Printer Friendly

Composition of polyphenols of asparagus spears (Asparagus officinalis) and their antioxidant potential/A composicao dos polifenois das espargos (Asparagus officinalis) e o seu potencial antioxidante.

INTRODUCTION

Asparagus officinalis L. is a perennial vegetable, which in the past was classified under the family Liliacea, while at present it comes under the Asparagaceae family. A characteristic feature of this group of plants is the fact that its root system does not wither in autumn, at the end of the vegetation season, but during winter. Because of the presence of many minerals, vitamins and bioactive compounds, asparagus has a beneficial effect on human health (PALFI et al., 2017; DROST, 2018). The edible parts of asparagus also contain certain amounts of phytosterols, which reduce blood cholesterol level. Among sterols the highest level is reported for [beta]-phytosterol (over50%) (FUENTES-ALVENTOSA et al., 2009). Asparagus is primarily a rich source of flavonoids, including rutin and quercetin (PARK, 2016). Results from studies showed that the highest amounts of phenolic compounds are reported in purple and green asparagus. White asparagus is considered as a vegetable with a lower antioxidant potential. This means that exposure to light are required for the accumulation of phenolic compounds and that these compounds are accumulated particularly in asparagus tips (PAPOULIAS, et al., 2009; DAWID & HoFMANN, 2014). The other research hypothesis concerns the polyphenols themselves, i.e. differences in total polyphenolic contents, particularly in the contents of phenolic acids and flavonols within analyzed cultivars and the three edible forms of each cultivar. Also, a thorough analysis was conducted of the polyphenolic compound content, i.e. phenolic acid derivatives of cinnamic and benzoic acids and flavonols, as well as assessment of the antioxidant potential measured by DPPH, ABTS and reducing power of five different asparagus cultivars (Grolim, Schwetzinger Meisterschuss, Gijnlim, Eposs, Huchel's Alpha) depending on their color: white, purple and green, resulting from the cultivation method adopted.

MATERIALS AND METHODS

The material used in the study comprised white, purple and green asparagus of the following cultivars: Schwetzinger Meisterschuss (DE 265), Huchel's Alpha, Gijnlim (NL 68), Grolim (NL 68) and Eposs (DE 265). Asparagus crops were harvested from four different plantations in Miedzichowo, the Nowy Tomysl County, Poland (52[degrees]22'06.8" N 15[degrees]57'01.1" E). All fifteen samples of asparagus were cold stored for 24 h at a temperature of 3 [degrees]C. Then, asparagus were cut into smaller pieces and boiled in water at a temperature of 95 [degrees]C. Each asparagus sample was boiled in a separate uncovered pot for approximately 20 min until asparagus spears were soft. Upon completion of thermal treatment the tested material was homogenized. Next, the samples were lyophilized (CHRIST 1-4 LSC, Germany)--temperature on the freeze dryer shelf was heated and ranged from +15 [degrees]C to +20 [degrees]C, temperature inside the product estimated +4 [degrees]C and condensation temperature was set to -48 [degrees]C. The freeze drying was conducted at reduced pressure (1.030 mbar) by 48 hours.

Samples descriptions are given under table 1.

Freeze dried asparagus samples (5 g) were homogenized and extracted in 70 ml of 60% ethanol for 2 h at room temperature according to KOBUS-CISOWSKA and coworkers (2019) with slight modifications. The extract was filtered through Whatman No. 4 paper and rinsed with 50 ml of ethanol.

Extraction of residue was repeated applying the same conditions. The two filtrates of 60% ethanol were combined and evaporated under vacuum at 40[degrees]C; then freeze drying was conducted. The prepared crude extracts were stored in a dry, dark and cool place until they were analyzed.

Phenolic acids were analysed qualitatively and quantitatively using Agilent HPLC linked to a Bin Pump Infinity DAD 1290 detector (k = 260 nm and 310 nm). Phenolic acids were identified using the standards dissolved in methanol applying a method described by KOBUS et al. (2009).

The composition of flavonols was determined applying a method described by GRAMZA-MICHALOWSKA et al. (2016). Extracted flavonols were separated and identified by Agilent UPLC using a Nova-Pak C18 reversed-phase column (3.9 x 150 mm, 5-[micro]m particle size; both from Waters, Milford, MA, USA).

The antioxidative effect of asparagus was estimated using DPPH, ABTS and reducing power assays. The DPPH procedure described by AMAROWICZ et al. (2007) is based on the DPPH solution absorbance decrease at k = 517 nm in the presence of free radicals (Meterek SP 830, Taiwan). The DPPH- radical scavenging was presented as % of scavenged radicals, EC50 and antiradical efficiency (AE) (AE=1/EC50). The ABTS radical cation decolourization assay was estimated according to RE and coworkers (1999), and was based on the spectrophotometric measurement ([lambda]=734 nm). The results were expressed in the same way as % scavenged DPPH, the EC50 value and antiradical efficiency (AE). The procedure of reducing power assay was described by AMAROWICZ and colleagues (2007). Absorbance of the produced mixture was measured at 700 nm with the use of a Specord 40 (Analytik Jena, Germany).

The data were analysed statistically by means of STATISTICA[TM] PL 13.1 (StatSoft, Poland).

RESULTS AND DISCUSSION

In samples of tested white, purple and green asparagus cultivars selected phenolic acids and flavonols were determined qualitatively and quantitatively using HPLC (Table 1, Table 2).

Among the analysed hydroxycinnamic acids, gallic and p-hydroxybenzoic acids predominated, while among the derivatives of hydroxycinnamic acid it was ferulic, sinapic and coumaric acids. It was found that both the colour of sparagus and the cultivar had a significant effect on henolic acid contents.

Presence of vanillic acid was identified olely in green asparagus. In turn, caffeic acid was lentified only in one cultivar of white asparagus nd in all cultivars of purple and green asparagus. As Lentioned above, in white asparagus gallic acid was ominant for four tested asparagus cultivars. Eposs in ie case of white asparagus contained less gallic acid tan purple and green asparagus.

In the case of hydroxycinnamic acid derivatives, ferulic and sinapic acids were dominant acids in asparagus. Contents of these acids were generally highest in green asparagus and they were comparable in purple and white asparagus. Considerable amounts of p-coumaric acid were also detected, while it was lacking only in white Gijnlim. Chlorogenic acid was not detected. Protocatechuic acid was found only in four asparagus samples (GYw, HUw, GYp, HUp).

It was found that among the analysed asparagus cultivars, Grolim contains the highest amount of phenolic acids with the smallest amounts detected in cv. Gijnlim. Green asparagus was found to have the highest content of phenolic acids, followed by purple and white asparagus.

Among all the cultivars, the highest amounts of flavonoids were found in green asparagus, among which cv. Grolim had the highest content of flavonols, with the lowest content in cv. Gijnlim. Rutin predominated in asparagus, as its content was detected at 1818 [micro]g/100 g d.m. in a sample of cv. GYg and up to 2318 [micro]g/100 g d.m. in GRg. Purple asparaguses contained 10 times more rutin (501-1973 [micro]g/100 g d.m.) than white asparagus (31-230 [micro]g/100 g d.m.). No traces of astragalin or quercetin were detected in white and purple asparagus, while kaempferol was not found in any of the samples.

Close location of rutin to astragalin plots and ferulic acid to sinapic acid, indicates on the positive correlation between these factors (Figure 1). However, the opposite location of gallic acid to p-coumaric acid as well as the location of p-hydroxybenzoic acid in order to isoquercetin, show that the correlations describing them are negative. The grouping of plots describing samples of white, purple and green asparaguses, indicates on the diversification of specimens up to the concentrations of analysed compounds.

Similar results concerning contents of phenolic acids in asparagus spears were presented by other researchers in which a dominant amount of hydroxycinnamic acids ranging from 2.31 to 4.91 mg/g was presented (FUENTES-ALVENTOSA et al., 2009; PAPOULIAS et al., 2009). Moreover, middle and basal portions of the spears are richer in these compounds than the upper portion, especially after a storage period (RODRIGUEZ, et al., 2005a; 2005b). The relatively high contents of gallic and p-hydroxybenzoic acids detected in asparagus result from the common occurrence of these compounds in the free state in gymnosperms, such as asparagus. Similar results were obtained for both green and purple asparagus by other authors, which indicates that green asparagus is more abundant in antioxidating phytochemicals (SHOU et al. 2007; KOHMURA et al. 2008). These compounds may influence the plant's antioxidant properties, which are based on the inhibition of free radical generation, their scavenging capacity and on increasing the catalytic activity of endogenous enzymes participating in the neutralization of free radicals (KMIECIK et al., 2015; YAO et al., 2016). This pertains in particular to p-hydroxybenzoic and gallic acids, as well as ferulic, sinapic and p-coumaric acids, which are predominant in asparagus.

The varied quantitative and qualitative composition in the case of polyphenolics resulted most probably from changes occurring during vegetation, such as a lack of access to light in the case of white asparagus and limited access to light in purple asparagus. Content of chemicals in plant organ depend on varieties (MUDAU et al. 2018). These proceedings are consistent with implications derived by FUENTES-ALVERTOSA and coworkers (2009). In their study, contents of flavonoids ranged from 25.9 to 76.3 mg/100 g fresh weight. rutin (quercetin3 -o-rhamnoglucoside) was the primary flavonoid glycoside, accounting for approximately 70% of total flavonoid content. According to SUN and coworkers (2007; 2007a), it was rutin that proved to be the most important flavonoid in asparagus. Its content was 286.5 mg/kg fresh product.

The antioxidative activity of asparagus was estimated using DPPH, ABTS and reducing power assays and is presented in table 3 and figure 2.

Green asparagus had the highest antioxidant capacity measured with DPPH, followed by purple and white asparagus. It was found that green asparagus had EC50 within the range from 0.294 to 0.489. the highest EC50 was shown for white asparaguses, which were 5- to 8-fold higher in relation to green asparaguses and by 15-42% higher in comparison to purple asparaguses. The scavenging activity on DPPH radicals by asparagus extract is variety- and colour-dependent.

The activity described as % of scavenging radicals ranged from 16.07% for GYw to 95.90% for SCg. the activity of green asparagus was the greatest for Hug. the value of IC50 for white asparagus was the highest and ranged from 1.11 for sample Huw to 1.92 for sample GYw. Green extracts scavenged ABTS radicals to the highest degree, amounting from 0.28 up to 0.48.

High absorbance indicates high reducing power. It was shown that all the analysed extracts exhibited reducing power (Figure 2). However, the best performance, was observed in green asparagus samples with the lowest level in white asparagus spear extract. It has been shown that green Grolim asparagus had reducing power close to BHT - the synthetic antioxidant. It may be observed that asparagus GR and SC exhibited higher activity than other asparagus varieties in all colour groups. Statistical analysis showed that there is a positive correlation between the content of flavonols and the reducing power of asparagus extracts (r=0.754) and between phenolic acids and reducing power (r=0.783).

The free radical scavenging activities of green asparagus were attributed to various natural polyphenols, including rutin, quercetin, kaempferol, and isorhamnetin (FUENTES-ALVENTOSA et al., 2009). our result was in agreement with two previous reports that the antioxidant activity of asparagus was correlated with polyphenol contents. In previous study it was indicated that asparagus with the highest radical scavenging activity in relation to DPPH, i.e. green asparagus (KULCZYNSKI et al., 2016). the analyses also made it possible to identify cv. Gijnlim and Grolim as cultivars exhibiting the highest scavenging potential in relation to the DPPH radicals.

In turn, a study by KobuS-CISoWSKA and coworkers (2017) showed that bioactive components of green asparaguses and their high antioxidant potential enhance nutritive value of meat products. Addition of green asparagus to meatloaf had a statistically significant effect on an increase in antioxidant activity measured in the DPPH test, with 0.30 mmol TE/g product in the control, while in meatloaves with asparaguses (added at 1.5, 2 and 3%) it was 0.49, 0.57 and 0.73 mmol TE/g product. Similarly, in the ABTS test the activity in relation to the control was by as much as 3.5 times greater.

CONCLUSION

Spears of asparagus have been consumed as vegetable for centuries, but very little information is available on the bioactive compounds and their antioxidant activity, which depend on cultivars and color. In the present study, five cultivars (Grolim, Schwetzinger Meisterschuss, Gijnlim, Eposs, Huchel's Alpha), each in white, green and purple color, were compared in terms of their polyphenol contents. Contents of phenolic compounds in asparagus varied and depended both on the cultivar and color of the vegetable. Asparagus was found to contain phenolic acids and flavonoids, among which gallic acid, ferulic acid and rutin predominated. The highest amounts of bioactive compounds were detected in green asparagus, with the contents being lower in purple asparagus, while white asparaguses were the poorest sources of these compounds. Among the tested asparagus cultivars cv. Grolim had the highest contents of phenolic acids and flavonols. The scavenging activity towards DPPH radicals by asparagus extract is variety- and color-dependent and was the greatest for green asparagus samples. Similar green extracts scavenged ABTS radicals to the highest degree. Statistical analysis showed a significant positive correlation between flavonols and phenolic acids and the activity towards DPPH and ABTS radicals. The presence of such fenolic acids as gallic, ferulic and sinapic acids, contributed to the highest antioxidant activity towards DPPH radicals. The antioxidant activity measured with ABTS of asparagus demonstrated a linear relationship with rutin content. The capability of the asparagus spears to scavenge DPPH and ABTS radicals and act as reducers, indicate that they may be useful therapeutic agents in treating radical pathological damage.

The information shown in this paper could be of interest with regards to both expanding scientific knowledge and possible further practical applications.

http://dx.doi.org/10.1590/0103-8478cr20180863

Received 10.22.18 Approved 03.06.19 Returned by the author 03.20.19 CR-2018-0863.R1

ACKNOWLEDGEMENTS

The work was financed by grant POIR.04.01.0200-0059/17 from the National Centre for Research and Development in Poland.

DECLARATION OF CONFLICTING OF INTERESTS

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

AUTHORS' CONTRIBUTIONS

Joanna Kobus-Cisowska conceived and designed experiments. Others authors contributed equally to the manuscript. All authors critically revised the manuscript and approved of the final version.

REFERENCES

AMARoWIC, R., et al. Antioxidant and radical scavenging activities of a barley crude extract and its fraction. Czech J. Food Sci. v. 25, n. 2, p. 73-80, 2007, Available from: <https://www. agriculturejournals.cz/publicFiles/00090.pdf>. Accessed: Mar. 15, 2019. doi: 10.17221/755-CJFS.

DAWID, C., HOFMANN, T., Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.). Food Chem. v. 145, p.427-436, 2014. Available from:<https://www.sciencedirect.com/science/article/ pii/S0308814613011382> Accessed: Mar. 15, 2019. doi: 10.1016/j. foodchem.2013.08.057.

DROST, D. A Single application of phosphorus at planting improves long-term asparagus root growth and yield. Int. J. Veg. Sci. v. 24, n. 2, p. 146-159. 2018. Available from: <https://www. tandfonline.com/doi/abs/10.1080/19315260.2017.1398197>. Accessed: Mar 15, 2019. doi: 10.1080/19315260.2017.1398197.

FUENTES-ALVENTOSA, J.M.. et al. Effect of the extraction method on phytochemical composition and antioxidant activity of high dietary fibre powders obtained from asparagus by-products. Food Chem. v. 116, n. 2, p. 484-490, 2009. Available from: <https:// www.sciencedirect.com/science/article/pii/S0308814609002799>. Accessed: Mar. 15, 2019. doi: 10.1016/j.foodchem.2009.02.074.

GRAMZA-MICHALOWSKA, A., et al. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. v. 211, p. 448-454, 2016. Available from:<https://www. sciencedirect.com/science/article/pii/S0308814616307294>. Accessed: Mar. 15, 2019. doi: 10.1016/j.foodchem.2016.05.048.

KMIECIK, D., et al. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem. v. 173, p. 966-971, 2015. Available from: <https://www. sciencedirect.com/science/article/pii/S0308814614016367>. Accessed: Mar. 15, 2019. doi: 10.1016/j.foodchem.2014.10.074.

KOBUS-CISOWSKA, J., et al. Applicability of asparagus (Asparagus officinalis L.) as a component of meatloaf. Nauk. Przyr. Technol. v. 11, p. 87-96, 2017. Available from: <http:// www.npt.up-poznan.net/tom11/zeszyt1/art_8.pdf>. Accessed: Mar. 15, 2019. doi: 10.17306/J.NPT.00174.

KOBUS-CISOWSKA J., et al. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Elect. J. Biotechn. v. 37, p. 1-10, 2019. Available from: <https://www. sciencedirect.com/science/article/pii/S0717345818300411>. Accessed: Mar. 15, 2019. doi: 10.1016/j.ejbt.2018.10.002.

KOBUS, J., et al. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur. J. Lipid Sci. Technol. v. 111, p. 1150-1160, 2009. Available from: <https://onlinelibrary.wiley. com/doi/abs/10.1002/ejlt.200800299>. Accessed: Mar. 15, 2019. doi: 10.1002/ejlt.200800299.

KOHMURA, H., et al. Polyphenol content, antioxidant activity and surface colour of asparagus spears cultivated under different conditions of sunlight. Acta Hortic. v. 776, p. 255-260, 2008. Available from: <http://www.actahort.org/books/776/776_32.htm> Accessed: Mar. 15, 2019. doi: 10.17660/ActaHortic.2008.776.32.

KULCZYNSKI, B., et al. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under different sunlight conditions. Acta Sci. Pol. Technol. Aliment. v. 15, n. 3, p. 267-279, 2016. Available from: <https://www.food.actapol.net/ volume 15/issue/4_3_2016.pdf>. Accessed: Mar. 15, 2019. doi:10.17306/J.AFS.2016.3.26.

MUDAU, A.R., et al. The quality of baby spinach as affected by developmental stage as well as postharvest storage conditions. Acta Agric. Scand. Sect. B--Soil Plant Sci. p. 1-10, n. 1, 2018. Available from: <https://www.tandfonline.com/doi/abs/10.1080/0 9064710.2018.1492009?journalCode=sagb20>. Accessed: mar 15, 2019. doi: 10.1080/09064710.2018.1492009.

PALFI, M., et al. Total polyphenol content and antioxidant activity of wild and cultivated asparagus in Croatia. Poljoprivreda. v. 23, n. 1, p. 56-62, 2017. Available from: <http://poljoprivreda.pfos. hr/upload/publications/poljoprivreda-23-1-9.pdf>. Accessed: Mar. 15, 2019. doi: 10.18047/poljo.23.1.9.

PAPOULIAS, E., et al. Effects of genetic, pre- and post-harvest factors on phenolic content and antioxidant capacity of white asparagus spears. Int. J. Mol. Sci. v. 10, n. 12, p. 5370-5380, 2009. Available from: <https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2801999/>. Accessed: Mar. 15, 2019. doi: 10.3390/ijms10125370.

PARK, M.-H. Sucrose delays senescence and preserves functional compounds in Asparagus officinalis L. Biochem. Biophys. Res. Commun. v. 480, n. 2, p. 241-247, 2016. Available from: <https:// www.sciencedirect.com/science/article/pii/S0006291X16317119>. Accessed: Mar. 15, 2019. doi: 10.1016/j.bbrc.2016.10.036.

RE, R., et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. v. 26, n. 9-10, p. 1231-1237, 1999. Available from: <https://www. sciencedirect.com/science/article/pii/S0891584998003153>. Accessed: Mar. 15, 2019. doi: 10.1016/S0891-5849(98)00315-3.

RODRIGUEZ, R., et al. Cell wall phenolics of white and green asparagus. J. Sci. Food Agric. v. 85, n. 6, p. 971-978. 2005a. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1002/ jsfa.2053>. Accessed: Mar. 15, 2019. doi: 10.1002/jsfa.2053.

RODRIGUEZ, R., et al A. Antioxidant activity of ethanolic extracts from several asparagus cultivars. J. Agric. Food Chem. v. 53, n. 13, p. 5212-5217, 2005b. Available from: <https://pubs. acs.org/doi/10.1021/jf050338i>. Accessed: Mar. 15, 2019. doi: 10.1021/jf050338i.

SHOU, S., LU, G., HUANG, X. Seasonal variations in nutritional components of green asparagus using the mother fern cultivation. Sci. Hortic. v. 112, n. 3, p. 251-257, 2007. Available from: <https://www.sciencedirect.com/science/article/pii/ S0304423806005280>. Accessed: Mar. 15, 2019. doi: 10.1016/j. scienta.2006.12.048.

SUN, T., et al. Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chem. v. 105, n. 1, p. 101-106, 2007. Available from: <https://www.sciencedirect.com/science/ article/pii/S0308814607002956>. Accesed: Mar. 15, 2019. doi:10.1016/j.foodchem.2007.03.048.

SUN, T., et al. Antioxidant activity and quality of asparagus affected by microwave-circulated water combination and conventional sterilization. Food Chem. v. 100, n. 2, p. 813-819, 2007a. Available from: <https://www.sciencedirect.com/science/ article/pii/S0308814605009519>. Accessed: Mar. 15, 2019. doi:10.1016/j.foodchem.2005.10.047.

YAO, X.-H., et al .Different harvest seasons modify bioactive compounds and antioxidant activities of Pyrola incarnata. Ind. Crops Prod. v. 94, p. 405-412, 2016. Available from: <https:// www.sciencedirect.com/science/article/pii/S0926669016305465>. Accessed: Mar. 15, 2019. doi: 10.1016/j.indcrop.2016.08.03.

Joanna Kobus-Cisowska (1) [ID] Daria Szymanowska (1) [ID] Oskar Marek Szczepaniak (1) [ID] Anna Gramza-Michalowska (1) [ID] Dominik Kmiecik (1) [ID] Bartosz Kulczynski (1) [ID] Piotr Szulc (2) [ID] Pawel Gornas (3) [ID]

(1) Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland. E-mail: oskar.szczepaniak@up.poznan.pl.

* Corresponding author.

(2) Faculty of Agronomy and Bioengineering, Poznan University of Life Sciences. Poznan, Poland.

(3) Institute of Horticulture, Latvia University of Life Sciences and Technologies. Jelgava, Latvia.

Caption: Figure 1--Principal component analysis (PCA) of flavonols and polyphenols concentrations in examined asparagus cultivars, given in table 2 and their total antioxidant potential described in table 3. 1. Gallic Acid; 2. Protocatechuic Acid; 3. p-Hydroxybenzoic Acid; 4. Vanilic Acid; 5. Caffeic Acid; 6. Chlorogenic Acid; 7. p-Coumaric Acid; 8. Ferulic Acid; 9. Sinapic Acid; 10. Rutin; 11. Isoquercetin; 12. Hyperoside; 13. Astragalin; 14. Quercetin.

Caption: Figure 2--Reducing power of examined asparagus cultivars extracts as function of total bioactive compounds concentration [[micro]g/ml].
Table 1--HPLC analysis of phenolic acids in extracts of different
cultivars and color of asparagus spears.

Sample          Gallic Acid              Protocatec
                                          huic Acid

GRw      341.79 (f) [+ or -] 13.11           nd

SCw      215.75 (e) [+ or -] 16.9            nd

GYw      55.09 (b,c) [+ or -] 7.06   22.19 [+ or -] 0.57

EPw       73.68 (c) [+ or -] 6.67            nd

HUw      107.10 (d) [+ or -] 7.65    1.82 [+ or -] 0.17

GRp      243.27 (e) [+ or -] 23.23           nd

SCp       76.97 (c) [+ or -] 3.29            nd

GYp       39.57 (a) [+ or -] 2.46    2.10 [+ or -] 0.69

EPp      124.75 (d) [+ or -] 11.46           nd

HUp      114.35 (d) [+ or -] 10.22   1.55 [+ or -] 21.5

GRg       30.06 (a) [+ or -] 3.63            nd

SCg       48.42 (b) [+ or -] 3.59            nd

Gyg       33.02 (a) [+ or -] 1.22            nd

EPg      196.77 (e) [+ or -] 10.72           nd

HUg       96.57 (d) [+ or -] 3.75            nd

Sample              P-                        Vanilic
                 Hydroxybe                     Acid
                nzoic Acid

GRw       64.32 (g) [+ or -] 5.52               nd

SCw       28.94 (d) [+ or -] 2.28               nd

GYw       38.36 (e) [+ or -] 4.04               nd

EPw       16.26 (b) [+ or -] 1.64               nd

HUw       22.20 (c) [+ or -] 0.22               nd

GRp       44.62 (f) [+ or -] 2.77               nd

SCp      19.44b (c) [+ or -] 2.76               nd

GYp       28.91 (d) [+ or -] 1.21               nd

EPp                 nd                          nd

HUp       23.09 (c) [+ or -] 1.81               nd

GRg       59.57 (g) [+ or -] 2.31    130.88 (c) [+ or -] 10.87

SCg       25.73 (c) [+ or -] 1.95    102.54 (a) [+ or -] 9.54

Gyg       15.10 (b) [+ or -] 1.73    120.28 (b) [+ or -] 9.81

EPg       2.91 (a) [+ or -] 0.06     179.72 (e) [+ or -] 12.65

HUg      26.00 (c,d) [+ or -] 1.88   165.94 (d) [+ or -] 11.18

Sample            Caffeic            Chlorogeni
                   Acid                c Acid

GRw                 nd                   nd

SCw                 nd                   nd

GYw                 nd                   nd

EPw       4.40 (a) [+ or -] 0.44         nd

HUw                 nd                   nd

GRp       10.49 (b) [+ or -] 0.52        nd

SCp      14.89 (b,c) [+ or -] 0.81       nd

GYp                 nd                   nd

EPp      27.24 (c,d) [+ or -] 2.91       nd

HUp       19.72 (b) [+ or -] 0.13        nd

GRg       31.50 (e) [+ or -] 1.37        nd

SCg       32.50 (e) [+ or -] 2.36        nd

Gyg       22.12 (d) [+ or -] 1.14        nd

EPg       18.98 (c) [+ or -] 0.59        nd

HUg       6.98 (a) [+ or -] 0.09         nd

Sample              P-                       Ferulic
                 Coumaric                      Acid
                   Acid

GRw       73.27 (d) [+ or -] 4.83    87.21 (d) [+ or -] 3.11

SCw       40.75 (a) [+ or -] 1.23    58.88 (a) [+ or -] 2.61

GYw                 nd               58.64 (a) [+ or -] 2.35

EPw       44.63 (b) [+ or -] 2.92    76.26 (b) [+ or -] 3.44

HUw       40.69 (a) [+ or -] 3.22    56.13 (a) [+ or -] 1.07

GRp       65.98 (d) [+ or -] 2.61    83.72 (d) [+ or -] 7.80

SCp       56.09 (c) [+ or -] 3.81    70.05 (b) [+ or -] 2.41

GYp       47.76 (b) [+ or -] 3.09    59.93 (a) [+ or -] 1.39

EPp       46.02 (b) [+ or -] 3.89    77.06 (c) [+ or -] 4.17

HUp       56.46 (c) [+ or -] 1.52    74.02 (c) [+ or -] 1.43

GRg      178.17 (s) [+ or -] 10.61   153.41 (f) [+ or -] 8.93

SCg      139.00 (f) [+ or -] 21.65   105.79 (e) [+ or -] 5.83

Gyg       45.50 (b) [+ or -] 1.36    57.28 (a) [+ or -] 4.93

EPg       91.80 (e) [+ or -] 9.42    85.23 (d) [+ or -] 2.64

HUg       75.82 (d) [+ or -] 3.68    89.60 (d) [+ or -] 7.12

Sample            Sinapic
                   Acid

GRw       51.72 (f) [+ or -] 3.04

SCw       34.55 (c) [+ or -] 2.39

GYw       16.32 (a) [+ or -] 1.32

EPw       34.59 (c) [+ or -] 2.90

HUw       29.24 (b) [+ or -] 0.68

GRp       43.50 (e) [+ or -] 2.28

SCp      37.45 (c,d) [+ or -] 1.44

GYp       30.66 (c) [+ or -] 1.36

EPp      38.59 (c,d) [+ or -] 2.18

HUp       17.06 (a) [+ or -] 0.86

GRg       85.81 (s) [+ or -] 5.81

SCg       46.89 (f) [+ or -] 1.29

Gyg       34.22 (c) [+ or -] 2.99

EPg       39.14 (d) [+ or -] 1.39

HUg       33.05 (c) [+ or -] 0.55

nd--not detected

Abbreviations are defined in Materials and methods-asparagus samples.
Results are mean values of three determinations [+ or -] standard
deviation. Values sharing the same letter in a column are not
significantly different (P < 0.05).

GRw--white asparagus Grolim, GRp--purple Grolim, GRg--green
Grolim, SCw--hite asparagus Schwetzinger Meisterschuss,
SCp--purple Schwetzinger Meisterschuss, SCg--green Schwetzinger
Meisterschuss, GYw---white asparagus Gijnlim, GYp--urple
Gijnlim, GYg--green Gijnlim, EPw--white asparagus Eposs,
EPp--purple Eposs, EPg--green Eposs, HUw--white asparagus
Huchel's Alpha, HUp--purple Huchel's Alpha, Hug--green Huchel's
Alpha.

Table 2--HPLC analysis of flavonols in extracts of different cultivars
and colour of asparagus spears [micro]g/100 g d.m.].

                 Rutin                    Isoquercetin

GRw      31.85 (a) [+ or -] 1.39                nd
SCw      60.27 (a) [+ or -] 0.72                nd
GYw     217.77 (b) [+ or -] 2.43        9.23 (a) [+ or -] 9.22
EPw     222.08 (b) [+ or -] 124.31     11.26 (a) [+ or -] 11.26
HUw     230.24 (b) [+ or -] 0.15       28.68 (b) [+ or -] 7.27
GRp     501.50 (b,c) [+ or -] 15.67             nd
SCp    1543.69 (d) [+ or -] 9.29       24.08 (b) [+ or -] 0.34
GYp     790.54 (c) [+ or -] 0.99       13.59 (a) [+ or -] 0.16
EPp    1500.90 (d) [+ or -] 6.11       23.90 (b) [+ or -] 0.72
HUp    1973.13 (d) [+ or -] 93.75      30.36 (b) [+ or -] 0.15
GRg   16318.67 (e) [+ or -] 43.43      97.08 (c) [+ or -] 6.44
SCg   11942.87 (f) [+ or -] 819.0      70.47 (c) [+ or -] 0.39
Gyg    1818.70 (d) [+ or -] 86.51      28.16 (b) [+ or -] 1.07
EPg   14061.88 (e) [+ or -] 299.41     50.07 (c) [+ or -] 10.34
HUg   10139.63 (g) [+ or -] 598.82     55.95 (c) [+ or -] 0.25

             Hyperoside                  Astragalin

GRw              nd                          nd
SCw              nd                          nd
GYw    10.88 (a) [+ or -] 10.87              nd
EPw    15.05 (a) [+ or -] 15.04              nd
HUw    13.02 (a) [+ or -] 13.02              nd
GRp              nd                          nd
SCp              nd                          nd
GYp    17.82 (a) [+ or -] 0.22    21.89 (a) [+ or -] 21.89
EPp    42.19 (b) [+ or -] 0.076               nd
HUp    15.49 (a) [+ or -] 15.50               nd
GRg   182.10 (c) [+ or -] 12.90   24.70 (a) [+ or -] 24.69
SCg   173.63 (c) [+ or -] 0.09    53.94 (b) [+ or -] 0.61
Gyg    40.41 (b) [+ or -] 2.62    18.21 (a) [+ or -] 0.12
EPg   197.73 (c) [+ or -] 4.71    55.58 (b) [+ or -] 10.11
HUg   162.65 (c) [+ or -] 0.40    43.75 (b) [+ or -] 1.43

             Quercetin           Kaempferol

GRw              nd                  nd
SCw              nd                  nd
GYw              nd                  nd
EPw              nd                  nd
HUw              nd                  nd
GRp              nd                  nd
SCp              nd                  nd
GYp              nd                  nd
EPp   28.01 (a) [+ or -] 28.01       nd
HUp              nd                  nd
GRg   52.10 (b) [+ or -] 52.10       nd
SCg   43.59 (b) [+ or -] 9.77        nd
Gyg   22.74 (a) [+ or -] 1.18        nd
EPg   57.96 (b) [+ or -] 0.39        nd
HUg   55.80 (b) [+ or -] 0.25        nd

nd--not detected. N =3. Abbreviations are defined in Materials and
methods-asparagus samples. Results are mean values of three
determinations [+ or -] standard deviation. Values sharing the same
letter in (a) column are not significantly different (P < 0.05).

Table 3--Antioxidant activity of asparagus spears extract measured
by DPPH and ABTS method and calculated by EC 50 [mmol/ml]; AE and %
scavenging.

                  ABTS

Sample      EC 50 [mmol/ml]           AE

GRw      1.49 (f) [+ or -] 0.01    1.33 (a)
SCw      1.63 (g) [+ or -] 0.02    1.23 (a)
GYw      1.92 (h) [+ or -] 0.04    1.04 (a)
EPw      1.26 (f) [+ or -] 0.05    1.58a (b)
HUw      1.11 (e) [+ or -] 0.02    1.80 (b)
GRp      1.19 (e) [+ or -] 0.06    1.87 (b)
SCp      0.95 (d) [+ or -] 0.03    2.35 (c)
GYp      0.95 (d) [+ or -] 0.02    2.16 (b)
EPp      0.73 (c) [+ or -] 0.05    2.82 (c)
Hup      0.98 (d) [+ or -] 0.02    2.26 (b)
GRg      0.29 (a) [+ or -] 0.04    8.29 (e)
SCg      0.28 (a) [+ or -] 0.02    6.64 (d)
GYg      0.48 (b) [+ or -] 0.05    5.68 (d)
EPg      0.28 (a) [+ or -] 0.05    7.19 (e)
HUg      0.36a (b) [+ or -] 0.03   5.52 (d)

               ABTS                                DPPH

Sample          % scavenging                  EC 50 [mmol/ml]

GRw        16.21 (a) [+ or -] 2.43        0.75 (e) [+ or -] 0.03
SCw        14.38 (a) [+ or -] 2.44        0.81 (e) [+ or -] 0.02
GYw        11.95 (a) [+ or -] 2.15        0.96 (e) [+ or -] 0.04
EPw        19.19a (b) [+ or -] 2.11       0.63 (d) [+ or -] 0.01
HUw        22.28 (b) [+ or -] 3.34        0.55 (d) [+ or -] 0.03
GRp        22.13 (b) [+ or -] 3.32        0.53 (d) [+ or -] 0.01
SCp      27.60 (b) (c) [+ or -] 2.76    0.42 (b) (c) [+ or -] 0.02
GYp      26.14 (b) (c) [+ or -] 3.92      0.46 (c) [+ or -] 0.01
EPp        34.49 (c) [+ or -] 3.10        0.35 (b) [+ or -] 0.01
Hup        71.25 (d) [+ or -] 4.69        0.44 (c) [+ or -] 0.02
GRg        91.18 (e) [+ or -] 7.88        0.12 (a) [+ or -] 0.01
SCg        79.17 (d) [+ or -] 6.33        0.15 (a) [+ or -] 0.05
GYg        68.38 (d) [+ or -] 4.26        0.17 (a) [+ or -] 0.01
EPg        86.91 (e) [+ or -] 4.56        0.13 (a) [+ or -] 0.01
HUg        66.42 (d) [+ or -] 2.31        0.18 (a) [+ or -] 0.02

                    DPPH

Sample       AE              % scavenging

GRw       1.22 (a)      21.79 (a) [+ or -] 3.22
SCw       1.16 (a)      19.33 (a) [+ or -] 3.23
GYw       1.09 (a)      16.07 (a) [+ or -] 2.85
EPw      1.75 (a,b)     31.60 (b) [+ or -] 2.79
HUw       1.88 (b)      36.68 (b) [+ or -] 3.34
GRp       1.81 (b)      36.46 (b) [+ or -] 3.76
SCp      2.015 (b)      45.47 (c) [+ or -] 3.13
GYp       2.04 (b)      43.04 (c) [+ or -] 4.45
EPp      2.55 (b,c)     56.79 (d) [+ or -] 3.52
Hup       2.32 (b)      86.30 (e) [+ or -] 5.32
GRg       7.33 (d)      92.21 (f) [+ or -] 8.93
SCg       5.27 (c)      95.90 (f) [+ or -] 6.29
GYg       4.31 (c)      82.83 (e) [+ or -] 4.78
EPg       7.55 (d)    87.89 (e) (f) [+ or -] 4.53
HUg       5.94 (c)      80.45 (e) [+ or -] 2.29

Results are means [+ or -] S.D. (n=3), P<0.05; values of the same
column, followed by the same letter are not statistically different
(P<0.05).
COPYRIGHT 2019 Universidade Federal de Santa Maria
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:FOOD TECHNOLOGY
Author:Kobus-Cisowska, Joanna; Szymanowska, Daria; Szczepaniak, Oskar Marek; Gramza-Michalowska, Anna; Kmie
Publication:Ciencia Rural
Date:Apr 1, 2019
Words:5502
Previous Article:Occurrence of endo and hemoparasites in Sporophila caerulescens captured in the eastern region of the state of Acre, Brazil/Ocorrencia de endo e...
Next Article:Leaf area estimation of squash 'Brasileirinha' by leaf dimensions/Estimacao da area foliar de abobrinha 'Brasileirinha' por dimensoes foliares.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |