Printer Friendly

Cellular automation model predicts how hair follicle stem cells regenerate.

Scientists using a predictive "cellular automation" model have shed light on the population behavior of hair follicles and related stem cells.

Cheng-Ming Chuong, M.D., Ph.D., of the University of Southern California (USC) and colleagues teamed with Oxford University mathematicians Philip Maini, Ph.D., and Ruth E. Baker, Ph.D., finding that each adult human hair follicle could count only on its intrinsic growth-promoting signals, without the help of adjacent follicles in the macro-environment.

In contrast, the growth of both rabbit and mice hair follicles depended on signals from neighboring follicles.

The cellular automaton model consists of a regular mathematical grid of automata, each of which represents one hair follicle in one of its four functional cyclic stages. Surrounding each automaton are eight automata, the hair follicle's neighbors.

The state of each automaton changes according to rules that dictate whether hair on a human scalp or in an animal's fur coat will be caught up in waves of growth called the anagen phase, or remain in the resting or telogen phase. Under the right conditions (e.g., winter season or a new physiological stage in an organism's life such as puberty), a collective regeneration wave can sweep through the skin, activating hair stem cells in individual follicles and those in front of them, by the tens of thousands.

In other seasons or life stages, individual follicles may remain locked in telogen by the inhibitors in dieir macro-environment. Inhibitor levels are modulated in part by intradermal adipose tissue and the central endocrine system. These multiple layers of control create a balance between inhibitory BMP (bone morphogenic protein) signaling that keeps hair stem cells in quiescent state and activating Wnt signaling that wakes them up.

Chuong reported robust wave spreading in rabbits, gradual spreading in mice, and random growth with loss of follicle coupling in human skin. The data suggest a new approach to androgenic alopecia, the most common form of alopecia in aging males: It may be easier to get hair follicles growing again by improving their environment, rather than implanting stem cells.

The success of the cellular automaton method could be applied to a broad range of biological pattern formation situations, including the spread of infectious diseases or neural networking in the developing brain, said Chuong.

Chuong and his colleagues determined that spacing between hair stem cell clusters was critical. Because rabbits have compound follicles (multiple hairs from one follicle), their stem cells were tightly coupled, and their coats regenerated so rapidly that the patterns resembled rapidly changing fractals. In humans, coupling of hair follicles was much lower, probably as a result of human evolution, Chuong said.

Chuong presented the findings on December 7, at the American Society for Cell Biology 2011 annual meeting.

Contact: Cheng Ming Chuong, 323-442-1296, cmchuong@usc.edu, http://www-hsc.usc.edu/~cmchuong

COPYRIGHT 2011 DataTrends Publications, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Basic Research
Publication:Stem Cell Research News
Date:Dec 12, 2011
Words:468
Previous Article:Could stem cell research help people with a waning sense of smell?
Next Article:Newly discovered heart stem cells show versatility in creation of cell types.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters