Printer Friendly

Ciliated microeukaryotes (Alveolata: Ciliophora) of a lotic urban system located in Minas Gerais--Brazil.

The phylum Ciliophora is organized in 14 classes with ~8,000 described species (Gao et al., 2016). Among unicellular microeukaryotes, ciliates are the most specialized, diversified and with the highest complexity in terms of cellular organization (Puytorac, 1994). They typically occupy basal trophic levels and display a wide geographical distribution occurring in almost all environments such as marine, fresh and brackish waters, and also in edaphic systems like soils, mosses and lichens (Lynn, 2008).

Their diversity in lotic systems have been extensively studied in the northern hemisphere because of their potential use as water quality bioindicators (Wiackowski, 1981; Primc, 1988; Groliere et al., 1990; Madoni, 2005). However, scarce information is available in literature about their diversity in aquatic ecosystems in Brazil, even though its privileged hydrological condition. The access to ciliate diversity and biogeography is a challenge tasks because they are diminute organisms, difficult to identify (Finlay and Fenchel, 1999), there is a lack of experienced specialists (Foissner, 2006) and a number of species stay encysted for most of their life cycles (Foissner, 2004). In Brazil, significant works were performed with this emphasis such as conducted in Rio Grande do Sul (Safi et al., 2014), Parana (Pauleto et al., 2009; Buosi et al., 2011; Velho et al., 2005, 2013), Sao Paulo (Bagantini et al., 2013; Regali- Seleghim et al., 2011), Para (Castro et al., 2014), Minas Gerais (Dias et al., 2008, 2010) and Rio de Janeiro (Paiva and Silva-Neto, 2004a, b) states. Inventory studies constitute the first step for development of applied biotechnological usage of ciliates. Regali-Seleghim et al. (2011) highlight the importance of more works surveying the diversity of ciliates in less studied regions of Brazil given their ecological importance. Moreover, establishment of in vitro cultures will contribute with information to biomonitoring programs (Madoni and Romeo, 2006; Shi et al., 2012) and for better evaluation of the biotechnological potential of these organisms (Mansano et al., 2016). This present work aimed to survey the diversity of the species of ciliated protists in a neotropical lotic urban system located in Southern region of Minas Gerais state, Brazil.

The samples were taken from Jose Pereira stream (45[degrees]27'31" and 45[degrees]20' 57W, 22[degrees]23'18" and 22[degrees]26'57"S) a highly impacted watercourse with in natura disposal of sewage (Thomaz da Silva, 2015) located in the municipality of Itajuba, Minas Gerais, Brazil. A Van Veen dredge was used to collect sediment monthly for over a year (October 2014 to October 2015). The sediment samples were readily transferred to 500 mL plastic containers and moved to the laboratory to be processed. Each sample were then divided (~20 mL) into three petri dishes and screened using glass micropipettes. Each Petri dish was analyzed in the day of collecting and weekly for up to 4 weeks. For in vitro cultures, ciliates were transferred to new Petri dishes filled with mineral water where rice grains with shells were added to served as carbon source for bacterial growth that would act to sustain the propagation of the tested ciliates. The ciliates were identified according to Foissner and Berger (1996). The photographic records of in vivo specimens were carried out with the aid of a camera attached to a microscope Olympus BX 51. The main features used in the identification of ciliates were: body shape, position and number of contractile vacuoles, oral and somatic ciliatures, position of macronucleus and shape of inclusions and color and the cytoplasm. Eventually, DAPI, a DNA specific staining method (Kapuscinski, 1995), protargol (Dieckmann, 1995) and dry silver nitrate (Klein, 1958) were used for species confirmation.

We recorded 48 ciliate morphospecies from the sediment samples taken from Jose Pereira stream (Figure 1). These microorganisms were classified according to Lynn (2008) and distributed into the classes Karyorelictea (n=1), Heterotrichea (n=6), Spirotrichea (n=15), Litostomatea (n=2), Phyllopharyngea (n=2), Colpodea (n=1), Prostomatea (n=1), Oligohymenophorea (n=20) (Table 1). The class Oligohymenophorea were the most abundant in species number being distributed into the sub-classes: Peniculia (n=6), Hymenostomatia (n=4) and Peritrichia (n=10).

Among all these morphospecies, the species Euplotes aediculatus, Euplotes eurystomus, Spirostomum minus and Spirostomum teres, and Paramecium bursaria, Paramecium caudatum and Tetmemena pustulata were the ones that best adapted to the in vitro growth conditions (up to several months) using mineral water and rice grains and Cerophyl medium (Sonneborn, 1957), respectively (data not shown).

This study contributed to the understanding of the diversity of ciliated protists in Brazil, since this is the first work in the Southern region of Minas Gerais. Still, such studies can be useful to a better comprehension of the trophic relationships in aquatic environments, can support biomonitoring programs that assess the quality of water as well as the maintenance and conservation of the species with biotechnological potential (Madoni and Romeo, 2006; Regali-Seleghim et al., 2011; Gutierrez et al., 2011).

In Brazil, the first work on ciliates from freshwater environments were carried out by Cunha in the early twentieth century (Cunha, 1913; Faria and Cunha, 1917; Cunha and Fonseca, 1918) with few recent studies on inventory of these micro-organisms in inland waters (Paiva and Silva-Neto, 2004a, b; Dias, 2007; Dias et al., 2008; Regali-Seleghim et al., 2011; Safi et al., 2014; Sartini, 2012; Mendonca, 2012; Castro et al., 2014; Kuhner et al., 2016). Cotterill et al. (2008) estimated that there are about 40,000 species of free-living ciliates, where only 4,500 species (~ 11%) have been described so far. Recent studies emphasize the need to increase sampling effort in South America for a better understanding of ciliates diversity in this region (Fenchel and Finlay, 2004; Foissner, 2006; Foissner and Hawksworth, 2009), as there are a large number of unexplored environments and potential implication to biomonitoring and conservation of these ecosystems (Mitchell and Meisterfeld, 2005; Cotterill et al., 2008).

The saprobic system for water quality evaluation, and more specifically organic pollution, developed by Kolkwitz and Marsson (1908, 1909), is widely used in biological classification of running water. The original list of indicator species, including ciliates, was revised and expanded (Foissner, 1988). Among the 48 morphospecies found in the stream Jose Pereira, 23 are included in the saprobic system and are considered biomarkers (Table 1), in which the vast majority were indicative of organically enriched environments (polluted or extremely polluted water), such as Loxodes striatus, Spirostomum teres, Paramecium caudatum, Euplotes aediculatus, Euplotes eurystomus, Tokophrya lemnarum, Cyclidium cf. glaucoma, Carchesium polypinum, Vorticella convallaria-complex, Spirostomum minus, Stentor polymorphus, Stentor roeselii, Aspidisca and Coleps hirtus. This observation is corroborated by a recent study (Thomaz da Silva, 2015) focusing in the quality of the water in this same sampling station, using physical and chemical parameters to classify this lotic system as Class III (highly polluted water) (Brasil, 2005), and highlighted the high levels of electrical conductivity, total coliforms, phosphorus, total nitrogen, ammonia and chlorophyll.

Moreover, we were able to stably maintain the in vitro growth of seven species of ciliates: Euplotes aediculatus, Euplotes eurystomus, Paramecium bursaria, Paramecium caudatum, Spirostomum minus, Spirostomum teres and Tetmemena pustulata. The ability to grow these organisms in vitro using cerophyl medium (Sonneborn, 1957) expands the possibilities of future applied studies such as acute trials (ecotoxicology), detection, characterization and isolation of secondary metabolites, characterization of molecules with antimicrobial activity, contributing to neotropical water monitoring programs (Madoni and Romeo, 2006; Petrelli et al., 2012; Mansano et al., 2016). This present study contributes to a better comprehension about the diversity of ciliated protists in limnic ecosystems in Brazil and emphasizes the importance of development of new and efficient growth methods for in vitro culture of these microorganisms aiming future biotechnological end environmental monitoring studies.


This work was partially supported by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Edital Universal 2016, FAPEMIG). The Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) provided research grant to Roberto Junio P. Dias (Bolsa de Produtividade PQ) and CAPES to Marcus Vinicius Xavier. We thank Marcelo Jose de Carvalho for help in laboratory work.


BAGANTINI, I.L., SPINOLA, A.L.G., PERES, B.M., MANSANO, A.S., RODRIGUES, M.A.A., BATALHA, M.A.P., LUCCA, J.V., GODINHO, M.J.L., TUNDISI, T.M. and REGALI-SELEGHIM, M.H., 2013. Protozooplankton and its relationship with environmental conditions in 13 water bodies of the Mogi-Guacu basin--SP, Brazil. Biota Neotropica, vol. 13, pp. 1-12. S1676-06032013000400016.

BRASIL. Conselho Nacional do Meio Ambiente--CONAMA, 2005. Resolucao n[degrees] 357, de 17 de marco de 2005. Classificacao dos corpos de agua. Diario Oficial da Republica Federativa do Brasil, Brasilia, 18 mar. pp. 27.

BUOSI, P.R.B., PAULETO, G.M., LANSAC-TOHA, F.A. and VELHO, L.F.M., 2011. Ciliate community associated with aquatic macrophyte roots: effects of nutrient enrichment on the community composition and species richness. European Journal of Protistology, vol. 47, no. 2, pp. 86-102. ejop.2011.02.001. PMid:21353502.

CASTRO, L.A., KUPPERS, G.C., SCHWEIKERT, M., HARADA, M.L. and PAIVA, T.S., 2014. Ciliates from eutrophized water in the northern Brazil and morphology of Cristigera hammeri Wilbert, 1986 (Ciliophora, Scuticociliatia). European Journal of Protistology, vol. 50, no. 2, pp. 122-133. ejop.2014.01.005. PMid:24703614.

COTTERILL, F.PD., AL-RASHEID, K.A.S. and FOISSNER, W., 2008. Conservation of protists: is it needed at all. Biodiversity and Conservation, vol. 17, no. 2, pp. 427-444. http://dx.doi. org/10.1007/s10531-007-9261-8.

CUNHA, A., 1913. Contribuicao para o conhecimento da fauna de protozoarios do Brasil. Memorias do Instituto Oswaldo Cruz, vol. 5, no. 2, pp. 101-122.

CUNHA, A.M. and FONSECA, O., 1918. O microplancton das costas meridionais do Brazil. Memorias do Instituto Oswaldo Cruz, vol. 10, no. 2, pp. 99-103.

DIAS, R.J.P., 2007. Protistas ciliados (Protista, Ciliophora) encontrados no corrego Sao Pedro (bacia do rio Paraibuna), municipio de Juiz de Fora, Minas Gerais: taxonomia, morfologia, biomonitoramento e relacoes epibioticas. Juiz de Fora: Universidade Federal de Juiz de Fora, 258 p. Dissertacao de Mestrado em Ciencias Biologicas.

DIAS, R.J.P, CABRAL, A.F., SIQUEIRA-CASTRO, I.C.V., SILVA-NETO, I.D. and D'AGOSTO, M.A., 2010. Morphometric study of a Brazilian strain of Carchesium polypinum (Ciliophora: Peritrichia) attached to Pomacea figulina (Mollusca: Gastropoda), with notes on a high infestation. Zoologia, vol. 27, no. 3, pp. 483-488.

DIAS, R.J.P, WIELOCH, A.H.B. and D'AGOSTO, M.A., 2008. The influence of environmental characteristics on the distribution of ciliates (Protozoa, Ciliophora) in an urban stream of southeast. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 68, no. 2, pp. 287-295. PMid:18660956.

DIECKMANN, J., 1995. An improved protargol impregnation for ciliates yielding reproducible results). European Journal of Protistology, vol. 31, no. 4, pp. 372-382. S0932-4739(11)80449-9.

FARIA, J.G. and CUNHA, A.M., 1917. Estudos sobre o Microplancton da baia do Rio de Janeiro e suas imediacoes. Memorias do Instituto Oswaldo Cruz, vol. 1, no. 1, pp. 68-92. S0074-02761917000100003.

FENCHEL, T. and FINLAY, B.J., 2004. The ubiquity of small species: patterns of local and global diversity. Bioscience, vol. 54, no. 8, pp. 777-784.[0777:TU OSSP]2.0.CO;2.

FINLAY, B.J. and FENCHEL, T., 1999. Divergent perspectives on protist species richness. Protist, vol. 150, no. 3, pp. 229-233. PMid:10575696.

FOISSNER, W. and BERGER, H., 1996. A user-friendly guide to ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology, vol. 35, pp. 375-498.

FOISSNER, W. and HAWKSWORTH, D.L., 2009. Protist diversity and geographical distribution. Dordrecht: Springer. http://dx.doi. org/10.1007/978-90-481-2801-3.

FOISSNER, W., 1988. Taxonomic and nomenclatural revision of Sladecek's list of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiolgia, vol. 166, no. 1, pp. 1-64. http://dx.doi. org/10.1007/BF00017483.

FOISSNER, W., 2004. Some new ciliates (Protozoa, Ciliophora) from an Austrian floodplain soil, including a giant, red "flagship", Cyrtohymena (Cyrtohymenides) aspoecki nov. subgen., nov. spec. Denisia, vol. 13, pp. 369-382.

FOISSNER, W., 2006. Biogeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozoologica, vol. 45, pp. 111-136.

GAO, F., WARREN, A., ZHANG, Q., GONG, J., MIAO, M., SUN, P, XU, D., HUANG, J., YI, Z. and SONG, W., 2016. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Nature/Scientific Reports, vol. 29, pp. 1-14. PMid:27126745.

GROLIERE, C.A., CHAKLI, R., SPARAGANO, O. and PEPIN, D., 1990. Application de la colonisation d'un substrat artificiel par les cilies a l'etude de la qualite des eaux d'une riviere. European Journal of Protistology, vol. 25, no. 4, pp. 381-390. http://dx.doi. org/10.1016/S0932-4739(11)80131-8. PMid:23196052.

GUTIERREZ, J.C., AMARO, F., DIAZ, S., DE FRANCISCO, P., CUBAS, L.L. and MARTIN-GONZALEZ, A., 2011. Ciliate metallothioneins: unique microbial eukaryotic heavy-metal-binder molecules. Journal of Biological Inorganic Chemistry, vol. 16, no. 7, pp. 1025-1034. PMid:21785894.

KAPUSCINSKI, J., 1995. DAPI: a DNA-specific fluorescent probe. Biotechnic & Histochemistry, vol. 70, no. 5, pp. 220-233. PMid:8580206.

KLEIN, B.N., 1958. The "dry" silver method and its proper and use. The Journal of Protozoology, vol. 5, no. 2, pp. 99-103. http://

KOLKWITZ, R. and MARSSON, K., 1908. Okologie der pfanzlichen Saprobien. Berichte der Deutschen Botanischen Gesellschaft, vol. 26, pp. 505-519.

KOLKWITZ, R. and MARSSON, K., 1909. Okologie der tierischen Saprobien. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, vol. 2, no. 1-2, pp. 126-152. http://dx.doi. org/10.1002/iroh.19090020108.

KUHNER, S., SIMAO, T.L.L., SAFI, L.S.L., GAZULHA, F.B., EIZIRIK, E. and UTZ, L.R.P., 2016. Epistylisportoalegrensis n. sp. (Ciliophora, Peritrichia): a new freshwater Ciliate species from Southern Brazil. The Journal ofEukaryotic Microbiology, vol. 63, no. 1, pp. 93-99. PMid:26198754.

LYNN, D.H., 2008. The ciliated protozoa: characterization, classification and guide to the literature. 3rd ed. New York: Springer Press.

MADONI, P. and ROMEO, M.G., 2006. Acute toxicity of heavy metals towards freshwater ciliated protists. Environmental Pollution, vol. 141, no. 1, pp. 1-7. envpol.2005.08.025. PMid:16198032.

MADONI, P., 2005. Ciliated protozoans communities and saprobic evaluation of water quality in the hilly zone of some tributaries of the Po River (northern Italy). Hydrobiologia, vol. 541, no. 1, pp. 55-69.

MANSANO, A.S., MOREIRA, R.A., PIEROZZI, M., OLIVEIRA, T.M.A., VIEIRA, E.M., ROCHA, O. and REGALI-SELEGHIM, M.H., 2016. Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: The use of protozoan in ecotoxicology. Environmental Pollution, vol. 213, pp. 160-172. PMid:26890484.

MENDONCA, H.S.S., 2012. Ciliados planctonicos e epibentonicos do rio das Velhas e Tributarios, MG: ecologia e uso potencial para bioindicacao da qualidade das aguas. Ouro Preto: Universidade Federal de Ouro Preto, 319 p. Dissertacao de Mestrado em Ciencias Biologicas.

MITCHELL, E.A.D. and MEISTERFELD, R., 2005. Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free living protists. Protist, vol. 156, no. 3, pp. 263-267. http:// PMid:16325540.

PAIVA, T.S. and SILVA-NETO, I.D., 2004a. Ciliate protists from Cabiunas lagoon (Restinga de Jurubatiba, Macae, Rio de Janeiro) with emphasis on water quality indicator species and description of Oxytricha marcili sp. n. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 64, no. 3A, pp. 465-478. http://dx.doi. org/10.1590/S1519-69842004000300010. PMid:15622844.

PAIVA, T.S. and SILVA-NETO, I.D., 2004b. Comparative morphometric study of three species of Apoamphisiella Foissner, 1997 (Ciliophora: Hypotrichea) from Brazilian locations, including a description of Apoamphiseilla foissneri sp. n. Zootaxa, vol. 505, no. 1, pp. 1-26.

PAULETO, G.M., VELHO, L.F.M., BUOSI, P.R.B., BRAO, A.F., LANSAC-TOHA, F.A. and BONECKER, C.C., 2009. Spatial and temporal patterns of ciliate species composition (Protozoa: Ciliophora) in the plankton of the Upper Parana River floodplain. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 69, no. 2, suppl., pp. 517-527. PMid:19738959.

PETRELLI, D., BUONANNO, F., VITALI, L. and ORTENZI, C., 2012. Antimicrobial activity ofthe protozoan toxin climacostol and its derivatives. Biologia, vol. 67, no. 3, pp. 525-529. http://

PRIMC, B., 1988. Trophic relationships of ciliated Protozoa developed under different saprobic conditions in the periphyton of the Sava River. Periodicum Biologorum, vol. 90, pp. 349-353.

PUYTORAC, P., 1994. Phylum Ciliophora Doflein, 1901. In: P PUYTORAC, ed. Traite de zoologie, infusoires cilies: systematoque. Paris: Masson, vol. 2, no. 2, pp. 1-15.

REGALI-SELEGHIM, M.H., GODINHO, M.J.L. and MATSUMURA-TUNDISI, T., 2011. Checklist dos "protozoarios" de agua doce do Estado de Sao Paulo, Brasil. Biota Neotropica, vol. 11, suppl. 1, pp. 135-172.

SAFI, L.S.L., FONTOURA, N.F., SEVERO, H.J. and UTZ, L.R.P., 2014. Temporal structure ofthe peritrich ciliate assemblage in a large Neotropical lake. Zoological Studies, vol. 53, pp. 1-12.

SARTINI, B.E.S., 2012. Composicao e estrutura da taxocenose de ciliados peritriqueos (Ciliophora, Peritrichia) em ambientes loticos com gradiente de poluicao organica e aspectos ecologicos da relacao epibiotica de peritriqueos e moluscos gastropodes. Juiz de Fora: Universidade Federal de Juiz de Fora, 95 p. Dissertacao de Mestrado em Ciencias Biologicas.

SHI, X., LIU, X., LIU, G., SUN, Z. and XU, H., 2012. An approach to analyzing spatial patterns of protozoan communities for assessing water quality in the Hangzhou section of Jing-Hang Grand Canal in China. Environmental Science and Pollution Research International, vol. 19, no. 3, pp. 739-747. http://dx.doi. org/10.1007/s11356-011-0615-0. PMid:21927840.

SONNEBORN, T.M., 1957. Breeding systems, reproductive methods and species problems in Protozoa. In: E. MAYR, ed. The species problem. Amer: Association for the Advancement of Science, pp. 155-324.

THOMAZ DA SILVA, S.C.M., 2015. Caracterizacao dos efeitos genotoxicos induzidos por amostras de agua provenientes do ribeirao Jose Pereira, sul de Minas Gerais: subsidio para monitoramento da qualidade da agua. Itajuba: Universidade Federal de Itajuba, 69 p. Dissertacao de Mestrado em Meio Ambiente e Recursos Hidricos.

VELHO, L.F.M., LANSAC-TOHA, S.M., BUOSI, P.R.B., MEIRA, B.R., CABRAL, A.F. and LANSAC-TOHA, F.A., 2013. Structure of planktonic ciliates community (Protist, Ciliophora) from an urban lake of southern Brazil. Acta Scientiarum. Biological Sciences, vol. 35, no. 4, pp. 531-539. actascibiolsci.v35i4.18579.

VELHO, L.F.M., PEREIRA, D.G., PAGIORO, T.A., SANTOS, V.D., PERENHA, M.C.Z. and LANSAC-TOHA, F.A., 2005. Abundance, biomass and size structure of planktonic ciliates in reservoirs with distinct trophic states. Acta Limnologica Brasiliensia, vol. 17, pp. 361-371.

WIACKOWSKI, K., 1981. Analysis of Ciliata from polluted sector of the River Drwinka on the basis of binary data. Acta Hydrobiologica, vol. 23, pp. 319-329.

J. A. Vilas Boas (a) *, M. V. X. Senra (b), A. L. Fonseca (a) and R. J. P Dias (b)

(a) Laboratorio de Limnologia, Programa de Pos-graduacao em Meio Ambiente e Recursos Hidricos, Instituto de Recursos Naturais, Universidade Federal de Itajuba--UNIFEI, Avenida BPS, 1303, Pinheirinho, CEP 37500-903, Itajuba, MG, Brasil

(b) Laboratorio de Protozoologia, Instituto de Ciencias Biologicas, Universidade Federal de Juiz de Fora--UFJF, Rua Jose Lourenco Kelmer, s/n, Martelos, CEP 36036-900, Juiz de Fora, MG, Brasil

* e-mail:

Received: October 31, 2017-Accepted: January 2, 2018-Distributed: August 31, 2019 (With 1 figure)

Caption: Figure 1. Representatives of ciliated found in Jose Pereira. (a) Loxodes striatus; (b) Blepharisma sinuosum; (c) Lembadium lucens; (d) Colepshirtus; (e) Spirotrichea (morphospecies 1); (f)Euplotesaediculatus; (g) Euploteseurystomus; (h) Frontonia leucas; (i) Paramecium bursaria; (j) Paramecium caudatum; (k) Urocentrum turbo; (l) Tetmemena pustulata; (m) Vorticella campanula; (n) Vorticella convallaria-complex. Barras: 20 [micro]m.
Table 1. Ciliated protist species found in Jose Pereira
stream, Itajuba, Minas Gerais, Brazil.

Ciliates from Brazilian                   D   1st   2nd   3rd
freshwater ecosystems

Class Karyorelictea                       D   1st   2nd   3rd
  Order Loxodida
    Loxodes striatus                      +    -     -     -
Class Heterotrichea
  Order Heterotrichida
    Blepahrisma sinuosum                  +    +     -     -
    Spirostomum minus                     +    +     +     +
    Spirostomum teres                     +    +     +     +
    Stentor polymorphus                   +    +     -     -
    Stentor roeselii                      +    +     -     -
Class Spirotrichea
  Sub-class Hypotrichia
    Aspidisca cicada                      +    +     -     -
    Euplotes aediculatus                  +    +     +     +
    Euplotes eurystomus                   +    +     +     +
  Sub-class Stichotrichia
    Tetmemena pustulata                   +    +     +     +
    Stichotrichia (morphospecies 1-9)     +    +     -     -
  Sub-class Oligotrichia
    Halteria cf. grandinella              +    +     -     -
Class Litostomatea
  Order Haptorida
    Dipleptus sp.                         +    +     +     -
  Order Pleutostomatida
    Litonotus sp.                         +    +     -     -
Class Phyllopharyngea                     D   1st   2nd   3rd
  Sub-class Suctoria
  Order Endogenida
    Tokophrya lemnarum                    +    +     -     -
    Suctoria (morphospecies 1)            +    +     -     -
Class Prostomatea
    Coleps hirtus                         +    +     -     -
Class Oligohymenophorea
  Sub-class Peniculia
    Frontonia leucas                      +    +     +     -
    Lembadium lucens                      +    +     +     -
    Paramecium aurelia-complex            +    +     +     +
    Paramecium bursaria*                  +    +     +     +
    Paramecium caudatum                   +    +     +     +
    Urocentrum turbo                      +    +     -     -
  Sub-class Hymenostomatia
    Glaucoma frontata                     +    +     -     -
    Hymenostomatia (morphospecies 1-2)    +    +     -     -
  Order Scuticociliatida
    Cyclidium cf. glaucoma                +    +     -     -
  Sub-class Peritrichia
    Carchesium polypinum                  +    +     -     -
    Epistylis sp.                         +    +     -     -
    Opercularia sp.                       +    +     -     -
    Vorticella convallaria-complex        +    +     +     -
    Vorticella campanula                  +    +     -     -
    Vorticella (morphospecies 1-4)        +    +     -     -

Ciliates from Brazilian                   4th    S
freshwater ecosystems

Class Karyorelictea                       4th    S
  Order Loxodida
    Loxodes striatus                       -     p
Class Heterotrichea
  Order Heterotrichida
    Blepahrisma sinuosum                   -    **
    Spirostomum minus                      +    a-b
    Spirostomum teres                      +     p
    Stentor polymorphus                    -    a-b
    Stentor roeselii                       -    a-b
Class Spirotrichea
  Sub-class Hypotrichia
    Aspidisca cicada                       -    a-b
    Euplotes aediculatus                   +     a
    Euplotes eurystomus                    +     a
  Sub-class Stichotrichia
    Tetmemena pustulata                    +     b
    Stichotrichia (morphospecies 1-9)      -    **
  Sub-class Oligotrichia
    Halteria cf. grandinella               -    b-a
Class Litostomatea
  Order Haptorida
    Dipleptus sp.                          -    **
  Order Pleutostomatida
    Litonotus sp.                          -    **
Class Phyllopharyngea                     4th    S
  Sub-class Suctoria
  Order Endogenida
    Tokophrya lemnarum                     -     a
    Suctoria (morphospecies 1)             -    **
Class Prostomatea
    Coleps hirtus                          -    a-b
Class Oligohymenophorea
  Sub-class Peniculia
    Frontonia leucas                       -     b
    Lembadium lucens                       -    ba
    Paramecium aurelia-complex             -    b-a
    Paramecium bursaria*                   +     b
    Paramecium caudatum                    -    p-a
    Urocentrum turbo                       -     b
  Sub-class Hymenostomatia
    Glaucoma frontata                      -    **
    Hymenostomatia (morphospecies 1-2)     -    **
  Order Scuticociliatida
    Cyclidium cf. glaucoma                 -     a
  Sub-class Peritrichia
    Carchesium polypinum                   -     a
    Epistylis sp.                          -    **
    Opercularia sp.                        -    **
    Vorticella convallaria-complex         -     a
    Vorticella campanula                   -     b
    Vorticella (morphospecies 1-4)         -    **

D = appeared in the same day of assay; 1st = appeared in the
first week of assay; 2nd = in the second week; 3rd = in the
third week; 4th = in the fourth; S = saprobicity (Foissner
& Berger, 1996); p = polysaprobic; a = alpha-mesosaprobic;
b = beta-mesosaprobic; **=not classified; + = occurred;
-- = absent. Dark names represent species that have been
successfully in vitro cultivated in mineral water
supplemented with crushed rice with shells; * First record
in Minas Gerais state.
COPYRIGHT 2019 Association of the Brazilian Journal of Biology
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Notes and Comments
Author:Boas, J.A. Vilas; Senra, M.V.X.; Fonseca, A.L.; Dias, R.J.P.
Publication:Brazilian Journal of Biology
Date:May 26, 2019
Previous Article:Variation in the prevalence and abundance of acanthocephalans in brown-nosed coatis Nasua nasua and crab-eating foxes Cerdocyon thous in the...
Next Article:An ovotestis event in the gonochoric sea urchin Loxechinus albus (Echinodermata: Echinoidea).

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |