Printer Friendly

Cool wire: nanostructure boosts superconductor.

Superconductive wire remains a wannabe technology for many applications. Although some ceramic wires can compete with conventional copper for use in power lines, they don't meet requirements for widespread use in industrial devices containing wire coils, such as transformers and motors.

Now, a ceramic-wire prototype has performed so well in superconductivity tests that it could win against copper across the gamut of expected uses, its inventors claim. Whether the wire could be made abundantly and cheaply remains uncertain.

Pin-length strips of the wire, a narrow, layered ribbon including a nickel-alloy base and a superconductive ceramic film, attained record currents in magnetic fields like those in coils, report researchers at Oak Ridge (Tenn.) National Laboratory.

"This is a first demonstration that, in a single superconducting wire, you can have such performance" says Amit Goyal.

Goyal and his colleagues describe the new wire in the March 31 Science.

"We think this is a very important result. It's a world-record result," comments Alexis P. Malozemoff of the wire-manufacturing company American Superconductor in Westhorough, Mass.

It's a "proof of principle" but not an advance that could be incorporated directly into American Superconductor's manufacturing approach, Malozemoff adds.

On the other hand, Goyal says, companies in Japan and Germany are pursuing a wire-making process compatible with the Oak Ridge advance.

Since the early 1990s, many researchers have made wires from ceramic materials, known as high-temperature superconductors, that carry electricity without resistance . (SN: 11/30/02,p. 350). Although the materials superconduct only at less than about 135 kelvins, that's balmy compared with the temperatures near absolute zero required by some other superconductors.

American Superconductor and other companies already produce such a wire, but it contains silver, making it pricey. Furthermore, it's superconductive in high magnetic fields only when it's cooled to about 30 K. A magnetic field tends to disrupt superconductivity when eddies of electric current created by the magnetic field move along with the main current.

In wires such as the Oak Ridge prototype, structural irregularities in the ceramic coating can preserve superconductivity by holding the eddies in place.

Using a laser in a vacuum, the Oak Ridge team vaporized a mixture of powders of the superconductive compound yttrium barium copper oxide (YBCO) and of barium zirconate, which doesn't superconduct. As the vapor condensed on the ribbon, it formed a film of YBCO containing nanometer-scale disks of barium zirconate.

The Oak Ridge team reports that the barium zireonate disks stack up in orderly columns that span the film. The wires' exceptional performance stems from how well such columns pin down the eddies, the group concludes.

Stephen R. Foltyn of the Los Alamos (N.M.) National Laboratory says that the Oak Ridge samples performance is similar to that of the wires that he and his colleagues previously made of YBCO with randomly scattered barium zirconate particles.

David C. Larbalestier of the University of Wisconsin-Madison says that the Oak Ridge wire is an advance because its superconducting layer is thicker than that of earlier prototypes. Although he doubts that the vaporization method is compatible with manufacturing, he says, "the new result ... shows the technology has real legs."
COPYRIGHT 2006 Science Service, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:This Week
Author:Weiss, Peter
Publication:Science News
Geographic Code:1USA
Date:Apr 1, 2006
Words:520
Previous Article:Pigging out healthfully: engineered pork has more omega-3s.
Next Article:Awake and learning: memory storage begins before bedtime.
Topics:


Related Articles
Painting with superconductors.
High-temperature superconductivity: what's here, what's near and what's unclear.
High-powered discussions on high-temperature superconductivity.
A superconducting banquet from the periodical table.
Supercurrent decay in high magnetic fields.
Electron superconductors and more.
Rods enhance superconductor performance.
Sulfur: cool, compact, and conductive.
Run-of-the-mill compound becomes superstar.
Ultracold plutonium compound shows no resistance. (Cold War Conductor).

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters