Printer Friendly

Composition and Biomass of Aquatic Vegetation in the Poyang Lake, China.

1. Introduction

Aquatic plants are an important component of lake ecosystems and are often regarded as indicators of lake environmental changes; they play an important role in maintaining the structure and function oflake ecosystems [1, 2]. Aquatic plants are the primary producers of aquatic ecosystems, being a kind of food source of many kinds of fish and other aquatic animals [3, 4]. They can regulate the lake water body, degrade various pollutants, and improve the transparency [5, 6]. In addition, aquatic plants can provide habitat to many organisms and increase the spatial niche of aquatic ecosystems [7, 8]. Therefore, it is important to know the distribution of aquatic plants and their communities to analyze the status of aquatic plants in the lake area.

Vegetation is an important component of wetland ecosystems, and biomass can quantify the contribution of wetland vegetation to carbon sinks and carbon sources [9]. Biomass estimation of wetlands plays an important role in understanding dynamic changes of the wetland ecosystem [10]. In previous studies, biomass estimation using indirect and direct methods has been conducted. For example, remote sensing technology and radar data have been widely used to estimate the biomass in recent years [2, 11]. Han et al. [11] investigated four decades of winter wetland changes in the Poyang Lake based on Landsat observations between 1973 and 2013. Luo et al. [2] revealed the distribution of aquatic vegetation types in Taihu Lake, China, by using a series of remotely sensed images with a resolution of 30 m (HJCCD and Landsat TM). Shen et al. [9] retrieved vegetation biomass in the Poyang Lake wetland by using polarimetric RADARSAT-2 data. These indirect methods offer the ability to continuously monitor growth and phenology on the same individuals over large areas but depend on the existence of strong relationships between the predictor variables and plant biomass [12-14]. Therefore, ground investigation of biomass is also very essential.

Poyang Lake, the largest freshwater lake in China, is well known for its ecological importance as a wetland system [9, 11]. The Poyang Lake region provides significant environmental benefits, such as supplying water resources and maintaining carbon storage and biodiversity [15, 16]. Guan et al. [17] pointed out that aquatic vegetation of Poyang Lake is very rich in number of species. The vegetation distributes in about 2262 [km.sup.2] and accounts for 80.8% area of the lake. Jian et al. [18] studied the distribution area and biomass of Poyang Lake beach vegetation in the years of 1999 and 2000, and they found there were 28 families, 56 genera, 95 species, and 3 varieties. In April, 2000, they found that the total biomass of beach vegetation was 3.81 x [10.sup.6] tons (fresh weight), with an average biomass of 3736 g x [m.sup.-2] (fresh weight). Peng et al. [19] studied the association type diversity, community species diversity, community coverage, and biomass of aquatic plants in the fresh water lakes of the Poyang Plain District of China in 2001, and they found 42 associations of aquatic plants in the lakes, which include 11 amphibian, 6 emergent, 11 leaf-floating, and 14 submerged associations. Among all the associations, Carex cinerascens Ass. and Zizania latifolia Ass. possess the highest coverage and highest biomass, respectively. Although some survey of aquatic plants in the Poyang Lake has been conducted, ground investigation of aquatic plants in Poyang Lake was very rare in recent years.

In this paper, the species and biomass of aquatic plants in the Poyang Lake were investigated based on ground survey data in September, 2013. And the objective of this study is to investigate the composition of aquatic plants and community types and habitats of major aquatic plants in the Poyang Lake. This study will provide information for the monitoring and conservation of aquatic plant in the Poyang Lake.

2. Data and Methodology

2.1. Study Area and Data. Poyang Lake is located on the southern bank of the lower Yangtze reach (28[degrees] 22' -29[degrees] 45'N and 11[degrees] 47' -116[degrees] 45'E). It has five main tributary rivers: Ganjiang River, Fuhe River, Xinjiang River, Raohe River, and Xiushui River, and several smaller rivers. The basin area of the five rivers is 162,200 [km.sup.2], occupying 9% of Yangtze River basin. The climate is characterized as a subtropical, humid, monsoon climate with a 1620 mm mean annual precipitation and an annual average temperature of approximately 17[degrees] C [20].

The environmental conditions of the Poyang Lake are very suitable for the growth and reproduction of aquatic plants. Aquatic plants can provide habitat for many organisms, improve habitat diversity, and increase the spatial niche of aquatic ecosystem [21]. But the annual water level of the Poyang Lake changes greatly, especially in the flood season (April to November) and dry season (December to March). The characteristics of periodical variation of water level in the Poyang Lake might lead to the conversion of the lake beach and grassland.

2.2. Methodology. The species, community structure, coverage, and biomass of the Poyang Lake were investigated from September 7, 2013, to September 14, 2013. GPS and lake electronic map were used to set sampling points, and the samples of aquatic plants were collected at each sampling site. The category of aquatic plants in the Poyang Lake was defined according to the reference of Cook [22]. Division of "cluster" is based on the principle of dominant species, which is named as the name of the group. If a cluster is with two or more dominant species, different dominant species of the same layer were connected with "+," and the dominant species of different layers were connected with "-." At the sampling sites, amphibians, emergent plants, floating-leaved plants, and floating input plants were directly observed and recorded. Submerged plants were preliminarily identified with water sickle after collecting water and the characters of flowers, leaves, and fruits of each plant as well as field growth photos and accurate identification of aquatic plant species and genus [23]. For amphibian and emergent plant clusters, 6 samples of 2 m x 2 m were set randomly within 500 m of each sampling point, and the total biomass (fresh quality) of the aerial parts of all the plants was measured and the biomass per unit area was calculated. For plants with large plant biomass, such as Phragmites communis Trin., we could estimate the number of plants in the quadrats. After selecting the representative fresh weight of the plants, we could calculate the standing amount of the plants. As the species with smaller biomass, such as Alternanthera philoxeroides (Mart.) Griseb., all the plants in the quadrats were collected and their fresh weight was calculated, and the mean values were calculated after several measurements of plant height. The floating-leaved plant cluster, the floating input plant cluster, and the submerged plant cluster were harvested 6 times randomly in the range of 500 [m.sup.2] for each sampling point with an underwater sickle with a crosssectional area of 0.785 [m.sup.2], and the plant was uprooted and then washed, removing residual sticks and other impurities. The fresh weight of each plant was weighed and the frequency, coverage area, and coverage were recorded (visual method). All the plants, together with the roots, were dug and washed, and the plant depth was measured [24].

3. Results and Discussion

3.1. Characteristics of Aquatic Plants in the Poyang Lake. There were 43 species of aquatic plants in the lake area which belonged to 37 genera and 22 families according the survey in 2013 (see Figure 1 and Table 1). And it could be found that there were 16,13, and 9 species, accounting for 37.21%, 30.23%, and 20.93% of the total species for the amphibians, emergent plants, and submerged plants, respectively. However, there were only 2 and 3 species for floating input plants and floating-leaved plants in the Poyang Lake, accounting for 4.65% and 6.98% of the total species.

It could be seen that the distribution of all kinds of plants was different; the most extensive degrees of various classes were Carex spp., Eleocharis tuberosa (Roxb.) Roem. et Schult., Polygonum L., and Nymphoides peltatum (Gmel.) O. Kuntze. Most of the species were distributed in a large area or in a continuous distribution in the wetland or near shore of the lake, which were widely distributed and had strong adaptability to adversity. Most of the plants in the whole lake were in vegetative period.

The survey recorded 22 families, 37 genera, and 43 aquatic plant species; the number of species was significantly lower than the survey of aquatic plant species number in Poyang Lake [3], which may be because the latter sampling sites in the Poyang Lake were a bit too much. The results of this study were compared with the results of the survey of 28 families, 56 genera, 95 species, and 3 varieties of aquatic vegetation in the Poyang Lake [18]. The number of species was different and the reason may be the strength of this investigation was not enough, and the accuracy of traditional field survey research method was much lower than that of TM Landsat remote sensing technology. In view of this survey was only a single survey in autumn and was limited to water habitat, lakeside vegetation was not a detailed investigation, and, therefore, the actual distribution of Poyang Lake aquatic plant species should be lower than the findings of Guan et al. [3] and Jian et al. [18].

3.2. Community Types and Habitats of Major Aquatic Plants in the Poyang Lake. The species of aquatic plants, the spatial structure, and ecological environment of the community were listed in Table 2 in the Poyang Lake. There were 31 main plant clusters in the Poyang Lake.

The amphibians mainly distributed in the water depth of 0.5-2.5 m meters of the beach in the flood season. The main species were amphibious plants that grew in both shallow and wetlands. There were 16 kinds of amphibians in the Poyang Lake, of which the most important and wide distribution was Carex spp., the least distribution was Sambucus chinensis Lindl., Isachne globosa (Thunb.) Kuntze, Microcarpaea minima (Koen.) Merr., and Oryza rufipogon Griff.

Emergent plants were located in the 12-15 m elevation of the shoal, and the water depth was generally 0.5-3.5 m in the flood season. The main species were plants that had only the base or lower part of the plant to be submerged in water, but the upper part of the plant was quite out of water. There were 13 kinds of emergent plants in the Poyang Lake, of which the most important and wide distribution was Eleocharis tuberosa (Roxb.) Roem. et Schult., and the least distribution was Aeschynomene indica Linn., Typha angustifolia L., Monochoria vaginalis (Burm.f.) Presl, Rotala rotundifolia (Buch.Ham) Koehne, and Myriophyllum tuberculatum Roxburgh.

Floating-leaved plants were located 11-13 meters above the lake bottom, where the lake water level was generally 2.5-4.5 meters in the flood season. The main species were some plants rooted in the lake, but the leaves were floating on the surface of the water. Moreover, a large number of submerged plants could also be found in this plant belt, such as Vallisneria natans (Lour.) Hara and Hydrilla verticillata (L.f.) Royle. There were 3 kinds of floating-leaved plants in the Poyang Lake, of which the most important and wide distribution was Nymphoides peltatum (Gmel.) O. Kuntze, and the least distribution was Trapella sinensis Oliv. Submerged plants distributed in the 9-12 m elevation of the lake, and the lake water depth was generally 3.56.5 meters in the flood season. The main species were some of the plants immersed in water, such as Hydrilla verticillata (L.f.) Royle, Ceratophyllum demersum L. There were 9 kinds of submerged plants in the Poyang Lake, of which the most important and wide distribution was Ceratophyllum demersum L. and Vallisneria natans (Lour.) Hara, and the least distribution was Blyxa japonica (Miq.) Maxim., Myriophyllum spicatum L., and Utricularia vulgaris L.

The distribution area for floating input plant was very small, and the floating input plant was mainly located in small patches or sporadic distribution in the bay. There were 2 kinds of floating input plant in the Poyang Lake, of which the most important and wide distribution was Eichhornia crassipes (Mart.) Solms, and the least distribution was Hydrocharis dubia (Bl.) Back.

The main habitat types of aquatic macrophytes in the Poyang Lake were summarized in Table 3. Among the amphibians, the coverage of the typical Carex spp. cluster was generally 40-80%, and the plant height was about 25-100 cm. But in the lower edge of the distribution area, the growth of the Carex spp. cluster was delayed, and the plant coverage and height were relatively small. At the upper edge of the distribution area, with the increase of the elevation, the plant growth rate began to decline, and the coverage reduced accordingly. The plant height of the typical Phragmites communis Trin. cluster in the emerged plant was 56-250 cm, and the coverage was lower and was only 10-15%. The height of submerged plant cluster was 15-70 cm, and its coverage was large and up to 90%. The coverage of floating input plant cluster was about 50-95% and the plant height was 10-55 cm. The cluster coverage of floating-leaved plants was about 60% and plant height was 3-55 cm.

3.3. Quantitative Characteristics of Aquatic Plant Communities in the Poyang Lake. The number of aquatic plants in the lake area was 67, and the total of the aquatic plants' fresh weight was 1519.411. Among them, the Carex spp., Eleocharis tuberosa (Roxb.) Roem. et Schult., and emergent plants were 919.661, while the submerged plants and floating-leaved plants were up to 599.75 t. The distribution of amphibians accounted for 58.21% of the total number of samples, and there were 14.93%, 16.42%, and 10.45% of the total plants number for the emergent plants, submerged plants, and floating-leaved plants in the Poyang Lake, respectively. It could be found that the number of amphibians was the dominant plant species in the Poyang Lake, and their quantity and percentage of the total biomass were predominant, which were far more than the other three life forms (Table 4). Among the 16 typical cluster types, the total biomass was the highest in the Carex spp. cluster, followed by the Polygonum L. cluster, the Zizania caduciflora (Turcz. ex Trin.) H.M. cluster, and the Imperata cylindrica (Linn.) Beauv cluster (Figure 2). This was in contrast to 1998 aquatic vegetation survey [25], the difference was large, and the proportion of Vallisneria natans (Lour.) Hara and Hydrilla verticillata (L.f.) Royle was the largest, while the proportion of Carex spp. and Polygonum L. was very low. In the amphibians, Carex spp. cluster was the dominant species, and the distribution number was 34. In the emergent plants, Zizania caduciflora (Turcz. ex Trin.) H.-M. cluster, and Phragmites communis Trin. cluster distribution were in large quantities, each for 2. In the submerged plants, the distribution of Ceratophyllum demersum L. cluster was the largest, with 4 species. In the floating-leaved plants, the distribution of Nymphoides peltatum (Gmel.) O. Kuntze cluster was the largest, with 4 species. This pattern of distribution was associated with its reproductive strategies. The vast majority of grassland vegetation in the Poyang Lake interrupted their breeding during the summer season, which was suitable for plant growth during the flood season. Therefore, the plant with vigorous regenerative ability, for example, Carex spp., had become the most dominant species in the Poyang Lake grassland vegetation and Carex spp. were submerged by flood and became the carp and crucian carp spawning attachment. cluster in

Poyang Lake was not only beneficial to grazing firewood and green manure, but also conducive to the reproduction of grass-laying fish sand the growth of herbivorous fish. The production of carp and crucian carp in the fishery of the Poyang Lake was about half of the total output, which was closely related to the seasonal succession of Carex spp. [26].

4. Conclusions

In this study, the distribution of aquatic vegetation and associated community diversity and biomass in the Poyang Lake were investigated with the aim of getting information for the monitoring and protection of aquatic plants in the Poyang Lake. Some interesting conclusions were obtained as follows:

(1) Nine species of aquatic plants were found in the Poyang Lake and Carex spp. dominated absolutely with multi grads 58 in the Poyang Lake. Most of the aquatic plant species were amphibians and a small number of the species were found on the beach floating plants or submerged plants or emergent plants.

(2) The vegetation of the Poyang Lake scattered in different areas which could be divided into 31 major plant communities and 5 plant zones including amphibian, emergent, floating-leaved, submerged, and floating input. The majority of aquatic vegetation distribution area in the Poyang Lake was Carex spp. cluster.

(3) There were 67 aquatic plants in the Poyang Lake, and the total of the aquatic plants' fresh weight was 1519.41 t. Moreover, it could be found that the amphibians were the dominant plant species in the Poyang Lake.

http://dx.doi.org/10.1155/2017/8742480

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

Wei Du, Ziqi Li, and Zengxin Zhang analyzed the data, drew the figures, and finished the draft of the manuscript. Qiu Jin, Xi Chen, and Shanshan Jiang participated in the writing of this manuscript. All authors read and approved the final manuscript.

Acknowledgments

This paper is financially supported by National Natural Science Foundation of China (Grant nos. 51190090 and 41171020) and Distinguished Young Scholars Fund of Nanjing Forestry University and supported by Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (Grant no. 2011B079) and Key Laboratory of Watershed Geographic Sciences, Chinese Academy of Sciences (Grant no. WSGS2015005), Six Talent Peaks Project in Jiangsu Province (Grant no. 2015-JY-017), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

[1] H. Jun, G. Xiao-hong, and L. Guo-feng, "Aquatic macrophytes in East Lake Taihu and its interaction with water environment," Journal of Lake Sciences, vol. 20, no. 6, pp. 790-795, 2008.

[2] J. Luo, X. Li, R. Ma et al., "Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China," Ecological Indicators, vol. 60, pp. 503-513, 2016.

[3] S. Guan, Q. Lang, and B. Zhang, "Aquatic vegetation of Poyang Lake," Acta Hydrobiologica Sinica, no. 1, pp. 9-21, 1987 (Chinese).

[4] C. Lan, Y. Shen, B. Wang et al., "Investigation of aquatic plants and benthic macroinvertebrates of lakes in Inner MongoliaXinjiang Plateau," Journal of Lake Sciences, no. 6, pp. 888-893, 2010 (Chinese).

[5] C. Manzatu, B. Nagy, A. Ceccarini, R. Iannelli, S. Giannarelli, and C. Majdik, "Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants," Marine Pollution Bulletin, vol. 101, no. 2, pp. 605-611, 2015.

[6] S. Rezania, S. M. Taib, M. F. Md Din, F. A. Dahalan, and H. Kamyab, "Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater," Journal ofHazardous Materials, vol. 318, pp. 587-599, 2016.

[7] P. Massicotte, A. Bertolo, P. Brodeur, C. Hudon, M. Mingelbier, and P. Magnan, "Influence of the aquatic vegetation landscape on larval fish abundance," Journal of Great Lakes Research, vol. 41, no. 3, pp. 873-880, 2015.

[8] R. T. J. Churchill, M. L. Schummer, S. A. Petrie, and H. A. L. Henry, "Long-term changes in distribution and abundance of submerged aquatic vegetation and dreissenid mussels in Long Point Bay, Lake Erie," Journal of Great Lakes Research, vol. 42, no. 5, pp. 1060-1069, 2016.

[9] G. Shen, J. Liao, H. Guo, and J. Liu, "Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT2 synthetic aperture radar data," Journal of Applied Remote Sensing, vol. 9, no. 1, 2015.

[10] J. Liao, G. Shen, and L. Dong, "Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data," Journal of Applied Remote Sensing, vol. 7, no. 1, Article ID 12215, 2013.

[11] X. Han, X. Chen, and L. Feng, "Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013," Remote Sensing of Environment, vol. 156, pp. 426-437, 2014.

[12] R. J. Daoust and D. L. Childers, "Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a non-destructive phenometric technique," Aquatic Botany, vol. 62, no. 2, pp. 115-133,1998.

[13] T. S. F. Silva, M. P. F. Costa, and J. M. Melack, "Assessment oftwo biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain," Aquatic Botany, vol. 92, no. 3, pp. 161167, 2010.

[14] D. Zhao, H. Jiang, T. Yang, Y. Cai, D. Xu, and S. An, "Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds," Journal of Environmental Management,vol. 95, no. 1,pp. 98-107, 2012.

[15] L. Zhang, J. Yin, Y. Jiang, and H. Wang, "Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang Lake National Nature Reserve, China," Ecological Informatics, vol. 11, pp. 65-75, 2012.

[16] X. Wang, L. Xu, R. Wan, and Y. Chen, "Seasonal variations of soil microbial biomass within two typical wetland areas along the vegetation gradient of Poyang Lake, China," Catena, vol. 137, pp. 483-493, 2016.

[17] S. Guan, Q. Lang, and B. Zhang, "Biomass of macrophytes of the Poyang Lake with suggestions of its rational exploitation," Acta Hydrobiologica Sinica, no. 3, pp. 219-227,1987 (Chinese).

[18] Y. Jian, R. Li, J. Wang, and J. Chen, "Aquatic plant diversity and remote sensing of the beach vegetation in lake Poyang," Acta Phytoecologica Sinica, vol. 25, no. 5, pp. 581-642,2001 (Chinese).

[19] Y. Peng, Y. Jian, and R. Li, "Community diversity of aquatic plants in the lakes of Poyang Plain District of China," Journal of Central South Forestry University, no. 4, pp. 22-27, 2003 (Chinese).

[20] Z. Zhang, X. Chen, C.-Y. Xu, Y. Hong, J. Hardy, and Z. Sun, "Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin," Journal of Hydrology, vol. 522, pp. 510-521, 2015.

[21] H. Vereecken, J. Baetens, P. Viaene, F. Mostaert, and P. Meire, "Ecological management of aquatic plants: effects in lowland streams," Hydrobiologia, vol. 570, no. 1, pp. 205-210, 2006.

[22] C. D. K. Cook, Water Plants of the World, Springer Science & Business Media, Bath, UK, 1974.

[23] H. Chen, "The structure and dynamicsofaquatic vascular plant communities in DongLake, Wuhan," Oceanologia etLimnologia Sinica, no. 3, pp. 275-284,1980 (Chinese).

[24] W. Hua, C. Shuiping, C. Peihong et al., "Investigation of aquatic macrophytes in lakes of Beihu Watershed of East Lake area in Wuhan, in the autumn of 2009," Journal of Lake Sciences, vol. 23, no. 3, pp. 401-408, 2011.

[25] W. Li, G. Liu, B. Xiong et al., "The restoration of aquatic vegetation in lakes of Poyang Lake nature reserve after catastrophic flooding in 1998," Journal of Wuhan Botanical Research, no. 4, pp. 301-306, 2004 (Chinese).

[26] B. Zhang and J. Wang, "Preliminary opinions on the protection and utilization ofnatural resources in Poyang Lake," Freshwater Fisheries, no. 3, pp. 1-5, 1982 (Chinese).

Wei Du, (1) Ziqi Li, (2) Zengxin Zhang, (1) Qiu Jin, (1) Xi Chen, (3) and Shanshan Jiang (1)

(1) Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

(2) Middle School Affiliated to Hubei University,Wuhan 430062, China

(3) State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, Hohai University, Nanjing 210098, China Correspondence should be addressed to Zengxin Zhang; nfuzhang@163.com

Received 25 November 2016; Accepted 15 January 2017; Published 9 February 2017

Academic Editor: Roger P. Mormul
Table 1: The composition of macrophytes in the Poyang Lake
(September 7-14, 2013).

Serial   Plant community
number

1        Sagittaria pygmaea Miq.
2        Trapella sinensis Oliv.
3        Carex rhynchophysa C. A. Mey.
4        Eichhornia crassipes (Mart.) Solms
5        Aeschynomene indica Linn.
6        Sambucus chinensis Lindl.
7        Isachne globosa (Thunb.) Kuntze
8        Limnophila sessillflora (Vahl.) Bl.
9        Paspalum distichum L.
10       Hydrocharis dubia (Bl.) Back.
11       Ottelia alismoides (L.) Pers.
12       Ludwigia adscendens (L.) Hara
13       Juncellus serotinus
14       Blyxa japonica (Miq.) Maxim.
15       Marsilea quadrifolia L.
16       Nephrolepis cordifolia (L.) Presl
17       Carex spp.
18       Microcarpaea minima (Koen.) Merr.
19       Oryza rufipogon Griff.
20       Myriophyllum spicatum L.
21       Typha angustifolia L.
22       Monochoria vaginalis (Burm.f.) Presl
23       Rotala rotundifolia (Buch.-Ham) Koehne
24       Imperata cylindrica (Linn.) Beauv
25       Eleocharis tuberosa (Roxb.) Roem. et Schult.
26       Najas marina
27       Triarrherca sacchariflora
28       Cynodon dactylon (Linn.) Pers.
29       Zizania caduciflora (Turcz. ex Trin.) H.-M.
30       Hydrilla verticillata (L.f.) Royle
31       Utricularia aurea Lour.
32       Ceratophyllum demersum L.
33       Vallisneria natans (Lour.) Hara
34       Utricularia vulgaris L.
35       Polygonum L.
36       Trapa bispinosa Roxb.
37       Phragmites communis Trin.
38       Triarrhena lutarioriparia
39       Alternanthera Philoxeroides (Mart.) Griseb.
40       Nymphoides peltatum (Gmel.) O. Kuntze
41       Limnophila heterophylla (Roxb.) Benth.
42       Myriophyllum tuberculatum Roxburgh
43       Elymus dahuricus Turcz.

Serial   Phenological period              Lifestyle
number

1        Flowering fruit bearing stage    Emerged plant
2        Fruit period (florescence)       Floating-leaved plant
3        Vegetative period                Amphibian
4        Florescence                      Floating input plant
5        Flowering fruit bearing stage    Emerged plant
6        Vegetative period                Amphibian
7        Florescence                      Amphibian
8        Vegetative period                Amphibian
9        Vegetative period                Emerged plant
10       Fruit period                     Floating input plant
11       Flowering fruit bearing stage    Submerged plant
12       Flowering fruit bearing stage    Amphibian
13       Flowering fruit bearing stage    Amphibian
14       --                                Submerged plant
15       Vegetative period                Amphibian
16       Fruit period                     Amphibian
17       Florescence                      Amphibian
18       Vegetative period                Amphibian
19       Flowering fruit bearing stage    Amphibian
20       Vegetative period                Submerged plant
21       Fruit period                     Emerged plant
22       --                                Emerged plant
23       --                                Emerged plant
24       Vegetative period                Amphibian
25       Vegetative period                Emerged plant
26       Fruit period                     Submerged plant
27       Vegetative period                Emerged plant
28       Vegetative period                Amphibian
29       Vegetative period                Emerged plant
30       Vegetative period                Submerged plant
31       Florescence                      Submerged plant
32       Vegetative period                Submerged plant
33       Flowering fruit bearing stage    Submerged plant
34       Flowering fruit bearing stage    Submerged plant
35       Vegetative period                Amphibian
36       Flowering fruit bearing stage    Floating-leaved plant
37       Vegetative period                Emerged plant
38       Vegetative period                Amphibian
39       Florescence                      Emerged plant
40       Florescence                      Floating-leaved plant
41       Flowering fruit bearing stage    Emerged plant
42       Fruit period                     Emerged plant
43       Vegetative period                Amphibian

Table 2: The aquatic plant's association types in the Poyang Lake.

Serial    Plant community
number

1         Vallisneria natans (Lour.) Hara + Carex spp. + Limnophila
          sessiliflora (Vahl.) Bl. + Ceratophyllum demersum L. Carex
          spp. + Elymus dahuricus Turcz. +Vallisneria natans (Lour.)
          Hara + Myriophyllum tuberculatum Roxburgh

2         + Nymphoides peltatum (Gmel.) O. Kuntze + Ceratophyllum
          demersum L. + Limnophila heterophylla (Roxb.) Benth. +
          Eleocharis tuberosa (Roxb.) Roem. et Schult.

3         Carex spp.

4         Alternanthera philoxeroides (Mart.) Griseb. + Paspalum
          distichum L. + Paspalum distichum L.-Alternanthera
          philoxeroides (Mart.) Griseb.+Typha angustifolia L.-
          Alternanthera philoxeroides (Mart.) Griseb.

5         Aeschynomene indica Linn. + Juncellus serotinus + Oryza
          rufipogon Griff.

6         Carex spp. + Polygonum L.

7         Marsilea quadrifolia L.

8         Paspalum distichum L.

9         Eichhornia crassipes (Mart.) Solms + Nymphoides peltatum
          (Gmel.) O. Kuntze

10        Trapa bispinosa Roxb. + Microcarpaea minima (Koen.) Merr.
          + Isachne globosa (Thunb.) Kuntze + Carex spp. Eleocharis
          tuberosa (Roxb.) Roem. et Schult. + Ludwigia adscendens
          (L.) Hara + Elymus dahuricus Turcz.-Carex

11        spp. + Myriophyllum spicatum L.-Hydrilla verticillata
          (L.f.) Royle + Hydrilla verticillata (L.f.) Royle-
          Vallisneria natans (Lour.) Hara.

12        Carex rhynchophysa C. A. Mey.

13        Blyxa japonica (Miq.) Maxim. + Juncellus serotinus +
          Sagittaria pygmaea Miq.-Hydrilla verticillata (L.f.) Royle
          + Monochoria vaginalis (Burm.f.) Presl-Rotala rotundifolia
          (Buch.-Ham) Koehne.

14        Eichhornia crassipes (Mart.) Solms + Nymphoides peltatum
          (Gmel.) O. Kuntze + Marsilea quadrifolia L. +
          Alternanthera philoxeroides (Mart.) Griseb.-Eichhornia
          crassipes (Mart.) Solms. Hydrocharis dubia (Bl.) Back.+
          Triarrherca sacchariflora + Carex spp. + Hydrilla
          verticillata (L.f.) Royle +

15        Vallisneria natans (Lour.) Hara + Ceratophyllum demersum
          L. + Najas marina-Eleocharis tuberosa (Roxb.) Roem. et
          Schult. + Carex spp.-Triarrherca sacchariflora.

          Vallisneria natans (Lour.) Hara + Nymphoides peltatum
16        (Gmel.) O. Kuntze + Carex spp. + Limnophila heterophylla
          (Roxb.) Benth. + Ottelia alismoides (L.) Pers. + Trapa
          bispinosa Roxb.-Ottelia alismoides (L.) Pers. +
          Utricularia aurea Lour. + Hydrocharis dubia (Bl.) Back.-
          Trapa bispinosa Roxb. + Carex rhynchophysa C. A. Mey. +
          Trapella sinensis Oliv. + Sagittaria pygmaea Miq. +
          Eleocharis tuberosa (Roxb.) Roem. et Schult.

          Carex spp. + Nymphoides peltatum (Gmel.) O. Kuntze +
17        Eleocharis tuberosa (Roxb.) Roem. et Schult. + Zizania
          caduciflora (Turcz. ex Trin.) H.-M. + Elymus dahuricus
          Turcz. + Phragmites communis Trin. + Ceratophyllum
          demersum L.

18        Carex spp.

19        Elymus dahuricus Turcz.

20        Carex spp. + Eleocharis tuberosa (Roxb.) Roem. et Schult.
          + Nymphoides peltatum (Gmel.) O. Kuntze + Eleocharis
          tuberosa (Roxb.) Roem. et Schult.-Polygonum L.

21        Carex spp. + Polygonum L. + Eleocharis tuberosa (Roxb.)
          Roem. et Schult.-Polygonum L. + Carex spp.-Eleocharis
          tuberosa (Roxb.) Roem. et Schult.

22        Carex spp. + Polygonum L.

23        Carex spp. + Polygonum L. + Cynodon dactylon (Linn.) Pers.

24        Carex spp. + Elymus dahuricus Turcz. + Phragmites communis
          Trin.-Cynodon dactylon (Linn.) Pers. Ceratophyllum
          demersum L. + Nymphoides peltatum (Gmel.) O. Kuntze +
          Imperata cylindrica (Linn.) Beauv +

25        Carex spp. + Hydrilla verticillata (L.f.) Royle +
          Vallisneria natans (Lour.) Hara + Eleocharis tuberosa
          (Roxb.) Roem. et Schult.

26        Carex spp.

27        Carex spp. + Eleocharis tuberosa (Roxb.) Roem. et Schult.
          + Imperata cylindrica (Linn.) Beauv.

28        Carex spp. + Trapa bispinosa Roxb. + Ceratophyllum
          demersum L. + Utricularia aurea Lour. + Triarrhena
          lutarioriparia + Triarrherca sacchariflora.

29        Hydrilla verticillata (L.f.) Royle + Najas marina +
          Eleocharis tuberosa (Roxb.) Roem. et Schult. +
          Ceratophyllum demersum L. + Carex spp. + Nymphoides
          peltatum (Gmel.) O. Kuntze + Vallisneria natans (Lour.)
          Hara.

30        Najas marina + Trapa bispinosa Roxb. + Carex spp. +
          Zizania caduciflora (Turcz. ex Trin.) H.-M. + Triarrhena
          lutarioriparia.

31        Polygonum L. + Limnophila sessiliflora (Vahl.) Bl. +
          Utricularia vulgaris L. + Carex spp. + Eleocharis tuberosa
          (Roxb.) Roem. et Schult. + Elymus dahuricus Turcz. +
          Polygonum L.

Table 3: The habitat profiles of main association types in macrophyte
communities in the Poyang Lake.

Serial    Cluster type              Sampling     Multiplicity-cluster
number                                 date             degree

1         Limnophila sessiliflora    2013/9/7            4,3
          (Vahl.) Bl.               2013/9/14            3,3

2         Limnophila heterophylla    2013/9/7            5,4
          (Roxb.) Benth.            2013/9/13            4,4
                                     2013/9/7            4,5

3         Carex spp.                 2013/9/7            3, 3
                                     2013/9/8            5, 5
                                    2013/9/13            4, 5

4         Vallisneria natans         2013/9/7            5, 3
          (Lour.) Hara              2013/9/12            5, 3
5                                    2013/9/7            3, 3

          Eleocharis tuberosa       2013/9/11            5, 5
          (Roxb.) Roem. et.        2013/9/14            1, 4
          Schult

6         Phragmites communis        2013/9/7            2, 2
          Trin.                     2013/9/14            1, 1

7         Zizania caduciflora        2013/9/7            4, 5
          (Turcz. ex Trin.) H.-M.   2013/9/13            5, 4

8         Eleocharis tuberosa        2013/9/8            3, 3
          (Roxb.) Roem.et.          2013/9/9            5, 5
          Schult.-Polygonum L

9         Alternanthera              2013/9/9            5, 4
          philoxeroides              2013/9/9            5, 5
          (Mart.) Griseb.

10        Paspalum distichum         2013/9/9            4, 3
          L.-Alternanthera
          philoxeroides (Mart.)
           Griseb.

11        Typha angustifolia         2013/9/9            4, 3
          L.-Alternanthera
          philoxeroides
          (Mart.) Griseb.

12        Paspalum distichum L.      2013/9/9            4, 5
                                    2013/9/10            4, 5

13        Aeschynomene indica        2013/9/9            5, 3
          Linn.

14        Oryza rufipogon Griff.     2013/9/9            5, 5

15        Juncellus serotinus        2013/9/9            2, 1
                                    2013/9/10            5, 3

16        Carex spp.-Eleocharis      2013/9/9            4, 3
17        tuberosa (Roxb.) Roem.     2013/9/9            3, 4
          et Schult.

          Polygonum L.              2013/9/10            5, 5
                                    2013/9/14            3, 3

18        Cynodon dactylon          2013/9/10            5, 5
          (Linn.) Pers.

19        Marsilea quadrifolia L.   2013/9/10            3, 2

20        Eichhornia crassipes      2013/9/10            3, 2
          (Mart.) Solms

                                    2013/9/11            5, 4
21        Isachne globosa           2013/9/10            5, 4
          (Thunb.) Kuntze

22        Elymus dahuricus          2013/9/10            2, 5
          Turcz.-Carex spp.

23        Ludwigia adscendens       2013/9/10            5, 4
          (L.) Hara

24        Carex rhynchophysa C.     2013/9/10            3, 3
          A. Mey.

25        Sagittaria pygmaea        2013/9/10            3, 3
          Miq.-Hydrilla
          verticillata (L.f.)
          Royle

26        Phragmites communis       2013/9/11            3, 3
          Trin.-Cynodon dactylon
          (Linn.) Pers.

27        Nymphoides peltatum       2013/9/11            4, 3
          (Gmel.) O. Kuntze         2013/9/13            4, 3

                                    2013/9/11            5, 5
28        Imperata cylindrica       2013/9/12            5, 4
          (Linn.) Beauv

                                    2013/9/12            5, 4
29        Triarrhena                2013/9/12            5, 4
          lutarioriparia            2013/9/13            5, 4

30        Triarrherca               2013/9/12            5, 5
          sacchariflora

31        Hydrocharis dubia (Bl.)   2013/9/12            3, 3
          Back.

32        Ottelia alismoides (L.)   2013/9/13            3, 4
          Pers.                     2013/9/13            4, 4
33        Hydrocharis dubia (Bl.)   2013/9/13            4, 4
          Back.-Trapa bispinosa
          Roxb.

34        Carex rhynchophysa C.     2013/9/13            4, 4
          A. Mey.

35        Sagittaria pygmaea Miq.   2013/9/13            5, 3

36        Nephrolepis cordifolia    2013/9/14            5, 5
          (L.) Presl                2013/9/14            5, 5

37        Sambucus chinensis        2013/9/14            2, 2

38        Lindl.                     2013/9/7            1, 2
          Elymus dahuricus Turcz.   2013/9/11            3, 3
                                    2013/9/14            5, 4

Serial    Cluster type              Height     Number of    Coverage
number                                (cm)       plants        (%)

1         Limnophila sessiliflora    15-25         82           60
          (Vahl.) Bl.                 3-3          78           60

2         Limnophila heterophylla    37-45        144           90
          (Roxb.) Benth.              3-10        135           50
                                     45-70        294           80

3         Carex spp.                 50-80        170           40
                                     50-100       3600         100
                                     25-65        300           70

4         Vallisneria natans         45-70         26           90
          (Lour.) Hara               15-30         20           90
5                                    20-50        850           30

          Eleocharis tuberosa        30-85        1000          90
          (Roxb.) Roem. et.         18-35        350           10
          Schult

6         Phragmites communis        60-250        80           15
          Trin.                      56-70         36           10

7         Zizania caduciflora        60-120       260           60
          (Turcz. ex Trin.) H.-M.    70-168       144           85

8         Eleocharis tuberosa         3-60        240           40
          (Roxb.) Roem.et.          25-49        1000          95
          Schult.-Polygonum L

9         Alternanthera              10-50        900          100
          philoxeroides              42-70        672           95
          (Mart.) Griseb.

10        Paspalum distichum         10-25        1600          70
          L.-Alternanthera
          philoxeroides (Mart.)
           Griseb.

11        Typha angustifolia         80-200        25           60
          L.-Alternanthera
          philoxeroides
          (Mart.) Griseb.

12        Paspalum distichum L.      32-55        600           80
                                     20-35        1000         100

13        Aeschynomene indica       180-200        23           85
          Linn.

14        Oryza rufipogon Griff.     70-120       160          100

15        Juncellus serotinus        90-120        23           30
                                     20-60        850           90

16        Carex spp.-Eleocharis      43-79        640           60
17        tuberosa (Roxb.) Roem.      4-10        2000          40
          et Schult.

          Polygonum L.               20-45        1000          90
                                     20-72         57           60

18        Cynodon dactylon            6-10        420           90
          (Linn.) Pers.

19        Marsilea quadrifolia L.    15-25        368           40

20        Eichhornia crassipes       45-55         21           80
          (Mart.) Solms

                                     12-25        170           95
21        Isachne globosa            20-35        700           80
          (Thunb.) Kuntze

22        Elymus dahuricus           70-120       150           30
          Turcz.-Carex spp.

23        Ludwigia adscendens        20-40        108           95
          (L.) Hara

24        Carex rhynchophysa C.     100-150       750           50
          A. Mey.

25        Sagittaria pygmaea         10-17         23           40
          Miq.-Hydrilla
          verticillata (L.f.)
          Royle

26        Phragmites communis        30-90         95           40
          Trin.-Cynodon dactylon
          (Linn.) Pers.

27        Nymphoides peltatum         3-8         560           60
          (Gmel.) O. Kuntze          35-55         30           60

                                     35-65        2560          90
28        Imperata cylindrica        60-110       960           80
          (Linn.) Beauv

                                     60-110       960           80
29        Triarrhena                 70-165       650           85
          lutarioriparia             70-98        570           80

30        Triarrherca                80-103       200           95
          sacchariflora

31        Hydrocharis dubia (Bl.)    10-15         30           50
          Back.

32        Ottelia alismoides (L.)      15          20           80
          Pers.                      15-30         20           80
33        Hydrocharis dubia (Bl.)    10-15         96           70
          Back.-Trapa bispinosa
          Roxb.

34        Carex rhynchophysa C.      60-100       350           60
          A. Mey.

35        Sagittaria pygmaea Miq.    10-20         52           75

36        Nephrolepis cordifolia     13-25        500           95
          (L.) Presl                 13-20        400           90

37        Sambucus chinensis         10-27        100           40

38        Lindl.                     10-30        340           10
          Elymus dahuricus Turcz.    20-70         40           50
                                     62-131       280           80

Table 4: Number of the association area and standing crop
(fresh weight) in the total vegetation area and standing crop in
the Poyang Lake.

Serial                                Quadrat   Existing quantity (t)
number                                number
          Plant community                       Fresh     Fresh
                                                weight    weight
                                                          range

1         Imperata cylindrica            3       38.33      35-45
          (Linn.) Beauv

2         Eleocharis tuberosa            6       94.08     11.5-380
          (Roxb.) Roem. et Schult.

          Eleocharis tuberosa
          (Roxb.)

3         Roem. et                       2       137.5      75-200

          Schult.-Polygonum L.

4         Najas marina                   1        35          --

5         Triarrherca sacchariflora      1        40          --

6         Cynodon dactylon (Linn.)       1        40          --
          Pers.

7         Zizania caduciflora            2       99.76     9.52-190
          (Turcz. ex Trin.) H.-M.

8         Hydrilla verticillata          2       42.5       35-50
          (L.f.) Royle

9         Utricularia aurea Lour.        1        50          --

10        Elymus dahuricus Turcz.        3      148.05    14.15-340

11        Ceratophyllum demersum L.      4        80        35-150

12        Vallisneria natans             2       29.75      4.5-55
          (Lour.) Hara

13        Utricularia vulgaris L.        1        25          --

14        Polygonum L.                   6      34.11333   10.34-50

15        Trapa bispinosa Roxb.          2       57.5       55-60

16        Phragmites communis Trin.      1        120         --

          Phragmites communis
          Trin.-

17        Cynodon dactylon (Linn.)       1        20          --
          Pers.

18        Triarrhena lutarioriparia      1       27.03        --

19        Limnophila sessiliflora        1       12.8         --
          (Vahl) Blume

20        Carex spp.                    20      72.992    24.84-360

          Carex spp.-Eleocharis

21        tuberosa (Roxb.) Roem. et      1        35          --
          Schult.

22        Nymphoides peltatum            5        280       20-280
          (Gmel.) O. Kuntze

Serial
number
          Plant community             Dry       Dry
                                      weight    weight
                                                range

1         Imperata cylindrica          10.26     9.18-10.8
          (Linn.) Beauv

2         Eleocharis tuberosa          6.285     4.62-11.34
          (Roxb.) Roem. et Schult.

          Eleocharis tuberosa
          (Roxb.)

3         Roem. et                    21.345    20.65-22.04

          Schult.-Polygonum L.

4         Najas marina                 25.53         --

5         Triarrherca sacchariflora    9.32          --

6         Cynodon dactylon (Linn.)      5.8          --
          Pers.

7         Zizania caduciflora         104.08     6.46-201.7
          (Turcz. ex Trin.) H.-M.

8         Hydrilla verticillata        6.195     3.61-8.78
          (L.f.) Royle

9         Utricularia aurea Lour.      15.28         --

10        Elymus dahuricus Turcz.     23.86333    5.99-55

11        Ceratophyllum demersum L.   6.7775     3.07-10.08

12        Vallisneria natans           3.86      3.24-4.48
          (Lour.) Hara

13        Utricularia vulgaris L.       3.6          --

14        Polygonum L.                6.218333    4.6-9.71

15        Trapa bispinosa Roxb.        6.35      2.93-9.77

16        Phragmites communis Trin.    15.43         --

          Phragmites communis
          Trin.-

17        Cynodon dactylon (Linn.)      9.4          --
          Pers.

18        Triarrhena lutarioriparia    11.73         --

19        Limnophila sessiliflora      4.29          --
          (Vahl) Blume

20        Carex spp.                  8.7425     4.22-16.96

          Carex spp.-Eleocharis

21        tuberosa (Roxb.) Roem. et    8.53          --
          Schult.

22        Nymphoides peltatum          43.4       3.3-43.4
          (Gmel.) O. Kuntze
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Du, Wei; Li, Ziqi; Zhang, Zengxin; Jin, Qiu; Chen, Xi; Jiang, Shanshan
Publication:Scientifica
Article Type:Report
Geographic Code:9CHIN
Date:Jan 1, 2017
Words:6322
Previous Article:Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland.
Next Article:Effectiveness of Laser Therapy in the Management of Recurrent Aphthous Stomatitis: A Systematic Review.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |