. Gueidan, 2000. Liste des lichens observes et/ou recoltes lors de l'excursion de l'Association Frangaise de Lichenologie en Corse (13-20 avril 1999). Bulletin d'Information de l'Association Frangaise de Lichenologie, 25(2): 27-46.

[48] Sipman, H., 2000. List of lichens species collected by H. Sipman during the AFL excursion to Corse in April 1999. Bulletin d'lnformation de l'Association Frangaise de Lichenologie, 25(2): 47-49.

[49] Roux, C., O. Bricaud, T. Menard, C. Gueidan, C. Coste and P. Navarro-Rosines, 2003. Champignons lichenises et lichenicoles de la France meridionale (Corse comprise): especes nouvelles et interessantes (9). Bull. Soc. Linn. Provence, 54: 125-14.

[50] Bricaud, O., 2006. Apergu de la vegetation lichenique du site de Saint Daumas (Var) et de deux stations de la plaine des Maures. Rapport CEEP-WWF-AFL, 64.

[51] Bricaud, O., 2010. Les lichens des forets de la region mediterraneenne frangaise et leur relation avec la continuite ecologique des boisements. Rapport WWF-AFL, 118 p.

[52] Nimis, P.L. and J. Poelt, 1987. The lichens and lichenicolous fungi of Sardinia (Italy). Studia Geobotanica, 7: 1-269.

[53] Camarda, I. and L. Zedda, 1995. I Licheni epifiti su Quercus suber L., nel Marghine-Goceano (Sardegna centro-settentrionale). Giornale botanico italiano, Vol. 129 (2), p. 191.

[54] Zedda, L., 2002. The epiphytic lichens on Quercus in Sardinia (Italy) and their value as ecological indicators. Englera, 24: 1-468.

[55] Incerti, G. and P.L. Nimis, 2006. Biogeographical outline of epiphytic lichens in a Mediterraneanarea: Calabria (S-Italy). The Lichenologist, 38(4): 355-371.

[56] Rizzi, G., G. Incerti, F. Ginaldi, D. Kodnik, S. Viglione and P. Giordani, 2011. A contribution to the lichen flora of Sardinia. Mycotaxa, 115: 535.

[57] Fos, S., V. Atienza, M.J. Sanz, V. Calatayud and E. Barreno, 1994. Macroliquenes epifitos sobre Quercus suber L. en los alcornocales del centro y sur de Portugal. Studio Botanica, 13: 139-145.

[58] Fos, S., 1998. Liquenes epifitos de los alcornocales ibericos: correlaciones bioclimaticas, anatomicas y densimetricas con el corcho de reproduction. Servicio Editorial de la Universidad del Pais Vasco, Bilbao, Guinean A, no 4.

[59] Paz-Bermudez, G., E. Lopez de Silanes, A. Terron, R. Arroyo, V. Atienza, S.F. Brime, A.R. Burgaz, P. Carvalho, G. Figueras, E. Llop, B. Marcos, R. Pino-Bodas, M. Prieto, V. Rico, A.B. Fernandez-Salegui and E.Serina, 2009. Lichens and lichenicolous fungi in the Montesinho Natural Park, the Serra da Nogueira and the Rio Sabor Valle y (Portugal). CryptogamieMycologie, 30 (3): 279-303.

[60] Ribeiro, M.C., P. Pinho, E. Llop, C. Branquinho, A.J. Sousa and M.J. Pereira, 2013. Multivariate geostatistical methods for analysis of relationships between ecological indicators and environmental factors at multiple spatial scales. Ecological Indicators, 29: 339-347.

[61] Bessah, G., 2005. Lespares nationaux d'Algerie. Premiere reunion du Comite de pilotage du <<Reseau des parcs--INTERREG IIIC Sud>> Naples-Italie, du 29 janvier au 1er fevrier.

[62] Loukkas, A., 2006. Atlas des parcs nationaux algeriens. Ed. Diwane, Tissmsilet, 96 p.

[63] Rezzig, M., 1997. Ecologie des zones forestieres et inventaire de la vegetation du Parc National d'El Kala. Etude d'expertise, Projet GEF/Banque mondiale, ANN, Alger, 58.

[64] Stevenson, A.C., J. Skinner, G.E. Hollis and M. Smart, 1988. The El Kala National Park and Environs, Algeria: An Ecological Evaluation. Environmental Conservation, 15: 335-348.

[65] Sipman, H.J.M., 2006. Diversity and biogeography of lichens in neotropical montane oak forests. pp. 69-81 in: M. Kappelle (ed.), Ecology and conservation of neotropical montane oak forests.--Ecological Studies 185.--Springer Verlag, Berlin. Heidelberg.

[66] Oran, S. and [section]. Ozturk, 2012. Epiphytic lichen diversity on Quercus cerris and Q. frainetto in the Marmara region (Turkey). Turk. J. Bot., 36: 175-190.

[67] Van Haluwyn, C. and M. Lerond, 1993. Guide des lichens. Ed. Lechevalier, Paris, 344.

[68] Aouadi, H., 1989. La vegetation de l'Algerie Nord--Orientale: histoire des influences anthropiques et cartographie a 1/200.000. These de Doctorat de Funiversite Joseph Fourier, Grenoble I, 108 p + carte.

[69] Pirintsos, S.A., J. Diamantopoulos and G.P. Stamou, 1993. Analysis of vertical distribution of epiphytic lichens on Pinus nigra (Mount Olympos, Greece) along an altitudinal gradient. Vegetatio, 109: 63-70.

[70] Pirintsos, S.A., J. Diamantopoulos and G.P. Stamou, 1995. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount-Olympos, Greece). Vegetatio, 116 : 33-40.

[71] Van Haluwyn, C. and M. Lerond, 1986. Les lichens et la qualite de l'air: Evolution methodologique et limites. Rapport final au Ministere de l'Environnement (S.R.E.T.I.E), 213.

[72] Ozenda, P. and G. Clauzade, 1970. Les lichens, etude biologique etflore illustree. Ed. Masson, Paris, 808.

[73] Clauzade, G. and C. Roux, 1985. Likenoj de Okcidenta Europo. Illustrita determinlibro. Bull. Soc. Bot. Centre-Ouest, no. spec. 7, S.B.C.O., Edit. Royan, 893-2.

[74] Tievant, P., 2001. Guide des lichens __ 350 especes de lichens d'Europe. Ed. Delachaux et Niestle, Paris, 304 p.

[75] Van Haluwyn, C., J. Asta and J.P. Gaveriaux, 2009. Guide des lichens de France: lichens des arbres. Ed. Belin, Paris, 240.

[76] Pitard, C.J. and M. Bouly de Lesdain, 1909. Contribution a l'etude des lichens de Tunisie. Bull. Soc. Bot. France., 56: 243-264.

[77] El Mokni, R., M.R. El Mahmoudi and M.H. El Aouni, 2010. Apergu sur les lichens fruticuleux corticoles dans la region de Kroumirie (Nord-Ouest de la Tunisie): Diversite et Bioindication. Revue de la F.S.B., VIII: 72-76.

[78] El Mokni, R., H. Jouili Ep. El Mokni and M.H. El Aouni, 2011. Les especes du genre Lobaria (Schreb.) Hoffm. de la region de Kroumirie (Nord-Ouest de la Tunisie) : Caracterisation morpho-chimique et Bioindication. Revue de la F.S.B., IX: 114-119.

[79] El Mokni, R., L. Boutabia Ep. Telailia, H. Sebei and M.H. El Aouni, 2013. Les especes du genre Parmelia Ach. (Parmeliaceae) de la region de Kroumirie (Nord-Ouest de Tunisie): Caracterisation Morpho-chimique et Bioindication. Tunis. J. Med. Plants Nat. Prod., 10 (1): 31-46.

[80] Maheu, J. and A. Gillet, 1921. Contribution a l'etude des lichens du Maroc. Bulletin de la Societe Botanique de France, 68(6): 279-289.

[81] Maheu, J. and A. Gillet, 1925. Deuxieme contribution a l'etude des Lichens du Maroc. Bulletin de la Societe Botanique de France, 72 (4): 858-871.

[82] Werner, R.G., 1968. Lichenes et fugi maroccani annis 1931-1935 a Cl. J. Gattefosse et M. Zaborski lecti. Rev. Bryol. Lichenol, 36 (1-2): 301-313.

[83] Egea, J.M., 1996. Catalogue of lichenized and lichenicolous of Morocco. Bocconea, 6: 19-114.

[84] Alonso, F.L. and J.M. Egea, 1997. Liquenes eptfiticos de algunas localidades costeras de Marruecos. Acta Botanica Malacitana, 22: 13-18.

[85] Ravera, S., 2001. Contribution to Mediterranean lichen flora. New or interesting epiphytic species from Morocco. Fl. Medit., 11: 295-302.

[86] Purvis, O. W., B. J. Coppins, D. L. Hawksworth, P. W. James and D. M. Moore, 1992. The Lichen Flora of Great Britain and Ireland. Natural History Museum Publication, London.

[87] Nascimbene, J., L. Marini, R. Motta and P.L. Nimis, 2009. Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers. Conserv., 18:1509-1522.

[88] Johansson, P., H. Rydin and G. Thor, 2007. Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience, 14(1):81-91.

[89] Scheidegger, C. and P. Clerc, 2002. Liste Rouge des especes menacees en Suisse: Lichens epiphytes et terricoles. Ed. Office federal de l'environnement, des forets et du paysage OFEFP, Berne, Institut federal de recherches WSL, Birmensdorf, et Conservatoire et Jardin botaniques de la Ville de Geneve, CJBG. OFEFP --Serie: L'environnement pratique. 124 p.

[90] Crespo, A., E. Barreno and L.G. Sancho, 1983. Esbozo de la vegetation liquenica de algunas localidades de los valles del Tambre y Ulla (Coruna, Espana). Trabajos Compostelanos de Biologia, 10: 97-108.

[91] Hernandez Gallego, Y., A. Diaz Espejo and J.G. Rowe, 1998. Distribution de los macroliquenes corticolas y su relation con la vegetacion en el parque natural de los Alcornocales (Cadiz, S de Espana). Acta Botanica Malacitana, 23: 43-50.

[92] Brodo, I.M., S.D. Sharnoff and S. Sharnoff, 2001. Lichens of North America. New Haven: Yale University Press, 828.

[93] Delphis, F.L. and N.P. Wubbena, 2006. Vertical variation of bark water storage capacity of Pinus strobus L. (Eastern white pine) in southern Illinois. Northeastern Naturalist, 13: 131-137.

[94] Gustafsson, L. and I. Eriksson, 1995. Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. Journal of Applied Ecology, 32: 412-424.

[95] Mezaka, A., G. Brumelis and A. Piterans, 2008. The distribution of epiphytic bryophyte and lichen species in relation to phorophyte characters in Latvian natural old-growth broad leaved forests. Folia Cryptog Estonica, 44: 89-99.

[96] Rose, F., 1974. The epiphytes of oak. The British Oak, its History and Natural History (eds M.G. Morris & E.H. Perring), pp: 250-273. E.W. Classey Ltd for the Botanical Society of the British Isles, Farringdon, Berkshire.

[97] Larsen, R.S., J.N.B. Bell, P.W. James, P.J. Chimonides, F.J. Rumsey, A. Tremper and O.W. Purvis, 2007. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environmental Pollution, 146: 332-340.

[98] Pirintsos, S.A., S. Loppi, A. Dalaka and V. De Dominicis, 1998. Effects of grazing on epiphytic lichen vegetation in a Mediterranean mixed evergreen sclerophyllous and deciduous shrubland (northern Greece). Isr. J. Plant Sci., 46: 303-307.

[99] Ruoss, E., 1999. How agriculture affects lichen vegetation in central Switzerland. The Lichenologist, 31: 63-73.

[100] Giordani, P., G. Incerti, G. Rizzi, F. Ginaldi, S. Viglione, I. Rellini, G. Brunialti, P. Malaspina and P. Modenesi, 2010. Land use intensity drives the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. Bibliotheca Lichenologica, 105: 139-148.

[101] Svoboda, D., O. Peksa and J. Vesela, 2010. Epiphytic lichen diversity in central European oak forests: assessment of the effects of natural environmental factors and human influences. Environmental Pollution, 158 (3): 812-819.

[102] Carvalho, P., R. Figueira, M. Jones, C. Sergio and M. Sim-Sim, 2002. Biodiversidade da vegetagao epifitica liquenica no litoral alentejano. Area de Sines. Portugaliae Acta Biologica, 20: 225-248.

[103] Ribeiro, M.C., P. Pinho, E. Llop, C. Branquinho, A.J. Sousa and M.J. Pereira, 2013. Multivariate geostatistical methods for analysis of relationships between ecological indicators and environmental factors at multiple spatial scales. Ecological Indicators 29: 339-347.

(1) Lamia Boutabia, (2) Salah Telailia and (1) Gerard de Belair

(1) Department of Biology, Faculty of Science, Badji Mokhtar University, PO Box 12 (23 000) Annaba, (Algeria).

(2) Department of Agronomy, Faculty of Sciences of Nature and Life, Chadli Bendjedid University, PO Box 73 (36 000) El Tarf, (Algeria).

ARTICLE INFO

Article history:

Received 26 December 2014

Received in revised form 26 January 2015

Accepted 20 February 2015

Available online 10 March 2015

Corresponding Author: Lamia Boutabia, Department of Biology, Faculty of Science, Badji Mokhtar University, PO Box 12, (23000) Annaba (Algeria).

Tel.: 00213772757677; E-mail: b_lamiadz94@yahoo.fr

Table 1: Correlations between the bryolichen cover and the diameter
of the phorophyte at the study sites.

Site                           Lichens/Diameter    Bryophytes/Diameter
                               of the Phorophyte    of the Phorophyte

Site 1           Station 1     -0.866 ** (F.S.)      0.751 * (F.S.)
Lake Tonga      Feid M'Rad
                 Station 2     -0.972 *** (F.E)      0.868 ** (F.N)
                 Ain T'Bib

Site 2           Station 1     -0.840 ** (F.N.)      0.823 ** (F.S.)
Lake Oubeira    Boumerchene
                 Station 2     -0.947 *** (F.E.)    0.945 *** (F.W.)
               El Ach Lahmer

Site 3           Station 1     -0.904 *** (F.S.)     0.658 * (F.W.)
Lake Mellah       L'Frine
                 Station 2     -0.979 *** (F.W.)           --
                 El Malha

Table 2: Significant correlations between the bryolichen cover and
inter-category lichen covers for the phorophyte at the study
stations.

Site                          Lichen/Bryophyte   Crustose Lichen/
                                                  Foliose Lichen

Site 1          Station 1            --               -1 ***
Lake Tonga     Feid M'Rad                        (The four sides)
                Station 2          -1 ***        -0.997 *** (F.S.)
                Ain T'Bib     (The four sides)   -0.972 *** (F.E.)
                                                 -0.997 *** (F.W.)

Site 2 Lake     Station 1            --          -0.926 *** (F.N.)
Oubeira        Boumerchene                       -0.957 *** (F.S.)
                                                 -0.965 *** (F.E.)
                                                 -0.995 *** (F.W.)
                Station 2            --          -0.989 *** (F.N.)
              El Ach Lahmer                      -0.990 *** (F.S.)
                                                 -0.996 *** (F.E.)
                                                 -0.972 *** (F.W.)
Site 3          Station 1          -1 ***           -0.900 ***
Lake Mellah      L'Frine      (The four sides)   (The four sides)
                                                 -0.977 *** (F.N.)
                Station 2            --          -0.980 *** (F.S.)
                El Malha                         -0.986 *** (F.E.)
                                                 -0.981 *** (F.W.)

Site                          Foliose Lichen/
                              Fruticose lichen

Site 1          Station 1            --
Lake Tonga     Feid M'Rad
                Station 2
                Ain T'Bib

Site 2 Lake     Station 1      0.709 * (F.N.)
Oubeira        Boumerchene     0.699 * (F.S.)

                Station 2            --
              El Ach Lahmer

Site 3          Station 1            --
Lake Mellah      L'Frine

                Station 2            --
                El Malha
COPYRIGHT 2015 American-Eurasian Network for Scientific Information
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Boutabia, Lamia; Telailia, Salah; de Belair, Gerard
Publication:Advances in Environmental Biology
Article Type:Report
Geographic Code:6ALGE
Date:Mar 1, 2015
Words:7243
Previous Article:Identification of factors affecting branding in commercial insurance companies of Iran.
Next Article:Investigating factors and indicators of bonding and bridging social capital effective on Residents' Support of Domestic Production in the city of...
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters