Printer Friendly

Conocimiento actual sobre riqueza y distribucion de lombrices de tierra en la provincia de Santa Fe, Argentina.

Current knowledge of earthworm richness and distribution in Santa Fe province, Argentina

The first records on earthworms in Argentina date from the 19th century (Michaelsen, 1900; Cognetti de Martiis, 1901), and were primarily of systematic and zoogeographical nature. These studies contributed significantly to knowledge of terrestrial oligochaetes. During the second half of the 20th century, the Brazilian zoologist Gilberto Righi, the Swedish researcher Per-Olf Ljungstrom and the Argentinian taxonomist Catalina de Mischis were distinguished by their contributions on the oligoquetofauna of Argentina. The studies on earthworms in the province Santa Fe in the 1970's produced information on the taxonomy, distribution and ecology of earthworms (Ljungstrom, 1971; Ljungstrom & Emiliani, 1971; Ljungstrom, Orellana, & Priano, 1973; Ljungstrom, Emiliani, & Righi, 1975; Righi, 1979). Such works added interesting contributions on the relevance of earthworms as a natural resource. In this regard, the study "Notas sobre los oligoquetos (lombrices de tierra) argentinos" by Ljungstrom et al. (1975), consisted of the most complete research work on oligoquetofauna for Argentina, in particular for Santa Fe province.

The last systematic review of earthworms for Argentina was performed by Mischis (2007), who recorded 25 species for Santa Fe province: three species of Glossoscolecidae (Glossoscolex uruguayensis uruguayensis, Glossoscolex uruguayensis Ijungstromi), ten species of Ocnerodrilidae (Belladrilus emiliani, Eukerria asuncionis, Eukerria eiseniana, Eukerria halophila, Eukerria saltensis, Eukerria santafesina, Eukerria stagnalis, Eukerria subandina, Ilyogenia comondui, Ocnerodrilus occidentalis), four species of Acanthodrilidae (Dichogaster bolaui, Dichogaster saliens, Microscolex dubius, Microscolex phosphoreus) and seven species of Lumbricidae (Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea trapezoides, Bimastos parvus, Eisenia fetida, Eiseniella tetraedra tetraedra, Octolasion tyrtaeum). The South American family Ocnerodrilidae was the one that displayed the highest number of species, followed by the exotic family Lumbricidae. This review was based on the previous work of Ljungstrom et al (1975) about of oligoquetofauna for Santa Fe.

Forty years later after the publication of the paper of Ljungstrom et al. (1975), the studies on earthworms in province Santa Fe are scarce (Masin, Rodriguez & Maitre, 2011; Maitre, Rodriguez, Masin, & Ricardo, 2012; Masin et al., 2017).

The aim of the work is to provide updated information on the richness and territorial distribution of the earthworm species in Santa Fe.

MATERIAL AND METHODS

Study area: The study was conducted in the province of Santa Fe (Fig. 1), which has an area of 133 007 [km.sup.2] and is located in the east-central region of the Republic Argentina, in the south of the American continent. Its north-south axis is 720 km long, and the east-west axis is 380 km long. It is divided into 19 districts and it is an extensive plain that ranges from 10 to 125 masl (Biasatti et al., 2016).

The climate of Santa Fe has two gradients, one thermal from north to south, and another hydric from east to west. Because of its thermal regime, the climate can be defined as temperate without cold season in the south and temperate and warm in the north (average temperatures of 21[degrees]C and precipitations between 850 and more than 1200 mm annually). For the hydric regime, it varies from humid to subhumid from east to west (Lewis & Collantes, 1974).

The main types of vegetation in Santa Fe are included in four phytogeographic provinces and five subdivisions (Cabrera, 1976; Prado, 1993; Dinerstein et al., 1995; Burkart, Barbaro, Sanchez, & Gomez, 1999) (Fig. 1):

1. Chaquena province with two areas: 1A) Chaco Seco: located in the northwest and characterized by water deficit, with predominance of xerophile forests. 1B) Chaco Humedo: located in the northeast and north central, has higher mean annual rainfall (above 1000 mm) and its vegetation includes humid subtropical deciduous forests, savannahs of palm trees and grasslands with various types of wetlands.

2. Espinal province, in the centre, is characterized by the presence of low xerophile forest.

3. Valle de Inundacion del Rio Parana province, its main vegetation types are subtropical wet forest, gallery forest, various types of flooded savannas and wetlands (rivers, streams, ponds, marshes and estuaries).

4. Pampeana province in the south is mainly is composed of different types of grasslands.

Collection and identification of earthworms: Earthworms were obtained by field sampling carried out between 2012 and 2015 in 23 sites (Fig. 1), located in 11 out of the 19 districts of the province. Earthworms were collected of various environments including agricultural systems (under various tillage management practices), livestock systems, gardens, native grasslands and native forest.

The methodology used was TSBF (Tropical Soil Biology and Fertility) (Anderson & Ingram, 1993). In each site a total of 40 monoliths were collected during two seasonal instances (20 in autumn and 20 in spring). Each monolith (30 x 30 x 30 cm) was distanced from each other by 15 m along a transect. The conservation of specimens was done with 4% formalin solution, and identification was performed according to Mischis (1991), Reynolds (1996) and Blakemore (2005). Moreover, each species was assigned to an ecological group (Bouche, 1977).

The taxonomic, zoogeographical and ecological update of the oligoquetofauna presented included both data provided by Ljungstrom et al. (1975) as well as de novo data of a Doctoral Thesis (Masin, 2017). The study of Ljungstrom and collaborators provides a base and reference record on oligoquetofauna of Santa Fe, what allows to interpret and compare in a general way with the information of the current survey.

Statistical analysis: The percentage of complementarity was analyzed measuring the degree of difference in composition of species between different communities (Colwell & Coddington, 1994). Complementarity varies from zero (identical species composition) to one (different composition). Using the SPADE software (Chao & Shen, 2009), the number of species from the different phytogeographic provinces (Chaco Humedo, Espinal, Valle de Inundacion del Rio Parana, Pampeana) and the number of shared species were calculated.

In addition, the composition of the oligoquetofauna of different phytogeographic provinces was compared by means of a similarity percentage analysis (SIMPER), taking into account the dissimilarity of Bray-Curtis, calculated by means of the PAST ver2.16 program (Hammer, Harper, & Ryan, 2012).

RESULTS

Taxonomic richness: A total of 15 species belonging to ten genera and five families were found during field samplings (Table 1). Lumbricidae was the best represented family with 40% of all species registered, followed by families Megascolecidae and Ocnerodrilidae both with 20%, Acanthodrilidae with 13 %, and finally the family Glossoscolecidae with 7%.

Five species are native to South America (M. dubius, G. parecis, E. rosae, E. saltensis and E. stagnalis), and the other species were introduced (exotic) from North America, Africa, Asia and Europe. The species E. rosae was a new record, being included in the updated earthworm species list of Santa Fe.

Earthworm assemblages and territorial distribution: The sampled Espinal area recorded the highest species richness (12 = E. rosae, E. saltensis, E. stagnalis, D. bolaui, M. dubius, A. gracilis, A. morris, M. californica, A. rosea, A. trapezoides, B. parvus, O. tyrtaeum) with respect to Chaco Humedo (10 = E. saltensis, E. stagnalis, D. bolaui, M. dubiu, A. morris, M. californica, A. caliginosa, A. rosea, A. trapezoides, E. fetida), Valle de Inundacion del Rio Parana (8 = E. stagnalis, D. bolaui, M. dubiu, A. morris, M. californica, A. rosea, A. trapezoides, E. fetida) and Pampeana (5 = D. bolaui, G. parecis, A. rosea, A. trapezoides, O. tyrtaeum). The assemblage of earthworms in the Pampeana area showed high values of complementarity with both Chaco Humedo (75%) and Valle de Inundacion del Rio Parana (70%). According to the SIMPER analysis, the species that most contributed to the dissimilarity between the communities of the phytogeographic provinces were A. trapezoides and A. morrisi. Of the five native species recorded, four: E. rosae, E. saltensis, E. stagnalis and M. dubius, were present in Chaco Humedo, Espinal and Valle de Inundacion del Rio Parana environments.

The species A. trapezoides, A. rosea, A. morrisi, M. californica and E. stagnalis were widely distributed, the species A. trapezoides was found in 11 provincial districts and the other species in seven. Conversely, E. fetida was present in two districts and E. rosea, A. gracilis, A. caliginosa, B. parvus and G. parecis were only present in one (Table 1).

Endogeic species were present in all environments surveyed, while epiendogeics in 70 % of the sites (Table 1).On the other hand, exotic epigeic species such as E. fetida and B. parvus, were found only at 13% of the sites studied, particularly at horticultural sites use (topsoils with organic matter accumulated little decomposed).

DISCUSSION

The work of Ljungstrom et al (1975) relieved 13 districts, of which 10 were part of the current study (2012-2015). In both, the area studied represented more than 80% of the total area including a wide latitudinal and longitudinal distribution covered different environments. However, it is important to mention that neither the specific sites of sampling relieved by Ljungstrom et al. (1975) nor the information about the type of environmental corresponding to districts were reported. Therefore, a strict comparison between both studies is difficult but it is possible to discuss some similarities and difference.

In both works the same families were recorded: Acanthodrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, and Ocnerodrilidae, but the number of species in the current survey was lower (60% of the 23 species reported in the study of 1975) (Fig. 2). An important difference was marked by native species, where the checklist of Ljungstrom et al. (1975) showed more than 50% of the total recorded species, against only 33% reached in the current study. From this percentage the genus Eukerria, particulary E. stagnalis, was the most widespread and this species was generally found in several agroecosystems (Table 1), establishing differences with the study reported 40 years ago (Fig. 3). In addition to this, E. rosae was a new record. Information about this species, and particularly its ecology, is scarce in Argentina. In the current survey E. rosea was found in a soil water-saturated of the roadside. The few studies made in Santa Fe, reported that water-saturated biotopes with organic matter from the local vegetation, are usually inhabited by species of the genus Eukerria (Emiliani, Ljungstrom, Priano, Gutierrez, & Calamunte, 1971; Emiliani, de Orellana & Ljungstrom, 1973). Also, studies by Feijoo, Quintero, Fragoso & Moreno (2004) and Grosso & Brown (2007) state that found species of this genus in muddy soils or with high moisture content and associated with plant roots.

The exotic species A. rosea, A. trapezoides, A. morrisi and M. californica were the most widespread. They were present at agricultural sites (crop sites, livestock, mixed crop-livestock farming, horticulture) (Table 1). The genus Aporrectodea, particularly A. trapezoides, has a similar spatial distribution compared to that registered 40 years ago, while the megascoelecids A. morrisi and M. californica significantly increased their area of distribution (Fig. 3). These species seem to adapt to the impact of agricultural practices (Feijoo et al., 2004), and may be invasive colonizer / opportunistic, occupying the niche of native species that disappear after environmental transformations such as the replacement of natural vegetation by crop plants (Brown & James, 2007).

In comparison to the situation four decades ago the current study shows a new picture of earthworm species richness and distribution in the province of Santa Fe. This change can be related to the impact of the increase of agricultural activities, which decreased landscape heterogeneity and modified soil properties considerably.

Figure 4 shows the advance of soybean crops during the last 40 years. This situation has produced changes in landscape diversity. Areas of native forest and natural grassland in the Central and Northern parts of the province were replaced by agricultural crops, particularly by soybean (Heredia, Giuffre, Gorleri, & Conti, 2006; Viglizzo et al., 2010; CONICET, 2012). The implementation of continuous agriculture and intensive soil management has resulted in the following consequences: loss of organic matter and nutrients, erosion and thus degradation of soil, resulting in an overall decrease of biodiversity (Miretti, Pilatti, Lavado, & Imoff, 2012).

When natural grasslands and/or forests are replaced by agroecosystems, changes can occur at the taxonomic (substitution of native species by exotic), ecological (increase or decrease of species number according to ecological categories), or both levels (Fragoso et al., 1999). Consequently, earthworms associated with natural environments, in particular native species, tend to move to other habitats less anthropogenically disturbed (Ramirez Pisco, Guzman Alvarez, & Leiva Rojas, 2013). This could be related to the results obtained in this work, where species found previously (Ljungstrom et al., 1975) in natural areas or with low anthropic intervention were not found anymore, for example the native species M. phosphoreus, G. uruguayensis and some species of the genus Eukerria (Fig. 2). Other native species, such as G. parecis and M. dubius, were found in ecosystems with lower levels of anthropogenic disturbance. Finally, species of the Eukerria genus, particularly E. stagnalis, were present both in natural environments and agroecosystems with intensive land use (Fragoso et al., 1999).

In agreement with Paoletti (1999); Dupont et al. (2012); Cunha et al. (2016) and Ortiz-Garmino, Perez-Rodriguez, & Ortiz-Ceballos (2016), the distribution of species is strongly influenced by landscape transformation history, in particular the intensity of changes of soil use (Briones, Ostle, McNamara, & Poskitt, 2009; Tondoh, Guei, Csuzdi, & Okoth, 2011). In addition, environmental factors such as climate (temperature, but also soil moisture) act as a limitation for the distribution of earthworms.

In this study, 15 earthworm species belonging to ten genera and five families were found in the province of Santa Fe. One species not known from this province beforehand is Eukerria rosae, a native species to South American. Earthworm assemblages of Espinal, Chaco Humedo and Valle de Inundacion del Rio Parana showed greater similarity, while Pampeana (lower richness) showed high values of complementarity with the three phytogeographic provinces. Within the last 40 years, the pattern of earthworm biodiversity changed considerably in this province, a process which is associated with changes in soil use and land management, in particular the increased cultivation of soy.

ACKNOWLEDGMENTS

The authors are grateful to John Reynolds (Oligochaetology Laboratory, ON Canada) and Catalina C. de Mischis (Universidad Nacional de Cordoba, Argentina) for their assistance in species identification. We thank Maria Soledad Cruz, Mariano Demonte and Leticia Vuizot for their help in field work. In addition, authors thank Melina Almada for the statistical advice and the technical assistance of Claudia Romani.

REFERENCES

Anderson, J. M. & Ingram J. S .I. (1993). Tropical Soil Biology and Fertility: A Handbook of Methods. Wallingford, UK: CAB International.

Arzamendia, V. & Giraudo, A. (2004). Usando patrones de biodiversidad para la evaluacion y diseno de areas protegidas: las serpientes de la provincia de Santa Fe (Argentina) como ejemplo. Revista Chilena de Historia Natural, 77, 335-348.

Biasatti, N. R., Rozzatti, J. C., Fandino, B., Pautaso, A., Mosso, E., Marteleur, G., ... Vallejos, L. (2016). Las ecoregiones, su conservacion y las areas naturales protegidas de la provincia de Santa Fe (p. 244). Santa Fe, Argentina: Ministerio de Medio Ambiente.

Blakemore, R. J. (2005). A Series of searchable texts on earthworm biodiversity, ecology and systematics from various regions of the world. (Vol. 1). Yokohama National University, Japan: Soil Ecology Research Group. Retrieved from http://bio-eco.eis. ynu.ac.jp/eng/database/ earthworm.

Bouche, M. B. (1977). Strategies lombriciens. In U. Lohm & T. Persson (Eds.), Soil organisms as components of ecosystems (pp. 122-132). Stockholm, Swedish: Swedish Na.

Briones, M. J. I., Ostle, N. J., McNamara, N. P., & Poskitt, J. (2009). Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41, 315-322.

Brown, G. G. & James, S. W. (2007). Biodiversidade e biogeografia das minhocas no Estado de Sao Paulo, Brasil. In G. G. Brown & C. Fragoso (Eds.), Minhocas: biodiversidade e ecologia na Amercia Latina (pp. 391-400). Londrina, Brasil: Embrapa Soja.

Burkart, R., Barbaro, N. O., Sanchez, R. O., & Gomez, D. A. (1999). Eco-regiones de la Argentina. Buenos Aires, Argentina: Programa de desarrollo Institucional, Componente de Politica Ambiental, Administracion de Parques Nacionales. Recuperado de https://www.sib.gov.ar/archivos/Eco-Regiones_de_ la_Argentina.pdf

Cabrera, A. L. (1976). Regiones fitogeograficas argentinas. Enciclopedia Argentina de Agricultura y Jardineria. In W. F. Kugler (Ed.), Enciclopedia argentina de agricultura y jardineria (pp. 1-85). Buenos Aires, Argentina: Acme.

Chao, A., & Shen, T. (2009). Program SPADE (Species Prediction and Diversity stimation). Retrieved from http://chao.stat.nthu.edu.tw

Cognetti de Martiis, L. (1901). Oligocheti raccolti dal Dott. F. Silvestri nel Chile e nella Republica Argentina. Bollettino dei Musei di Zoologia e Anatomia Comparata della R. Universita di Torino, 16, 1-2.

Colwell, R. & Coddington, J. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions Royal Society B, 345, 101-118.

Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET). (2012). La Argentina en mapas: evolucion de la agricultura. Recuperado de http:// www.laargentinaen mapas. com.ar/caste/gale.htm

Cunha, L., Brown, G. G., Stanton, D. W., Da Silva, E., Hansel, F. A., Jorge, G., ... the Terra Preta de Indio Network. (2016). Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Science, 181, 110-125.

Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M. P., & Ledec, G. (1995). A conservation assessment of the terrestrial ecoregions of Latin America and Caribbean. Washington, USA: The World.

Dupont, L., Decaens, T., Lapied, E., Chassany, V., Marichal, R., Dubs, F., ... Roy, V. (2012). Genetic signature of accidental transfer of the peregrine earthworm Pontoscolex corethrurus (Clitellata, Glossoscolecidae) in French Guiana. European Journal Soil Biology, 53, 70-75.

Emiliani, F., Ljungstrom, P. O., Priano, L., Gutierrez, T., & Calamunte, R. (1971). Sobre la ecologia de la Eukerria halpophila (Oligochaeta, Ocnerodrilidae). Boletin de la Real Sociedad Espanola de Historia Natural, 69, 19-22.

Emiliani, F., de Orellana, J. A., & Ljungstrom, P. O. (1973). Contribucion al conocimiento de la ecologia de Eukerria eiseniana (Oligochaeta, Acanthodrilidae). IDIA, 29, 50-54.

Feijoo, A., Quintero, H., Fragoso, C., & Moreno, A. (2004). Patron de distribucion y listado de especies de las lombrices de tierra (Annelida, Oligochaeta) en Colombia. Acta Zoologica Mexicana (n.s.) 20, 2, 197-220.

Fragoso, C., Lavelle, P., Blanchart, E., Senapati, B. K., Jimenez, J. J., Martinez, M. A., ... Tondoh, J. (1999). Earthworm communities of tropical agroecosystems: Origin, structure and influence of management practices. In P Lavalle, L. Brussaard, & P Hendrix (Eds.), Earthworm Management in Tropical Agroecosystems (pp. 27-55). New York, USA: CAB International.

Grosso, E. G. & Brown, G. G. (2007). Biodiversidad y ecologia de las lombrices de tierra en el Uruguay. En G. G. Brown, & C. Fragoso (Eds.), Minhocas: biodiversidade e ecologia na Amercia Latina (pp. 275-280). Londrina, Brasil: Embrapa Soja.

Hammer, O., Harper, D. A. T., & Ryan, P D. (2012). PAST (Paleontological Statistics) version 2.16. Software package for education and data analysis. Paleontologia Electronica, 4, 1-9.

Heredia, O. S., Giuffre, L., Gorleri, F. J., & Conti, M. E. (2006). Calidad de los suelos del norte de Santa Fe. Efecto de la geomorfologia y el uso de la tierra. Ciencia del Suelo (Argentina), 24, 109-114.

Lewis, J. P. & Collantes, M. B. (1974). La vegetacion de la provincia de Santa Fe. Resena general y enfoque del problema. Boletin de la Sociedad Argentina de Botanica, 15, 343-356.

Ljungstrom, P. O. (1971). Sistematica de los oligoquetos santafesinos. Revista de la Asociacion de Ciencias Naturales del Litoral, 2, 39-42.

Ljungstrom, P O. & Emiliani, F. (1971). Contribucion al conocimiento de la ecologia y distribucion geografica de las lombrices de tierra (oligoquetos) de la Provincia de Santa Fe (Argentina). IDIA, 19-32.

Ljungstrom, P. O., Emiliani, F., & Righi, G. (1975). Notas sobre los oligoquetos (Lombrices de tierra) argentinos. Revista de la Asociacion de Ciencias Naturales del Litoral, 6, 1-42.

Ljungstrom, P. O., de Orellana, J. A., & Priano, J. J. L. (1973). Infuence of some edaphic factors on earthworms distribution in Santa Fe Province (Argentina). Pedobiologia, 13, 236-247.

Maitre, M. I., Rodriguez, A. R., Masin, C. E., & Ricardo, T. (2012). Evaluation of earthworms present on natural and agricultural-livestock soils of the Center Northern Litoral Santafesino, Republica Argentina. In R. P. Soundararajan (Ed.), Pesticide--Advances in chemical and botanical pesticides (pp. 13-38). Croatia: InTech.

Masin, C. E. (2017). Efectos de largo plazo del uso del suelo sobre la comunidad de lombrices de tierra (Annelida, Oligochaeta) en la provincia de Santa Fe (Tesis doctoral). Universidad Nacional del Litoral, Santa Fe, Argentina.

Masin, C. E., Cruz, M. S., Rodriguez, A. R., Demonte, M. J., Vuizot, L. A., Maitre, M. I., ... Almada, M. S. (2017). Macrofauna edafica asociada a diferentes ambientes de un vivero forestal (Santa Fe, Argentina). Ciencia del Suelo (Argentina), 35, 21-33.

Masin, C. E., Rodriguez, A. R., & Maitre, M. I. (2011). Evaluacion de la abundancia y diversidad de lombrices de tierra en relacion con el uso del suelo en el Cinturon Horticola de Santa Fe (Argentina). Ciencia del Suelo (Argentina), 29, 21-28.

Michaelsen, W. (1900). Oligochaeta. In Das tierreich. 10: XXIX. Berlin: Friedlander & Sohn.

Miretti, M. C., Pilatti, M., Lavado, R. S., & Imoff, S. C. (2012). Historia de uso del suelo y contenido de micronutrientes en Argiudoles del Centro de la provincia de Santa Fe (Argentina). Ciencia del Suelo (Argentina), 30, 67-73.

Mischis, C. C. (1991). Las lombrices de tierra (Annelida, Oligochaeta) de la Provincia de Cordoba, Argentina. Boletin de la Academia Nacional de Ciencias en Cordoba, 54, 187-237.

Mischis, C. C. (2007). Catalogo de las lombrices de tierra de la Argentina (Annelida, Oligochaeta). En G. G. Brown & C. Fragoso (Eds.), Minhocas: biodiversidade e ecologia na Amercia Latina (pp. 241-246). Londrina, Brasil: Embrapa So.

Ortiz-Gamino, D., Perez-Rodriguez, A., & Ortiz-Ceballos, A. I. (2016). Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) in temperate grasslands. PeerJ, 1-20.

Paoletti, M. G. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems and Environment, 74, 137-155.

Prado, D. E. (1993). What is the Gran Chaco vegetation in South America? A redefinition. Contribution of the study of the flora and vegetation of the Chaco. Candollea, 48, 615-629.

Ramirez Pisco, R., Guzman Alvarez, M. E., & Leiva Rojas, E. I. (2013). Dinamica de las poblaciones de lombrices en un Andisol sometido a distintos sistemas de uso del suelo. Revista Facultad Nacional de Agronomia, Medellin, 66, 7045-7055.

Reynolds, J. (1996). Earth-worm biology and ecology. Lindsay, USA: Sir Sandfo.

Righi, G. (1979). Introduccion al estudio de las lombrices del suelo (Oligoquetos Megadrilos) de la provincia de Santa Fe (Argentina). Revista de la Asociacion de Ciencias Naturales del Litoral, 10, 89-155.

Tondoh, J. E., Guei, A. M., Csuzdi, C., & Okoth, P (2011). Effect of land-use on the earthworm assemblages in semi-deciduous forests of Central-West Ivory Coast. Biodiversity and Conservation, 20, 169-184.

Viglizzo, E. F., Carreno, L.V, Pereyra, H., Ricard, F., Clatt, J., & Pincen, D. (2010). Dinamica de la frontera agropecuaria y cambio tecnologico. En E. Viglizzo & E. Jobbagy (Eds.), Expansion de la Frontera Agropecuaria en Argentina y su Impacto Ecologico-Ambiental (pp. 9-16). Buenos Aires, Argentina: INTA.

Carolina Elisabet Masin (1), Fernando Roberto Momo (2), Cristina Susana Zalazar (1) & Alba Rut Rodriguez (3)

(1.) Instituto de Desarrollo Tecnologico para la Industria Quimica, Guemes 3450, 3000 Santa Fe. Argentina; cemasin@santafe-conicet.gov.ar, szalazar@santafe-conicet.gov.ar

(2.) Instituto de Ciencias, Universidad Nacional de General Sarmiento, 1613 Los Polvorines, Buenos Aires, Argentina; fmomo@ungs.edu.ar

(3.) Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe. Argentina; albarutr@santafe-conicet.gov.ar

Received 13-II-2018.

Corrected 16-V-2018.

Accepted 14-VI-2018.

Caption: Fig. 1. Sites sampled in Santa Fe during 2012-2015 (Modified from Arzamendia & Giraudo, 2004). References: 1= Los Tabanos; 2 = Villa Ocampo; 3= El Sombrerito; 4= Tartagal; 5= La Cabral; 6= Colonia Silva;7= San Javier; 8= San Justo; 9= Nare; 10= Videla; 11= Helvecia; 12= Sarmiento; 13= Cayasta; 14= Laguna Paiva; 15= Grutly; 16= Rafaela; 17= Susana; 18= Monte Vera; 19= Recreo; 20= Angel Gallardo; 21= San Jeronimo del Sauce; 22= Zavalla; 23= Rufino.

Caption: Fig. 2. Earthworm species recorded by Ljungstrom et al. (1975) and the current survey (2012-2015). References: (*) not found in current sampling, and bold letter new record. Provincial districts in color indicate sampled. Provincial districts = GO: General Obligado, V: Vera, 9dJ: 9 de Julio, SC: San Cristobal, SJ: San Justo, SJa: San Javier, G: Garay, LCa: La Capital, LC: Las Colonias, C: Castellanos, SM: San Martin, SJe: San Jeronimo, Ir: Iriondo, B: Belgrano, Ca: Caseros, SL: San Lorenzo, R: Rosario, Co: Constitucion, GL: General Lopez.

Caption: Fig. 3. Earthworm species by provincial districts of province Santa Fe: current survey (2012-2015) and the registry of four decades ago.

Caption: Fig. 4. Advance of agricultural frontier, in particular of soybean crop in Argentina during the last four decades (Modified after CONICET 2012).
TABLE 1 Earthworm species found in the province Santa Fe during
2012-2015

Family/species           Native/   Ecological    Site/s where it
                         Exotic     category     was found (a)

OCNERODRILIDAE
Eukerria rosae           Native    Endogeic      17
  (Beddard, 1895)
Eukerria saltensis       Native    Endogeic      5, 6
  (Beddard, 1895)
Eukerria stagnalis       Native    Endogeic      1, 2, 3, 6, 11,
  (Kinberg, 1867)                                13, 14, 17, 18,
                                                 21

ACANTHODRILIDAE
Dichogaster bolaui       Exotic    Endogeic      1, 2, 4, 7, 19
  (Michaelsen, 1891)
Microscolex dubius       Native    Epiendogeic   6, 7, 9, 11,
  (Fletcher, 1887)                               15, 18, 21, 23

GLOSSOSCOLECIDAE
Glossodrilus parecis     Native    Endogeic      23
(Righi& Ayres, 1975)

MEGASCOLECIDAE
Amynthas gracilis        Exotic    Epiendogeic   19
  (Kinberg, 1867)
Amynthas morrisi         Exotic    Epiendogeic   2, 3, 4, 5, 6,
  (Beddard, 1892)                                7, 8, 10, 11,
                                                 13, 14, 18, 19
Metaphire californica    Exotic    Epiendogeic   2, 4, 6, 7, 11,
(Kinberg, 1867)                                  18, 19, 21

LUMBRICIDAE
Aporrectodea             Exotic    Endogeic      2
  caliginosa
  (Savigny, 1826)
Aporrectodea             Exotic    Endogeic      1, 2, 4, 6, 9,
  rosea                                          12, 13, 15, 18,
  (Savigny, 1826)                                20, 21, 23

Aporrectodea             Exotic    Endogeic      2, 3, 4, 5, 6,
trapezoides                                      7, 8, 9, 10,
(Duges, 1828)                                    11, 12, 13, 15,
                                                 16, 18, 19, 21,
                                                 22, 23
Bimastos parvus          Exotic    Epigeic       18
(Eisen, 1874)

Eisenia fetida           Exotic    Epigeic       2, 11
(Savigny, 1826)
Octolasion tyrtaeum      Exotic    Endogeic      5, 19, 21, 22, 23
(Savigny, 1826)

Family/species             Type of         Number
                         environment     provincial
                                       districts found

OCNERODRILIDAE
Eukerria rosae           R             1: C
  (Beddard, 1895)
Eukerria saltensis       A/L, L        2: SC, SJ
  (Beddard, 1895)
Eukerria stagnalis       L, H, A,      7: GO, G, SJ,
  (Kinberg, 1867)        A/L, R, FN    LCa, V, C, LC

ACANTHODRILIDAE
Dichogaster bolaui       L, H, A/L,    4: GO, V, LCa,
  (Michaelsen, 1891)     HG, FN        SJa
Microscolex dubius       H, L, HG,     6: SJ, SJa, G,
  (Fletcher, 1887)       A/L, A        LC, LCa, GL

GLOSSOSCOLECIDAE
Glossodrilus parecis     A             1: GL
(Righi& Ayres, 1975)

MEGASCOLECIDAE
Amynthas gracilis        FN            1: LCa
  (Kinberg, 1867)
Amynthas morrisi         H, A, HG,     7: GO, V, SC,
  (Beddard, 1892)        A/L, FN       SJ, SJa, G, LCa

Metaphire californica    H, A/L, L,    7: GO, V, SJ,
(Kinberg, 1867)          HG, FN        SJa, G, LC, LCa

LUMBRICIDAE
Aporrectodea             H             1: GO
  caliginosa
  (Savigny, 1826)
Aporrectodea             L, H, A/L,    7: GO, V, SJ,
  rosea                  A             G, LC, LCa, GL
  (Savigny, 1826)

Aporrectodea             A, A/L, FN,   11: GO, V, SC,
trapezoides              H, R          SJ, SJa, G, C,
(Duges, 1828)                          LC, LCa, R, GL

Bimastos parvus          H             1: LCa
(Eisen, 1874)

Eisenia fetida           H, L          2: GO, G
(Savigny, 1826)

Octolasion tyrtaeum      A, A/L, HG    5: SC, LC, LCa,
(Savigny, 1826)                        R, GL

References: (a) See figure 1 to locate the sites. A= Agricultural, A/
L= Agricultural/Livestock, R= Roadside, FN= Forestal Nursery, H=
Horticultural, HG= Home garden, L= Livestock. Provincial districts=
GO: General Obligado, V: Vera, SC: San Cristobal, SJ: San Justo, SJa:
San Javier, G: Garay, LC: Las Colonias, LCa: La Capital, C:
Castellanos, R: Rosario, GL: General Lopez.
COPYRIGHT 2018 Universidad de Costa Rica
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:texto en ingles
Author:Elisabet Masin, Carolina; Roberto Momo, Fernando; Susana Zalazar, Cristina; Rut Rodriguez, Alba
Publication:Revista de Biologia Tropical
Date:Sep 1, 2018
Words:4623
Previous Article:Sustrato, humedad, temperatura y germinacion de semillas del arbol endemico amenazado.
Next Article:Recurso polinifero utilizado por Apis mellifera (Himenoptera: Apidae) en un area de bosque subtropical del noroeste de Argentina.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |