Printer Friendly

Characterization of Recharge Mechanisms and Sources of Groundwater Salinization in Ras Jbel Coastal Aquifer (Northeast Tunisia) Using Hydrogeochemical Tools, Environmental Isotopes, GIS, and Statistics.

1. Introduction

The hydrogeology of coastal aquifers has been studied intensively during the past decades, stimulated by both scientific interest and societal relevance [1]. Coastal areas throughout the Mediterranean face salinization problems of groundwater which is the major source of water supply especially for drinking and agricultural sector. The imbalance between abstraction and natural recharge rates causes an overexploitation of groundwater resources resulting in declining groundwater table, water quality degradation, and crop damage.

A number of aquifers in coastal zones are being increasingly exploited and affected ([2-6]). For instance, groundwater contamination and decline of water levels have been reported in Tunisia [7-13] and in many countries around the world. It has been reported in India [14], Jordan [15], Australia [16], USA [17], China ([18, 19]), Netherland [1], and among many others.

In semiarid coastal regions of north-eastern Tunisia, such as Ras Jbel plain, the groundwater is usually the main resource used for irrigation and drinking purposes. Nevertheless, salinization is becoming a common problem affecting groundwater resources. Groundwater exploitation of the Ras Jbel aquifer began in 1949 and has increased each year since 1980. Under pressures of population, climate change, and pollution, the aquifer faces substantial challenges in the management of scarce freshwater resources. During the last four decades, the shallow aquifer groundwater has been overexploited through excessive, uncontrolled pumping mainly for domestic and agricultural purposes [20]. Salinization due to seawater intrusion and decreasing groundwater levels has recently been identified [21]. Unplanned and substantial withdrawals of groundwater from the shallow aquifer of Ras Jbel have resulted in severe water level decline of up to 7 m in some areas and high total dissolved solids (TDS) contents reaching 8000 mg/l. Reports of increasing salinity of groundwater supplies in the area suggest a need to define the sources of salt water. It is also useful to study the recharge mechanisms as well as the mixing fresh water/saline water.

Stable isotope and geochemical techniques have been used in groundwater studies of coastal aquifers worldwide [22-25] for determining the origins of groundwater salinization in aquifers and processes that affect water chemistry, such as rock weathering, evaporation, atmospheric precipitation, and cation exchange. Consequently, studying stable isotope and geochemical techniques can significantly improve our understanding of groundwater hydrodynamical processes and chemical evolution [26]. In the present study, environmental isotopes ([delta][sup.18]O, [delta][sup.2]H) in conjunction with hydrochemistry (major ions) were employed (1) to define the potential sources and different mechanisms of groundwater salinization in the study area (2) to discuss the chemical evolution of groundwater and (3) to explain groundwater recharge and discharge in the coastal plain of Metline- Ras Jbel- Raf Raf.

2. Study Area

The Metline-Ras Jbel-Raf Raf plain, which covers a total area of about 50 [km.sup.2], represents one of the most important agricultural regions in north-eastern Tunisia (Figure 1). It is characterized by a semiarid, "Mediterranean" climate with mild, wet winters and warm, dry summers [27, 28]. The average annual precipitation ranges from approximately 258 to 993 mm (Figure 2). Geologically, it is limited to the south by Jbel Djaouf, En Nadhour, and Ed Demina, to the southwest by Jbel Sidi Saleh, Hakima, and El Faouar, to northwest by Jbel Bab Banzart, Sidi Bou Choucha, and Touchela, to the north and northeast by the Mediterranean sea. The plain of Metline-Ras Jbel-Raf Raf is a wide basin of collapse, formed by a subsidence followed by an alluvial and recent sedimentation. It is affected by folding and faults in NW-SE and SSW-NNE directions. Sedimentary series extend from Miocene to Quaternary. The lithological description of these sediments [28-30] reveals that the Miocene is represented by the Kechabta and Wadi Bel Khedim formations. The Kechabta formation has a thickness of about 1000 m and consists of alternation of marls and fine sandstone benches. The Wadi Bel Khedim formation is of 250 m thickness. At the east of Raf Raf, it is composed of large outcrops of gray marls with gypsum benches. The Quaternary series unconformably overlie the Miocene series and is divided into seven units (from bottom to the top [qm.sup.1], Aa, [qm.sup.2], [Qp.sup.a], Qp-t, D and a).

Hydrologically, the Quaternary series and the current formations, characterized by their extension and their good permeability, host the shallow aquifer of Ras Jbel. This aquifer is recharged by local infiltration on the plain, by water flowing from the surrounding hills, and from the different rivers crossing the plain: Wadi Beni Ata and Wadi Ali in Beni Ata region, Wadi El Kantra, El Blaat, and El Ma in Ras Jbel region, Wadi Sandid draining the zone of Raf Raf and Wadi El Kantra in the region of Dar El Khaddar. Pumping tests showed that transmissivity can reach 15 x [10.sup.-4] [m.sup.2]/s. The most transmissive areas are the low alluvial plain of Bahirat Beni Ata, the low alluvial area of Wadi El Krib and El Aouinet, and the upstream area of Ain Cherchar, Ain Ezzaouia, Ain Kassa, and Ain El Hammam, as well as the sandstone dune of Ain El Mestir and Ain Mahloul.

The shallow aquifer of Ras Jbel is affected by natural and anthropogenic factors like evaporation, irrigation, pumping, and so forth. The aquifer is tapped by several private and state owned wells. In the period between 1985 and 1990, the exploitation rate was estimated at 13,5 [Mm.sup.3]/ year, which exceeded the renewable resources evaluated at 8,44 [Mm.sup.3]/year [31]. The total number of dug wells has been estimated to be 1387 in 1985,1396 in 1990, and 1563 in 2005. In 2005, the exploitation rate was estimated at 10,27 [Mm.sup.3]/year (Figure 3). The massive exploitation of aquifer resources in response to the heavy pumping caused a drop in the water level (Figure 4) and the deterioration of water quality. In 1949, the salinity of the groundwater varied between 648 and 1692 mg/l [32]. The investigations carried out by the DGRE between 1985 and 1993 through several monitoring wells revealed the existence of a very saline groundwater. The degradation of the water quality has been detected mainly in coastal areas where salt concentrations exceeded 15 g/l in 1985 and 8 g/l in 1993 and in the depression of Bahirat Beni Ata where the ante-quaternary substratum is below the sea level [21].

3. Methods

3.1. Water Sampling and Chemical Analysis. Ninety-four samples (including pumping wells and piezometers) were collected for geochemical analysis (major elements) and isotopes ([delta][sup.2]H, [delta][sup.18]O) during the wet and the dry season of March and July 2007 (Figure 5). Sampling locations were recorded using a potable GPS device. Prior to sampling, all wells were pumped for several minutes to eliminate the influence from stagnant water. Samples were collected in cleaned polyethylene bottles, tightly capped and stored at 4[degrees] C until analysis. Electrical conductivity (EC), salinity, and pH were measured in the field using a portable conductivity, salinity, and pH meter.

Chemical analyses were done using a Varian 730-ES ICP Optical Emission Spectrometer for cations and using ion chromatography (DX-120, Dionex, USA) for anions. HC[O.sup.-.sub.3] was measured by titration (Hach, USA). Samples for stable isotope analysis were collected according to the procedures described by Clark and Fritz [33]. Isotopic analyses were conducted in the isotopic laboratory of the department of Hydrology and Geo-environmental Sciences of the Faculty of Earth and Live Sciences of the Free University of Amsterdam. Isotopic ratios are expressed in per mil ([delta]) and oxygen and hydrogen isotope analyses were reported to d notation relative to Vienna Standard Mean Oceanic Water (V-SMOW), where d = [(Rs/RVSMOW) - 1] x 1000, Rs represents either the [sup.18]O/[sup.16]O or the [sup.2]H/[sup.1]H ratio of the sample, and RSMOW is [sup.18]O/[sup.16]O or the [sup.2]H/[sup.1]H ratio of the SMOW. Typical precisions are [+ or -] 0.1 and [+ or -] 1% for oxygen-18 and deuterium, respectively.

3.2. Statistical Analysis. The physicochemical parameters and chemical composition of the groundwater samples are presented in Table 1. All the acquired data were integrated into hydrogeochemical database in order to study the groundwater quality and to identify the groundwater salinization processes that contributed to the acquisition of the actual chemical composition.

Piper plots [34], considered as the common method for a multiple analyses on the same graph, are used to represent the different water samples and to distinguish graphically between different water types defined by the Stuyfzand classification (1993). Sample points with similar hydrochemistry tend to cluster together in the diagram [35].

Principal component analysis method (PCA) and correlations are a popular method to assess groundwater quality. One of the principle advantages of multivariate techniques such as principal component analysis (PCA) is that they are able to rapidly reveal relationships between a large number of variables. In this study, PCA and correlations are used to identify the possible sources of major ions in groundwater, hydrogeological reactions that may occur in the study area, and dominant factors that control groundwater quality.

Gibbs diagrams which are a simple plot of the TDS versus the weight ratio of [Na.sup.+]/([Na.sup.+] + [Ca.sup.2+]) or [Cl.sup.-]/([Cl.sup.-] + HC[O.sup.-.sub.3]) are widely used to establish the relationships between the water composition and the lithological characteristics of the aquifer [36]. Three distinct fields, including precipitation dominance, evaporation dominance, and rock weathering dominance, constitute the segments in the Gibbs diagram.

Hydrogeochemical Modeling. The equilibrium state of the water with respect to a mineral phase can be determined by calculating saturation index (SI) using analytical data. In this study, saturation indices (SI) were calculated in terms of the following equation [37]:

SI = log(IAP/[k.sub.s](T)), (1)

where IAP is the relevant ion activity product, which can be calculated by multiplying the ion activity coefficient [gamma]i and the composition concentration [m.sub.i], and [k.sub.s](T) is the equilibrium constant of the reaction considered at the sample temperature [35]. The geochemical modeling program PHREEQC has been used to evaluate the water chemistry. SI >0 indicates oversaturation and minerals maybe subject to precipitation, SI <0 means undersaturation and minerals will dissolve, and SI = 0 suggests saturation and minerals are in equilibrium status with respect to the solution [38].

4. Results and Discussion

4.1. Hydrogeochemical Characterization. Groundwater quality depends on various chemical constituents and their concentrations, which are mostly derived from the geological stratum of the particular region [6]. The pH was one of the primary indicators of the water chemistry evolution. The aquifer groundwater was neutral to slightly alkaline water, with a mean pH value of 7,23 and 7,15 in the wet and dry season, respectively. Electrical conductivity (EC) of the water samples was medium to high, suggestive of very highly mineralized waters. EC values ranged between 1240 and 6300 [micro]S/cm in the wet season and between 1131 and 5430 [micro]S/ cm in the dry season. A problem to the water supply development in the area is the increasing electrical conductivity (EC) values of near-coastal shallow groundwater. The high EC of groundwater from wells located along the coast and in Bahirat Beni Ata can be explained by the seawater intrusion effect caused by the groundwater level drawdown due to overexploitation (Figures 6(a) and 6(b)).

Based on the conductivity values, the groundwater system could be classified into four groups: fresh water (<500 [micro]S/ cm), marginal water (500-1,500 [micro]S/cm), brackish water (1,500-5,000 [micro]S/cm), and saline water (>5,000 [micro]S/cm). Based on our conductivity values it is evident that groundwater in Ras Jbel aquifer is in marginal and brackish waters. Few samples are of saline water type.

The study area is characterized by a wide range of salinities. Salinity values ranged between 500 and 3600 mg/l in the wet season and between 500 and 3500 mg/l in the dry season. The higher values of EC and salinity are indicators of higher ionic concentrations, probably due to the high anthropogenic activities in the region and geological weathering conditions but also due to the intrusion of sea water into the groundwater system.

The relative content of a cation or an anion is defined as the percentage of the relative amount of that ion to the total cations or anions, respectively [39]. In the study area, the strong acid anions ([Cl.sup.-] and S[O.sub.4.sup.2-]) exceed weak acid anions (HC[O.sup.-.sub.3] and C[O.sub.3.sup.2-]). On the other hand, sodium and calcium concentrations exceed magnesium and potassium contents. The triangular diagram (Figure 7) shows that the groundwater chemistry was mainly characterized by two groups. The first group was [Cl.sup.-]-[Na.sup.+] type, in which [Na.sup.+] accounted for more than 52-65% of the total cations; the second group was [Cl.sup.-]-[Na.sup.+]/[Ca.sup.2+] type, in which [Na.sup.+] and [Ca.sup.2+] accounted for 37-48% and 36-53% of the total cations, respectively. Chemical facies in the phreatic aquifer of Ras Jbel seem to be directly related to the configuration of the ante-quaternary substratum and the proximity of several sampled wells from the sea.

The Na-Cl-type indicated the presence of high chloride concentrations in the aquifer which may originate from the dissolution of halite, influx of sewage or waste water, and mainly intrusion of sea water [40]. In the downstream part of the plain near the sea and in Bahirat Beni Ata, where a marine intrusion was detected since 1980, the groundwater is mainly of [Cl.sup.-]-[Na.sup.+] type (Figure 8). The distribution maps of [Cl.sup.-] in both wet and dry seasons (Figures 9(a) and 9(b)) are well correlated with those of electrical conductivity and facies.

4.2. Processes Controlling Groundwater Salinization. Understanding the water salinization mechanism is the basis for regional salt management. Groundwater salinization is largely a function of the mineral composition of the aquifer through which it flows and hydrogeochemical processes such as mineral dissolution, precipitation, evaporation and transpiration, ion exchange, and the residence time along the flow path. It is also linked to various anthropogenic activities such as agriculture, overexploitation of groundwater resources, and sewage disposal.

4.2.1. Water-Rock Interaction and Origin of Groundwater Mineralization. Reactions between groundwater and aquifer minerals have a significant role on water quality. The p x p correlation matrix, revealing the existence of bivariate linear correlations between variables, allows a better understanding of the dominant water-rock interactions or source of the ions over the study area. Additionally, the use of multivariate statistics in hydr(geo)logical studies is a very common practice and numerous applications can be found in the literature ([10, 19, 41]) though most hydrologists consider that values larger than 0.5 indicate significant correlation. In the present study, PCA was carried out for 10 parameters (Ca, Mg, Na, K, HC[O.sub.3], S[O.sub.4], Cl, pH, TDS, and EC) and more than 90 observations (Tables 2 and 3). The first two factors F1 and F2 were always retained, explaining about 73% of the total variance (Table 2). Factors of a higher order generally explained the variance of a single parameter or established poorer and less significant correlations with two parameters [42].

The correlations established between the TDS and concentrations of major elements (Table 3) show that the TDS is well correlated with the concentrations of chloride ([r.sup.2] = 0,96), sodium ([r.sup.2] = 0,87), calcium ([r.sup.2] = 0,83), magnesium ([r.sup.2] = 0,73), and sulphates ([r.sup.2] = 0,76). The high correlation of TDS with chloride, sodium, magnesium, sulphate, and calcium indicated that these elements are mostly contributed by mineralization. These ions have been dissolved into groundwater continuously and resulted in the rise of TDS. The contribution of carbonates and potassium is negligible ([r.sup.2] = 0,37 and [r.sup.2] = -0,05, resp.). The low correlation between TDS and pH suggests that the dissolution of the salts is not related to acidic conditions of groundwater but it is related to their degrees of solubility. HC[O.sup.-.sub.3] and pH apparently have little association with the other variables.

Bicarbonates are not correlated to calcium r(HC[O.sub.3]Ca) = 0,20 indicating another source other than the calcite dissolution. However, considerable correlation coefficients between sodium and chlorides r(NaCl) = 0,84 and between calcium and sulphates r(CaS[O.sub.4]) = 0,50 suggest halite and gypsum dissolution, respectively.

The first factor F1 accounts for 58% of the total variance, and it is contributed by the following variables: EC, TDS, Mg, Ca, Na, Cl, and S[O.sub.4]. This factor is associated with the salinity component (NaCl salt source with Ca and S[O.sub.4] enrichment) and the cation exchange. The second factor F2 accounts for 14% of the total variance, and it is negatively determined by K and HC[O.sub.3] (Figure 10). It suggests carbonates weathering and pollution by fertilizer application.

In order to understand the origin of groundwater mineralization in Ras Jbel plain, the saturation index (SI) was calculated. The mineral facies are chosen based on the analysis result of groundwater quality, the main components of groundwater, and the occurrences conditions ([6, 43, 44]). In the study area, the main cations are [Na.sup.+], [Ca.sup.2+], and [Mg.sup.2+] and the main anions are HC[O.sup.-.sub.3], S[O.sub.4.sup.2-], and [Cl.sup.-]; thus gypsum, anhydrite, calcite, dolomite, aragonite, and halite are chosen to be the mineral facies.

The positive values of the calculated SI with respect to calcite and dolomite for all groundwater samples (Figure 11) suggest their oversaturation in respect to these minerals (0,05 < [SI.sub.calcite] < 1,32 and 0,08 < [SI.sub.calcite] < 1,18 in the wet and dry seasons, resp., and -0,10 < [SI.sub.dolomite] < 2,29 and 0,06 < [SI.sub.dolomite] < 1,98 in the wet and dry seasons, resp.). As described by Appelo and Postma [45], the dissolution of calcite and dolomite is as follows:

Calcite:

CaC[O.sub.3] + C[O.sub.2] + [H.sub.2]O [left and right arrow] [Ca.sup.2+] + 2HC[O.sup.-.sub.3] (2)

Dolomite:

CaMg [(C[O.sub.3]).sub.2] + 2C[O.sub.2] + 2[H.sub.2]O [left and right arrow] [Ca.sup.2+] + [Mg.sup.2+] + 4HC[O.sup.-.sub.3] (3)

However, focusing on the scatter plots of bicarbonate versus calcium and calcium + magnesium versus bicarbonate we notice that groundwater samples are not plotted on the 1 : 1 straight lines of calcite and dolomite dissolution (Figures 12(a) and 12(b)). Groundwater samples show an excess of [Ca.sup.2+] that can be explained by the gypsum dissolution.

The plot of SIGypsum and SIAnhydrite versus TDS exhibits a proportional and parabolic shape evolution with negative values of the saturation indexes (Figure 11) (-1,86 < [SI.sub.gypsum] < -0,34 and-1,72 < [SI.sub.gypsum] < -0,35 in the wet and dry seasons, resp., and -2,08 < [SI.sub.anhydrite] < -0,56 and -1,94 < [SI.sub.anhydrite] < -0,56 in the wet and dry seasons, resp.). Thus, both calcium and sulphate are derived from the same origin, which is the dissolution of gypsum and anhydrite.

Gypsum: CaS[O.sub.4] x 2[H.sub.2]O [left and right arrow] [Ca.sup.2+] + S[O.sub.4.sup.2-] + 2[H.sub.2]O (4)

However, the plot of sulphate versus calcium (Figure 12(c)) shows an excess of [Ca.sup.2+] ions for the majority of the groundwater samples. For these samples, the (Ca/(Ca + S[O.sub.4])) ionic ratio greater than 0,5 ratio (from 0,53 and 0,79) confirms the ionic exchange process [46]. The (Ca/(Ca + S[O.sub.4])) ionic ratio close to 0,5 confirms that the main source of [Ca.sup.2+] is the gypsum dissolution [46].

A bivariate diagram of sodium versus chloride (Figure 12(d)) reveals two main groups: for the first group halite dissolution was maintained for a slope equal to unity where majority of the samples are situated on the 1:1 straight of halite dissolution given by the following reactions [45]:

Halite: NaCl [left and right arrow] [Na.sup.+] + [Cl.sup.-] (5)

The second group includes the high-salinity samples (Na-Cl type), which do not follow the halite dissolution line and show enrichment in chloride compared to sodium. Thus, another phenomenon other than geological effect is controlling their salinization, and this may be the salt water intrusion.

Water samples were plotted in the Gibbs diagrams, which takes into account the maj or role of natural mechanisms (rock weathering, evaporation, and precipitation). Figure 13 clearly shows that the mechanism controlling water chemistry seems to be a combination of the weathering of carbonates minerals as well as the evaporation-precipitation processes. However, low rates of the groundwater samples were obtained in areas that were dominated by rock-water interactions.

Samples with [Na.sup.+]/([Na.sup.+] + [Ca.sup.2+]) or [Cl.sup.-]/([Cl.sup.-] + HC[O.sup.-.sub.3]) ratios greater than 0,5 and TDS levels between 783 and 4323 mg/l showed that the groundwater chemistry was controlled mainly by the saline water mixing or evaporation. Evaporation results in increased TDS in relation to high ratios of dominant cations and anions and CaC[O.sub.3] precipitates by losing [Ca.sup.2+] and HC[O.sup.-.sub.3].

4.2.2. Ionic Exchange Processes and Freshwater-Saline Water Mixing. Ion exchange is one of the important natural processes responsible for the concentration of ions in groundwater and has significant impact on the evolution of groundwater chemistry [18]. The dominance of salty groundwater dominated by sodium and chloride ions in Ras Jbel shallow aquifer provides evidence of mixing with an external salinity source, which could be the seawater from the coastal part of the aquifer. Cation exchange, responsible for the salinity signature, is described by two mixing mechanisms (freshening and saline water intrusion). Equations (6) and (7) show the gain or loss related to [Na.sup.+] and ([Ca.sup.2+] + [Mg.sup.2+]) within the exchanger X.

The freshening process or direct ion exchange: where [Ca.sup.2+] from freshwater displaced the marine cations [Na.sup.+] and [Mg.sup.2+] from the exchanger complex. The resulting loss of [Ca.sup.2+] from solution decreases the saturation state for calcite and possibly causes calcite dissolution.

[1/2] [Ca.sup.2+] + Na-X [right arrow] [Na.sup.+] + [1/2] Ca-X (6)

The intrusion of seawater or reverse ion exchange also triggered cation exchange reactions where [Ca.sup.2+] was expelled from the exchanger by seawater [Na.sup.+] and [Mg.sup.2+]. The released [Ca.sup.2+] is being flushed from the aquifer by groundwater flow [45, 47].

[1/2] [Na.sup.+] + Ca-X [right arrow] [Ca.sup.2+] + [1/2] Na-X (7)

The plot of [([Ca.sup.2+] + [Mg.sup.2+])-(HC[O.sup.-.sub.3] + S[O.sub.4.sup.2-])] versus ([Na.sup.+]-[Cl.sup.-]) determines the exchange of Na+ against ([Ca.sup.2+] or [Mg.sup.2+]) through the clay matrix. The relationship [([Ca.sup.2+] + [Mg.sup.2+])-(HC[O.sup.-.sub.3] + S[O.sub.4.sup.2-])] is the gain or loss of ([Ca.sup.2+] + [Mg.sup.2+]) due to the carbonates and gypsum dissolution. The relationship of ([Na.sup.+]-[Cl.sup.-]) determines the gain or loss of [Na.sup.+] relative to the halite dissolution. If there is no ion exchange, all water samples will be placed in the origin of diagram [46].

Figure 14 shows that reverse ion exchange is a dominant process. To confirm the effect of reverse ion exchange, chloroalkaline index CAI-1 was calculated in milliequivalents per liter according to the relationship proposed by Schoeller [48]:

CAI-1 = [[Cl.sup.-] - ([Na.sup.+] + [K.sup.+])]/[Cl.sup.-] (8)

If reverse ion exchange occurs in groundwater, CAI-1 values are positive. The calculated CAI-1 values are positive for more than 70% of the water samples which confirmed that reverse ion exchange is a dominant process. This shows that the interaction between the seawater and groundwater in the study area is playing a major role in the contamination of the aquifer by seawater intrusion. These results indicate that seawater/freshwater interface is in a continuous evolution despite the artificial recharge operations since 1993, and this probably because of the permanent heavy pumping.

Water samples concentrated in the origin of the plot [([Ca.sup.2+] + [Mg.sup.2+])-(HC[O.sup.-.sub.3] + S[O.sub.4.sup.2-])] versus ([Na.sup.+]-[Cl.sup.-]) indicated the absence of the ion exchange process which can be attributed to the evaporation process followed by carbonate precipitation [49]. This result confirmed the results obtained using saturation states of minerals and Gibbs diagrams.

The seawater fraction in the groundwater is often estimated using chloride concentration [50]. Chloride ion has been considered as a conservative tracer not affected by ion exchange [51]. For conservative mass balance of the mixture, the equation used is as follows [45]:

f = ([Cl.sub.mix] - [Cl.sub.freshwater])/([Cl.sub.seawater] - [Cl.sub.freshwater]) x 100, (9)

where [Cl.sub.mix] is the [Cl.sup.-] concentration of the sample, [Cl.sub.seawater] is the [Cl.sup.-] concentration of the Mediterranean Sea, and [Cl.sub.freshwater] represents the [Cl.sup.-] concentration of the fresh water. The fresh water sample will be chosen considering the lowest measured value of the electrical conductivity.

The rate of mixture varies from 0,32% (well no. 23) in the north of the Raf Raf region and where the configuration of the ante-quaternary substratum prevents the marine intrusion to 13% (well no. 1) near the shoreline (close to the coast). The highest value of the mixing fraction corresponds to the highest measured values of [Cl.sup.-] and EC (1792 mg/l and 5430 [micro]S/cm, resp.).

4.3. Isotopes and Groundwater Origin. The stable isotope ratios of oxygen and hydrogen in the groundwater are useful tools to differentiate between salinity origins [52, 53] and to help us understand various sources of recharge processes to groundwater because they are sensitive to physical processes such as atmospheric circulation, groundwater mixing, and evaporation ([33, 54]).

In arid and semiarid regions evaporation could be an important process influencing groundwater chemistry [19]. To understand the relationship between isotopic composition of groundwater of the shallow aquifer of Ras Jbel and those of precipitation measured at the station of Tunis Carthage situated at 50 km from the plain of Metline-Ras Jbel- Raf Raf, abivariate diagram [delta][sup.2]H versus [delta][sup.18]O is plotted in Figure 15(a).

A local meteoric water line (LMWL) for Tunis Carthage was used to interpret the data in this study. The local meteoric water line (LMWL) is controlled by local hydrometeorological factors, including the origin of the vapor mass, reevaporation during rainfall, and the seasonality of precipitation [33]. The isotope composition of the precipitation was plotted along the LMWL using the following equation: [delta][sup.2]H ([per thousand]) = 8 * [delta][sup.18]O ([per thousand]) + 12,4 (which had a correlation coefficient [R.sup.2] = 0,99) [55, 56].

Figure 15(a) shows that the isotopic composition of most of the groundwater samples collected in the wet season (except for sampling site number 35) lies within a narrow range, confirming that these groundwater samples had the same recharge source. Furthermore, all groundwater samples are scattered around the LMWL indicating that the recharge of the Ras Jbel shallow aquifer originates from infiltration of recent precipitation from Mediterranean vapor masses. Based on their isotopic composition, two groups of groundwater samples were identified (Table 4). The first group is relatively depleted in isotopic values and includes samples with [delta][sup.18]O and [delta][sup.2]H values ranging from -6,03 to -5,37[per thousand] versus VSMOW and from -33,94 to -29,66[per thousand] versus V-SMOW, respectively. This may be explained by the fact that nonevaporated water is rapidly infiltrated to the saturated zone.

As per the second group, values vary from -5,35 to -3,50[per thousand] versus V-SMOW and from -29,37 to -22,15[per thousand] versus V-SMOW, for [delta][sup.18]O and [delta][sup.2]H, respectively. The relatively enriched isotopic values of the group 2 samples demonstrate that this groundwater is affected by evaporated open water or soil water.

The groundwater samples collected in the dry season were enriched compared to those collected in the wet season. The results show isotopic content ranging from -5,74 to -0,06[per thousand] versus V-SMOW for [delta][sup.18]O and from -31,46 to -10,31[per thousand] versus V-SMOW for [delta][sup.2]H. This may be explained by heavy isotope enrichment in the groundwater caused by strong evaporation given that there was effectively no precipitation in the study area between the two sampling periods; meanwhile, the groundwater may have been mainly recharged by lateral inflow from outside the study area, resulting in seasonal fluctuations in the isotopic values. The enriched groundwater samples (no. 15, 20, 25, 30, 32, 35, 38, 41, 45, and 48) might be an indicator for evaporation of the recharge water before its infiltration to the aquifer.

The isotopic data for the groundwater collected in the wet season were linearly fit using the regression equation [delta][sup.2]H ([per thousand]) = 4,01 * [delta][sup.18]O ([per thousand]) - 8,37 ([R.sup.2] = 0,82). This regression line can be interpreted as the groundwater evaporation line (GEL). The gel has a [delta][sup.2]H/[delta][sup.18]O slope <8, which reflects evaporation during or after rainfall and/or mixing with an external water source (e.g., return of irrigation water) with high [delta][sup.18]O and [delta][sup.2]H values. Furthermore, the GEL of the wet season intersected the LMWL at values of [delta][sup.18]O = -5,22[per thousand] versus V-SMOW and [delta][sup.2]H = -29,37[per thousand] versus V-SMOW. These values are estimated as baseline for [delta][sup.2]H and [delta][sup.18]O in recharging rainfall (Figures 15(b) and 15(c)). If samples are plotted above the lines, significant groundwater evaporation process can be confirmed.

Additionally, the isotopic data from the dry season were linearly fit using the regression equation [delta][sup.2]H ([per thousand]) = 3,09 * [delta][sup.18]O([per thousand]) -11,81 (with a correlation coefficient [R.sup.2] = 0,83). The GEL has a smaller slope than the LMWL, because evaporation tends to enrich heavy isotopes in water ([19, 57]). The increase in groundwater salinity due to evaporation can thus result in simultaneous increase in heavy isotopes ([19, 35]). The GEL of the dry season intersects the LMWL at values of [delta][sup.18]O = -4,93[per thousand] versus V-SMOW and [delta][sup.2]H = -27,32% versus VSMOW, which are chosen as baselines (Figures 15(d) and 15(e)). It is observed that 80% of the groundwater samples were plotted above the baselines and this demonstrates that evaporation has a significant contribution to groundwater salinity in the study area.

Furthermore, the deuterium excess calculated as d-excess = [delta][sup.2]H - 8[delta][sup.18]O [54] has been widely used in hydrological studies. The d-excess is used to identify secondary processes that influence the atmospheric vapor content in the evaporation-condensation cycle in nature ([54, 58]). The d-excess plotted against [delta][sup.18]O shows a negative correlation for the whole set of samples (Figure 16). The decrease in d-excess is an indication that evaporation has occurred during the recharge process which again confirms the previous results.

4.4. Irrigation Return Flow. Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated or evacuated by direct surface drainage and which returns to an aquifer or surface water [59, 60]. Irrigation return flows may induce salt and nitrate pollution of receiving water bodies [61]. Indeed, N[O.sup.-.sub.3] is the most common water contaminant, and N[O.sup.-.sub.3] pollution is increasing because the number of anthropogenic sources is increasing [26].

71% of groundwater samples are contaminated by nitrates where the concentration exceeds the permissible value of 50 mg/l set by WHO [62]. The spatial distribution of nitrates (Figure 17) shows that high nitrate contents are observed especially in the upstream of Ras Jbel aquifer. Groundwater contamination by nitrate is due to the intensive use of nitrogen fertilizers (Ca[(N[O.sub.3]).sub.2], KN[O.sub.3], and MgS[O.sub.4]). In recent years, the agricultural land area in Ras Jbel plain has increased and copious amounts of nitrogenous fertilizer have been used, which have increased the groundwater N[O.sub.3.sup.-] concentrations.

Furthermore, return flow from irrigation water also seems to contribute notably to the recharge process. Most of groundwater samples shows a correlation between N[O.sub.3] and [delta][sup.18]O, reflecting the significant role of evaporated and contaminated irrigation water to the groundwater salinization (Figure 18(a)). Huge quantities of irrigation return flow elevated groundwater level, hence increasing evaporation and inducing salinization [63]. As highlighted in Figure 18(b), the contamination by return of irrigation water is observed in the shallower horizons (depth [less than or equal to] 13 m).

5. Conclusions

This paper aimed to discuss the origin, processes, and mechanisms of groundwater salinization, as well as the chemical evolution of groundwater in the Ras Jbel coastal aquifer using isotopic tools and hydrochemical tracers.

Most of the groundwater is considered to be of brackish to saline water and contains high ion concentrations. The groundwater in the study area is influenced by both natural and anthropogenic factors. The major geochemical processes controlling hydrochemical evolution are the inverse cationic exchange due to the phenomena of seawater intrusion, dissolution of evaporates minerals (halite, gypsum, and/or anhydrite), irrigation return flow, water-rock interactions, and evapo(transpi)ration. (Figure 19). The mixing rate among freshwater and saline water ranges between 1 and 13%.

In addition, groundwater in the shallow aquifer of Ras Jbel is also contaminated by agricultural fertilizers containing high amounts of nitrates. Nitrates are transported to the aquifer by natural recharge process and by return flow from irrigation water.

Hydrogen and oxygen-18 stable isotopes signatures of groundwater have identified recent groundwater recharge by infiltration of local precipitations. The enrichment in stable isotope of groundwater confirms that return flow of irrigation waters is an important factor influencing groundwater quality.

The results of this study can be used to improve our understanding of hydrogeochemical processes and enable the protection and sustainable use of water resources. It, therefore, calls for more comprehensive research for better water resources management.

https://doi.org/ 10.1155/2017/8610894

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors would like to gratefully acknowledge all members of the Regional Commission for Agricultural Development of Bizerte for their guidance and support in field campaigns. Special thanks are due to Dr. Maarten Waterloo, Senior hydrologist, Acacia Water (Formerly Professor in Hydrology, Free University Amsterdam), Netherlands.

References

[1] V. E. A. Post, Groundwater salinization processes in the coastal area of the Netherlands due to transgressions during the Holocene [Ph.D. thesis], University of Amsterdam, Amsterdam, the Netherlands, 2004.

[2] G. de Marsily, "Importance of the maintenance of temporary ponds in arid climates for the recharge of groundwater," Comptes Rendus--Geoscience, vol. 335, no. 13, pp. 933-934, 2003.

[3] D. Han, X. Song, M. J. Currell, G. Cao, Y. Zhang, and Y. Kang, "A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation," Journal of Hydrology, vol. 405, no. 3-4, pp. 217-234, 2011.

[4] M. U. Igboekwe and A. Ruth, "Groundwater recharge through infiltration process: A Case Study of Umudike, Southeastern Nigeria," Journal of Water Resource and Protection, vol. 3, no. 5, pp. 295-299, 2011.

[5] P. Banerjee and V. S. Singh, "Statistical approach for comprehensive planning of watershed development through artificial recharge," Water Resources Management, vol. 26, no. 10, pp. 2817-2831, 2012.

[6] J. Jing, Q. Hui, C. Yu-Fei, and X. Wen-Juan, "Assessment of groundwater quality based on matter element extension model," Journal of Chemistry, vol. 2013, Article ID 715647, 7 pages, 2013.

[7] L. Kouzana, R. Benassi, A. Ben mammou, and M. Sfar felfoul, "Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia)," Journal of African Earth Sciences, vol. 58, no. 2, pp. 242-254, 2010.

[8] R. Trabelsi, K. Abid, K. Zouari, and H. Yahyaoui, "Groundwater salinization processes in shallow coastal aquifer of Djeffara plain of Medenine, Southeastern Tunisia," Environmental Earth Sciences, vol. 66, no. 2, pp. 641-653, 2012.

[9] A. Chekirbane, M. Tsujimura, A. Kawachi, H. Isoda, J. Tarhouni, and A. Benalaya, "Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia," Hydrological Sciences Journal, vol. 58, no. 5, pp. 1097-1110, 2013.

[10] H. Bouzourra, R. Bouhlila, L. Elango, F. Slama, and N. Ouslati, "Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations," Environmental Science and Pollution Research, vol. 22, no. 4, pp. 2643-2660, 2015.

[11] A. Kharroubi, S. Farhat, B. Agoubi, and Z. Lakhbir, "Assessment of water qualities and evidence of seawater intrusion in a deep confined aquifer: case of the coastal Djeffara aquifer (Southern Tunisia)," Journal of Water Supply, vol. 63, no. 1, pp. 76-84, 2014.

[12] I. Triki, N. Trabelsi, M. Zairi, and H. Ben Dhia, "Multivariate statistical and geostatistical techniques for assessing groundwater salinization in Sfax, a coastal region of eastern Tunisia," Desalination and Water Treatment, vol. 52, no. 10-12, pp. 1980-1989, 2014.

[13] M. F. B. Hamouda, A. J. Kondash, N. Lauer, L. Mejri, J. Tarhouni, and A. Vengosh, "Assessment of groundwater salinity mechanisms in the coastal aquifer of el haouaria, Northern Tunisia," Procedia Earth and Planetary Science, vol. 13, pp. 194-198, 2015.

[14] S. K. Ambast, N. K. Tyagi, and S. K. Raul, "Management of declining groundwater in the Trans Indo-Gangetic Plain (India): some options," Agricultural Water Management, vol. 82, no. 3, pp. 279-296, 2006.

[15] A. El-Naqa and A. Al-Shayeb, "Groundwater protection and management strategy in Jordan," Water Resources Management, vol. 23, no. 12, pp. 2379-2394, 2009.

[16] J. L. McCallum, R. S. Crosbie, G. R. Walker, and W. R. Dawes, "Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge," Hydrogeology Journal, vol. 18, no. 7, pp. 1625-1638, 2010.

[17] J. D. Ayotte, M. Belaval, S. A. Olson et al., "Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States," Science of the Total Environment, vol. 505, pp. 1370-1379, 2015.

[18] J. Wu and Z. Sun, "Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, Mid-west China," Exposure and Health, vol. 8, no. 3, pp. 311-329, 2016.

[19] P. Li, J. Wu, and H. Qian, "Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China," Arabian Journal of Geosciences, vol. 9, no. 1, article 15, 2016.

[20] DGRE, Annuaire de Surveillance Piezometrique, Rapp. Int. Ministere de l'Agriculture, Tunis, Tunisia, 2007.

[21] A. Choura, Impact de la surexploitation et de la recharge artificielle de la nappe de Ras Jbel par les systemes d'information geographiques [M.S. thesis], Faculty of Sciences of Tunis, 1993.

[22] L. Bouchaou, J. L. Michelot, A. Vengosh et al., "Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco," Journal of Hydrology, vol. 352, no. 3-4, pp. 267-287, 2008.

[23] F. El Yaouti, A. El Mandour, D. Khattach, J. Benavente, and O. Kaufmann, "Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical, geochemical, and tomographic study," Applied Geochemistry, vol. 24, no. 1, pp. 16-31, 2009.

[24] F. Sdao, S. Parisi, D. Kalisperi et al., "Geochemistry and quality of the groundwater from the karstic and coastal aquifer of Geropotamos River Basin at north-central Crete, Greece," Environmental Earth Sciences, vol. 67, no. 4, pp. 1145-1153, 2012.

[25] G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi, "Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the NaCl brackish waters of northwestern Sardinia, Italy," Hydrology and Earth System Sciences, vol. 17, no. 7, pp. 2917-2928, 2013.

[26] Y. Lu, C. Tang, J. Chen, and J. Chen, "Groundwater recharge and hydrogeochemical evolution in leizhou peninsula, China," Journal of Chemistry, vol. 2015, Article ID 427579, 12 pages, 2015.

[27] M. Ennabli, "Hydrogeologie de la plaine de Ras Jbel-Raf Raf," Annales des Mines et de la Geologie, vol. 26, pp. 537-561, 1973.

[28] M. H. Hamza, Evaluation de la vulnerabilite a la pollution des nappes phreatiques de Ras Jbel et de Guenniche par les methodes parametriques DRASTIC, SINTACS, et SI appliquees par les systemes d'informations geographiques [Ph.D. thesis], Faculty of Sciences of Tunis, Tunis, Tunisia, 2007.

[29] P. F. Burollet, "Etude geologique des bassins Mio-Pliocenes du Nord Est de la Tunisie," Annales des Mines et de la Geologie, no. 7, p. 82, 1951.

[30] M. Ennabli, "Etat des travaux realises dans la plaine de Metline--Ras Jbel--Raf Raf en vue de l'etude hydrogeologique de la plaine cotiere," Rapp. Interne, Bureau de l'Inventaire et des Ressources Hydrauliques, 1969.

[31] DGRE, "Annuaires de surveillance piezometrique," DGRE. Rapports Techniques des Piezometres et des Forages, Rapp. Int. Ministeere de l'Agriculture, Tunis, Tunisia, 1986-2006.

[32] Pimienta, Etude hydrogeologiquede Ras Jebel. Fasc.1 et 2, Service Geologique, (BIRH 3-10 et 3-11), 1949.

[33] I. D. Clark and P. Fritz, Environmental Isotopes in Hydrogeology, Lewis Publishers, New York, NY, USA, 1997.

[34] A. M. Piper, "A graphic procedure in the geochemical interpretation of water-analyses," Eos, Transactions American Geophysical Union, vol. 25, no. 6, pp. 914-928, 1944.

[35] F. Liu, X. Song, L. Yang et al., "Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China," Hydrology and Earth System Sciences, vol. 19, no. 1, pp. 551-565, 2015.

[36] R. J. Gibbs, "Mechanisms controlling world water chemistry," Science, vol. 170, no. 3962, pp. 1088-1090, 1970.

[37] J. W. Lloyd and J. Heathcote, Natural Inorganic Hydrochemistry in Relation to Groundwater, Oxford University Press, New York, NY, USA, 1985.

[38] D. L. Parkhurst and C. Appelo, "PHREEQC2 user's manual and program," Water-Resources Investigations Report, US Geological Survey, Denver, Colo, USA, 2004.

[39] K. Pazand, A. Hezarkhani, Y. Ghanbari, and N. Aghavali, "Groundwater geochemistry in the Meshkinshahr basin of Ardabil province in Iran," Environmental Earth Sciences, vol. 65, no. 3, pp. 871-879, 2012.

[40] D. SujathaandB. R. Reddy, "Quality characterization of groundwater in the south-eastern part of the Ranga Reddy district, Andhra Pradesh, India," Environmental Geology, vol. 44, no. 5, pp. 579-586, 2003.

[41] A. Kharroubi, F. Tlahigue, B. Agoubi, C. Azri, and S. Bouri, "Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia," Environmental Earth Sciences, vol. 67, no. 7, pp. 2089-2100, 2012.

[42] J. C. Rozemeijer, Dynamics in groundwater and surface water quality: from field-scale processes to catchment-scale monitoring [Ph.D. thesis], Utrecht University, Utrecht, The Netherlands, 2010.

[43] Q. B. Luo, W. D. Kang, Y. L. Xie, and B. F. Zhao, "Groundwater hydro-geochemistry simulation in the Jingbian area of the Luohe of Cretaceous," Ground Water, vol. 30, no. 6, pp. 22-24, 2008.

[44] N. Ettayfi, L. Bouchaou, J. L. Michelot et al., "Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco," Journal of Hydrology, vol. 438-439, pp. 97-111, 2012.

[45] C. A. J. Appelo and D. Postma, Geochemistry, Groundwater and Pollution, Balkema, Rotterdam, The Netherlands, 2nd edition, 1993.

[46] A. W. Hounslow, Water Quality Data. Analysis and Interpretation, Lewis Publishers, Boca Raton, Fla, USA, 1995.

[47] M. S. Andersen, V. Nyvang, R. Jakobsen, and D. Postma, "Geochemical processes and solute transport at the seawater/ freshwater interface of a sandy aquifer," Geochimica et Cosmochimica Acta, vol. 69, no. 16, pp. 3979-3994, 2005.

[48] H. Schoeller, "Qualitative evaluation of groundwater resources," in Methods and Techniques of Groundwater Investigations and Development, pp. 53-83, UNESCO, Paris, France, 1965.

[49] B. C. Richter and C. W. Kreitler, "Identification of sources of ground-water salinization using geochemical techniques," p. 273, 1993.

[50] E. Custodio and K. A. Bruggeman, Groundwater Problems in Coastal Areas. Studies and Reports in Hydrology, UNESCO, Paris, France, 1987.

[51] E. Custodio, Groundwater Problems in Coastal Areas, Studies and Reports in Hydrology, UNESCO, Paris, France, 1987.

[52] W. M. Edmunds, A. H. Guendouz, A. Mamou, A. Moulla, P. Shand, and K. Zouari, "Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators," Applied Geochemistry, vol. 18, no. 6, pp. 805-822, 2003.

[53] T. W. Butler II, "Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal," Science of the Total Environment, vol. 388, no. 1-3, pp. 149-167, 2007.

[54] W. Dansgaard, "Stable isotopes in precipitation," Tellus, vol. 16, no. 4, pp. 436-468, 1964.

[55] M. Ahmed Maliki, M. Krimissa, J. Michelot, and K. Zouari, "Relation entre nappes superficielles et aquifere profond dans le bassin de Sfax (Tunisie)," Comptes Rendus de l'Academie des Sciences. Series IIA, vol. 331, no. 1, pp. 1-6, 2000.

[56] A. Ben Moussa, S. B. H. Salem, K. Zouari, and F. Jlassi, "Hydrochemical and isotopic investigation of the groundwater composition of an alluvial aquifer, Cap Bon Peninsula, Tunisia," Carbonates and Evaporites, vol. 25, no. 3, pp. 161-176, 2010.

[57] H. Qian, P. Li, J. Wu, and Y. Zhou, "Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain, Northwest China," Environmental Earth Sciences, vol. 70, no. 1, pp. 57-70, 2013.

[58] H. Craig, "Isotopic variations in meteoric waters," Science, vol. 133, no. 3465, pp. 1702-1703, 1961.

[59] B. Dewandel, J.-M. Gandolfi, D. de Condappa, and S. Ahmed, "An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale," Hydrological Processes, vol. 22, no. 11, pp. 1700-1712, 2008.

[60] Z. Kattan, "Estimation of evaporation and irrigation return flow in arid zones using stable isotope ratios and chloride mass-balance analysis: case of the Euphrates River, Syria," Journal of Arid Environments, vol. 72, no. 5, pp. 730-747, 2008.

[61] J. Causape, D. Quilez, and R. Aragues, "Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows," Agricultural Water Management, vol. 70, no. 3, pp. 211-228, 2004.

[62] WHO, Guidelines for Drinking Water Quality, World Health Organization, Geneva, Switzerland, 3rd edition, 2004.

[63] H. Wu, J. Chen, H. Qian, and X. Zhang, "Chemical characteristics and quality assessment of groundwater of exploited aquifers in Beijiao water source of Yinchuan, China: a case study for drinking, irrigation, and industrial purposes," Journal of Chemistry, vol. 2015, Article ID 726340, 14 pages, 2015.

[64] M. A. Haddad, Evolution de l'Etat de la Nappe de Ras Jebel de 1949 a 2005 et evaluation des Impacts de la Recharge Artificielle (Periode 1992-2005), P.F.E du Cycle d'Ingenieur en Geosciences, Facultee des Sciences de Tunis, 2006.

[65] DGRE, "Annuaires d'exploitation des nappes phreatiques en Tunisie," DGRE, Tunis, Tunisia, 1993-2008.

Jamila Hammami Abidi, (1) Boutheina Farhat, (1) Abdallah Ben Mammou, (1) and Naceur Oueslati (2)

(1) Faculty of Sciences of Tunis, Laboratory of Mineral Resources and Environment, University of Tunis El Manar, 2092 Tunis, Tunisia

(2) Regional Commission for Agricultural Development, av. HassenNouri, 7000Bizerte, Tunisia

Correspondence should be addressed to Jamila Hammami Abidi; hammami.jamila@yahoo.fr

Received 25 November 2016; Accepted 5 February 2017; Published 8 May 2017

Academic Editor: Franco Frau

Caption: FIGURE 1: Geological and location map of the study area [28-30].

Caption: FIGURE 2: Yearly precipitation in Metline-Ras Jbel-Raf Raf plain [64, 65].

Caption: FIGURE 3: Evolution of the exploitation rate and the monitoring well number of the shallow aquifer of Ras Jbel during 1966 and 2005 [30, 31].

Caption: FIGURE 4: Piezometric contour maps of the study area [31].

Caption: FIGURE 5: Location of sampled wells and piezometers in the study area.

Caption: FIGURE 6: Spatial distribution of electrical conductivity (a) wet season and (b) dry season in Ras Jbel aquifer.

Caption: FIGURE 7: Piper diagram of groundwater: zone 1: alkaline earths (Ca + Mg) exceed alkalis (Na + K); zone 2: alkalis exceed alkaline earths; zone 3: weak acids (C[O.sub.3] + HC[O.sub.3]) exceed strong acids (S[O.sub.4] + Cl); zone 4: strong acids exceed weak acids; zone 5: carbonate hardness > 50% (alkaline earths and weak acid dominate); zone 6: noncarbonate hardness > 50%; zone 7: noncarbonate alkali > 50%; zone 8: carbonate alkali > 50% (groundwater is inordinately soft in proportion to the content of TDS); zone 9: no cation-anion pair >50% [34].

Caption: FIGURE 8: Distribution map of the groundwater facies in the shallow aquifer of Ras Jbel.

Caption: FIGURE 9: Spatial distribution of chlorides (a) wet season and (b) dry season in Ras Jbel aquifer.

Caption: FIGURE 10: Representation of variables into two principal factors: F1-F2 (a) and F1-F3 (b).

Caption: FIGURE 11: Variation of saturation indices of selected minerals in wet and dry seasons.

Caption: FIGURE 12: Water-rock interaction: relationships between different solutes of [Na.sup.+], [Ca.sup.2+], [Mg.sup.2+], [Cl.sup.-], S[O.sub.4.sup.2-], and HC[O.sup.-.sub.3] (a, b, c, d).

Caption: FIGURE 13: Gibbs diagram showing TDS versus (a) Na/(Na + Ca) and (b) Cl/(Cl + HC[O.sub.3]).

Caption: FIGURE 14: Plot of [([Ca.sup.2+] + [Mg.sup.2+)-(HC[O.sup.-.sub.3]] + S[O.sub.4.sup.2-])] versus ([Na.sup.+] + [K.sup.+]-[Cl.sup.-]) for ion exchange.

Caption: FIGURE 15: Isotopic relationships of groundwater in the study area.

Caption: FIGURE 16: Plot of d-excess versus [delta][sup.18]O.

Caption: FIGURE 17: Spatial distribution of nitrate concentrations in the shallow aquifer of Ras Jbel during the dry season.

Caption: FIGURE 18: Plots of N[O.sup.-.sub.3] versus water table depth and [delta][sup.18]O versus N[O.sup.-.sub.3].

Caption: FIGURE 19: Schematic conceptual model summarizing salinization sources of groundwater in the plain of Ras Jbel.
TABLE 1: Chemical data of sampled wells and piezometers in the Ras
Jbel aquifer.

Well    EC     pH    TDS    [Ca.sup.2+]   [Mg.sup.2+]

                    Wet season

1      3670   7,41   2369       225           89
2      3990   7,05   2519       447           57
3      3840   6,8    2649       442           54
4      4120   7,1    3166       368           72
5      6300   6,9    4110       520           89
6      5080   6,95   3345       403           81
7      5790   6,9    3630       560           115
8      3730   6,9    2306       286           115
9      5660   7,03   3800       368           129
10     3530   7,3    2384       249           59
11     4480   7,12   3260       379           72
12     3250    7     2142       230           55
13     2770    7     1658       216           45
14     2480   7,65   1972       278           46
15     6250   7,96   4089       466           86
16     4190   7,6    2480       258           78
17     3990   7,5    2715       274           49
18     2920   7,2    2046       221           56
19     2730   7,75   1817       236           54
20     4020   7,23   2747       208           131
21     1240   7,78   819        48            36
22     3280   7,05   2358       258           55
23     1573   7,68   924        84            19
24     5170   7,15   2891       505           75
25     4610   7,3    2910       189           113
26     5050   7,3
27     3400   7,55   1938       255           65
28     3160   7,6    1662       178           48
29
30     3580   7,2    2353       199           80
31     3090   7,5    2187       225           71
32     3490   7,6    2317       231           69
33     4290   7,1    2886       358           70
34     3640   7,25   2648       292           66
35     3860   7,25   2836       326           81
36     4820   7,95   3253       398           81
37     3740   7,45   2390       230           78
38     2720   7,7    1881       197           55
39     2080   7,7    1378       169           32
40     3540   7,4    2454       231           75
41     5030   7,1    3010       402           81
42
44     2980   7,12   1817       236           43
45     2670   7,1    1694       215           43
46     2840   7,4    1741       200           55
47     3310   7,05   1749       300           59
48     4990   7,06   2856       555           82

Well   [Na.sup.+]   [K.sup.+]   [Cl.sup.-]

                   Wet season

1         443          10          999
2         413           4          1022
3         425          11          997
4         647           5          1021
5         738           7          1390
6         666           8          1160
7         550           4          1457
8         284          20          895
9         881          11          1487
10        388          25          788
11        646          18          989
12        346          37          705
13        264          31          474
14        337          24          659
15        857          96          1463
16        444          22          830
17        550          107         775
18        330          79          472
19        285          25          451
20        525           6          1011
21        165           7          289
22        377          35          844
23        200           6          276
24        510           8          1185
25        576           7          916
26
27        287          27          594
28        289          87          478
29
30        437          11          819
31        394          10          710
32        479          10          749
33        404          20          954
34        520          15          851
35        550          27          874
36        472          36          1084
37        412          17          829
38        332           9          591
39        251          11          470
40        419           8          823
41        456          14          1166
42
44        324          78          531
45        277          69          493
46        267           9          555
47        217           3          680
48        400           5          1210

Well   S[O.sub.4.sup.2-]   HC[O.sup.-.sub.3]

                    Wet season

1             298                 305
2             307                 270
3             384                 338
4             742                 311
5            1005                 361
6             661                 366
7             635                 309
8             377                 329
9             563                 361
10            589                 287
11            820                 337
12            477                 293
13            352                 277
14            382                 246
15            811                 310
16            619                 231
17            460                 500
18            444                 445
19            382                 381
20            481                 386
21            102                 173
22            515                 275
23            89                  250
24            407                 201
25            652                 458
26
27            415                 296
28            356                 226
29
30            613                 195
31            560                 217
32            560                 221
33            729                 351
34            591                 315
35            634                 344
36            789                 393
37            607                 218
38            465                 232
39            336                 110
40            620                 278
41            689                 201
42
44            337                 270
45            316                 281
46            375                 281
47            233                 256
48            355                 250

Well    EC     pH    TDS    [Ca.sup.2+]   [Mg.sup.2+]

                     Dry season

1      5430   7,2    3630       299           140
2      3760   7,21   2446       447           58
3      3480   7,05   2451       421           48
4      3900   7,2    2612       327           63
5      5530   7,06   4323       501           94
6      3850   7,15   2832       363           66
7      4740    7     3231       523           103
8      3560   7,11   2407       353           135
9      4660   7,16   3126       339           96
10     2840   7,63   1989       258           46
11     3650   7,19   2674       334           59
12     3160   7,35   2360       285           55
13     2540   7,35   1710       243           41
14     2860   7,49   2040       263           50
15     4230   7,35   3049       353           71
16     3520   7,38   2392       276           70
17     3290   7,7    2497       280           50
18     2240   7,29   1841       199           45
19     2250   7,3    1680       215           46
20     3360   7,33   2389       206           124
21     2120   7,55   1317       104           57
22     2910   7,65   1835       230           42
23     1131   7,82   783        73            12
24     4060   7,05   2697       490           67
25     3880   7,33   2889       211           123
26     2330   7,33   1666       216           55
27     2720   7,33   1928       257           62
28     2520   7,39   1910       279           57
29     2950   7,89   2176       187           66
30     3240   7,5    2217       205           72
31     3240   7,54   2330       228           68
32     3830   7,35   2804       269           80
33     5080   7,75   3608       454           90
34     3410   7,35   2429       305           67
35     3420   7,51   2487       304           71
36     4110   7,43   3015       348           74
37     3320   7,32   2441       265           70
38     3650   7,5    2628       292           71
39     1817   7,49   1269       158           30
40     3770   7,19   2727       273           81
41     3130   7,67   2233       232           68
42     2820   7,93   2061       179           65
44     2090   7,52   1694       198           42
45     2130   7,4    1553       203           40
46     3050   7,3    2277       285           69
47     3170   7,3    2257       389           57
48     4120   7,1    2601       560           73

Well   [Na.sup.+]   [K.sup.+]   [Cl.sup.-]

                     Dry season

1         757          12          1792
2         376           1          989
3         392           9          918
4         506           2          789
5         731           4          1599
6         499           5          953
7         471           3          1181
8         294          12          876
9         609           7          1248
10        347          20          610
11        500          13          774
12        434          37          720
13        262          29          487
14        343          23          662
15        605          26          866
16        421          19          766
17        426          80          652
18        289          75          444
19        256          31          427
20        410           3          872
21        270           5          639
22        338          32          589
23        182           3          217
24        433           5          1066
25        590           4          878
26        270          12          464
27        312          35          568
28        280          16          593
29        419           6          713
30        427          11          732
31        424           7          766
32        572           7          866
33        654          23          1107
34        401          12          764
35        455          14          756
36        539          38          922
37        474          16          757
38        491           6          821
39        213           8          391
40        489           7          865
41        431           7          734
42        371           6          683
44        234          64          502
45        258          67          437
46        390           3          770
47        249           2          807
48        327           2          1084

Well   S[O.sub.4.sup.2-]   HC[O.sup.-.sub.3]

                     Dry season

1             343                 287
2             326                 250
3             356                 308
4             626                 299
5            1040                 354
6             598                 348
7             633                 317
8             421                 317
9             498                 329
10            489                 220
11            683                 311
12            543                 287
13            380                 268
14            462                 238
15            684                 445
16            598                 244
17            413                 598
18            363                 427
19            395                 311
20            384                 390
21            108                 134
22            366                 238
23            88                  207
24            436                 201
25            650                 433
26            264                 387
27            371                 323
28            393                 293
29            587                 198
30            582                 189
31            637                 201
32            723                 287
33            884                 397
34            575                 305
35            571                 317
36            729                 366
37            609                 250
38            654                 293
39            319                 153
40            696                 317
41            578                 183
42            580                 177
44            355                 299
45            294                 256
46            516                 244
47            522                 232
48            372                 183

EC ([micro]s/cm); TDS, [Ca.sup.2+], [Mg.sup.2+], [Na.sup.+],
[K.sup.+], [Cl.sup.-], S[O.sup.2-.sub.4], HC[O.sup.-.sub.3] (mg/l).

TABLE 2: Principal component matrix.

                     F1      F2      F 3

CE                  0,97#   -0,03   0,05
TDS                 0,98#   -0,04   0,08
pH                  -0,41   -0,42   0,75
[Ca.sup.2+]         0,82#   0,17    -0,10
[Mg.sup.2+]         0,78#   0,13    0,02
[Na.sup.+]          0,89#   -0,20   0,17
[K.sup.+]           -0,11   -0,86#  -0,16
[Cl.sup.-]          0,96#   0,14    0,07
S[O.sub.4.sup.2-]   0,77#   -0,20   0,28
HC[O.sup.-.sub.3]   0,43    -0,57#  -0,49
Eigenvalue          5,86    1,40    0,95
% Explication       58,64    14     9,53
% Cumulative        58,64#  72,64#  82,17#

Bold values: loadings [greater than or equal to] 0.5.

Note: Bold values: loadings [greater than or equal to] 0.5
are indicated with #.

TABLE 3: Correlation matrix of dissolved species and the TDS for the
study area in wet season.

                     CE      TDS     pH     [Ca.sup.2+]

CE                    1
TDS                 0,98      1
pH                  -0,34   -0,32     1
[Ca.sup.2+]         0,84    0,83    -0,44        1
[Mg.sup.2+]         0,73    0,73    -0,30      0,43
[Na.sup.+]          0,84    0,87    -0,18      0,60
[K.sup.+]           -0,04   -0,05   0,23       -0,11
[Cl.sup.-]          0,95    0,96    -0,37      0,84
S[O.sub.4.sup.2-]   0,73    0,76    -0,12      0,50
HC[O.sup.-.sub.3]   0,36    0,37    -0,20      0,20

                    [Mg.sup.2+]   [Na.sup.+]   [K.sup.+]

CE
TDS
pH
[Ca.sup.2+]
[Mg.sup.2+]              1
[Na.sup.+]             0,65           1
[K.sup.+]              -0,28         0,01          1
[Cl.sup.-]             0,76          0,84        -0,19
S[O.sub.4.sup.2-]      0,52          0,75        -0,02
HC[O.sup.-.sub.3]      0,37          0,42        0,30

                   [Cl.sup.-]   S[O.sub.4.sup.2-]   HC[O.sup.-.sub.3]

CE
TDS
pH
[Ca.sup.2+]
[Mg.sup.2+]
[Na.sup.+]
[K.sup.+]
[Cl.sup.-]              1
S[O.sub.4.sup.2-]     0,65              1
HC[O.sup.-.sub.3]     0,27             0,32                1

TABLE 4: Isotopic data of sampled wells and piezometers in Ras Jbel
aquifer.

Parameters   [delta][sup.18]O   [delta][sup.2]H
              ([per thousand]    ([per thousand]
               versus SMOW)        versus SMOW)

                           Wet season

Minimum            -6,03              -33,94
Maximum            -3,5               -22,15
Average            -4,91              -28,06

Parameters   [delta][sup.18]O   [delta][sup.2]H
              ([per thousand]    ([per thousand]
               versus SMOW)        versus SMOW)

                           Dry season

Minimum            -5,74              -31,46
Maximum            -0,06              -10,31
Average            -3,78              -23,33
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Abidi, Jamila Hammami; Farhat, Boutheina; Mammou, Abdallah Ben; Oueslati, Naceur
Publication:Journal of Chemistry
Article Type:Report
Geographic Code:6TUNI
Date:Jan 1, 2017
Words:10328
Previous Article:Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents.
Next Article:First-Principles Study of Properties of Alpha Uranium Crystal and Seven Alpha Uranium Surfaces.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |