Printer Friendly

Bioindicators and bioclimatic data as essential tools towards a consistent biogeographic district typology of Sierra Nevada National Park (Spain)/Bioindicadores y datos bioclimaticos como herramientas esenciales para una tipologia biogeografica distrital consistente en el Parque Nacional de Sierra Nevada (Espana).

Introduction

Sierra Nevada (Cordillera Penibetica) is a mountain range in the south-eastern Iberian Peninsula. In the centre lies Sierra Nevada National Park (created on 1999), which has the highest summits of the range (Mulhacen 3479 m asl, Veleta 3396 m asl, Alcazaba 3366 m asl, etc.). It occupies 85883 ha surrounded by the Peripheral Protection Zone of Natural Park of 86355 ha. Located between 37[degrees]15'N (Lugros) and 36[degrees]55'S (Lanjaron) and between 3[degrees]38'W (Suspiro del Moro) and 2[degrees]35'E (Terque), the total preserve area of Sierra Nevada National Park covers 172238 ha coinciding with the UNESCO Biosphere Reserve Zone (1986). Its elevation ranges between 300 m asl at the Andarax river near Terque to 3479 m on Mulhacen peak. The main rivers having their source in Sierra Nevada National Park are: the Genil, Nacimiento, Andarax, Grande de Adra, and Guadalfeo.

According to Martin & al. (2008), the Penibetic Range and especially its core, Sierra Nevada, belong mainly to the Nevado-Filabride geological complex. It is formed by several overlapping tectonic units (>250Myr): graphitoids and dark micaschists, prevail in the lower one, called "Veleta", while clear micaschists predominate in the upper one, called "Mulhacen". All of these are mixed with gneissic igneous acidic and, above all, by the basic ultramafic rocks (Vera & al, 2004). The Triassic Alpujarride complex (210-240 Myr), called El Calar, is located above and around the central core, in which marbles, limestones, and dolomites are common, as well as phyllites or launas at the base.

Numerous studies on the structure, composition, and distribution of plant communities have been conducted in the national park and its environment according to the phytosociological and geobotanical Braun-Blanquet method (Gehu & Rivas-Martinez, 1981; Capelo, 2003; Gehu, 2006). These include Quezel, 1953; Rivas-Martinez, 1961; Rivas Goday & Rivas-Martinez, 1968, 1971; Prieto, 1971; Martinez-Parras & Molero Mesa, 1983a, b; Valle, 1985, Losa Quintana & al., 1986; Rivas-Martinez & al., 1986; Martinez-Parras & al., 1987a, b, c; Molero Mesa & Perez Raya, 1987a, b; Mota & Valle, 1987; Perez Raya, 1987; Perez Raya & Molero Mesa, 1988a, b, 1989; Lorite & al., 1997, 2003, 2007; Molero Mesa 1999; Molero Mesa & al., 2001; Salazar & al., 2001; Mota & al., 2002; Fernandez Calzado, 2007; Fernandez Calzado & Molero Mesa, 2011a, b. Marfil (2017) offers an overview and includes a total of 205 plant associations, 118 alliances, and 73 orders. The syntheses of Rivas-Martinez & al. (2001, 2002a, b, 2011a, b), which include an exhaustive text and checklist with the description and references of all phytosociological communities known in Spain and Portugal. These papers, are the bases for arranging the hierarchical communities of the Sierra Nevada National Park.

Pollen analyses made in the Padul peatlands indicate the alternation of cold and warm-humid climatic periods in the Sierra Nevada between 46 and 4.5 ka (Florstchutz & al., 1971; Pons & Reille, 1988). Glacial events of the Holocene show a variable climatic history on the mountain. According to several authors (Gomez Ortiz & al., 2002, 2012; Anderson & al., 2011; Oliva & al., 2010, 2011, 2014; Jimenez-Moreno & Anderson, 2012; Oliva & Gomez Ortiz, 2012, Jimenez-Moreno & al., 2013; and Jimenez-Moreno, 2016), the main glacier, climatic, and anthropogenic events can be summarized in Table 1.

Material and Methods

Bioclimatology

Bioclimatology, a contemporaneous geobotanical science, studies the reciprocity between the climate and the distribution of living beings, mostly plants and their communities on Earth. The increasingly detailed data on the distribution of vegetation, as well as shifts in the appearance and composition of the natural potential vegetation and its substitution stages, caused by climatic, edaphic, geographic and anthropogenic factors, are making easier to recognize the bioclimates and the natural potential vegetation frontiers with steadily greater precision and objectivity. Once the bounds of the vegetation series (sigmetum), geoseries (geosigmetum), permaseries (permasigmetum) and geopermaseries (geopermasigmetum) are known, as well as the bioindicators (i.e. communities, soils, and plant species), it will be possible to calculate the numerical bioclimatic threshold values that distinguish them. These spaces corresponding to the bioclimatic units (bioclimates, thermotypes, ombrotypes, continentality, and isobioclimates) have been progressively delimited and adjusted. Numerous investigations have been performed in this respect (Rivas-Martinez, 1976, 1981, 1982a, b, 1983, 1984, 1988, 1991, 1994, 1996, 2004, 2005b; Loidi, 1991; Rivas-Martinez & al, 1991b, 2011c; Peinado & al, 1992; Sanchez Gomez & al, 1993, 1994; Del Arco & al, 1996, 2002; Rivas-Martinez & Costa 1998; Lousa, 2004; Mesquita & al, 2004; Gehu, 2006; Canto, 2007). The synoptic table "Worldwide bioclimatic classification system", has been recently updated [13.02.2017] by Rivas-Martinez, Rivas-Saenz & A. Penas (Table 2).

Table 3 displays the information from 34 meteorological stations inside or surrounding Sierra Nevada National Park. These data help to establish the bioclimates within the Mediterranean macrobioclimate at each station (pluviseasonal oceanic: mepo; xeric oceanic: mexo; desertic oceanic: medo), as well as the thermo-ombroclimatic types (isobioclimates) and to deduce the different indices that show other bioclimatic characters. The Sierra Nevada Global Change Observatory (Environmental and Regional Planning Council of the Regional Government of Andalusia-Spanish National Park Service) is currently monitoring the climatic conditions over the last 50 years (Perez-Luque & al., 2016a, b; Aspizua & al., 2012), taking into account numerous other parameters (Zamora & al., 2016), the results of which reveal possible climatic changes and help guide management for the conservation of the park and its sustainable future.

With the vertical zonation of vegetation series, thermotypes, ombrotypes, and altitudinal bioclimatic belts, we can also recognize and define the territory on the basis of bioclimatic indexes, such as: Thermicity Index (It = 10(T + m + M); m = mean minimum temperature of the coldest month; M = mean maximum temperature of the coldest month of the year); Annual Positive Temperature (Tp = sum of monthly mean temperature higher than 0[degrees]C); Annual Positive Precipitation (Pp = sum of monthly rainfall for those months with mean temperature>0[degrees]C); Ombrothermic Index (Io = 10(Pp/Tp)); Continentality Index (Ic: Annual monthly thermic interval = Tmax-Tmin); and Aridic Index (AI), which numerically expresses the aridity value lower than Io=2 (AIY = Annual Aridic Index = 200 10[degrees]([Io.sub.1+2+...,2])).

An initial approach to the isobioclimas (thermo- and ombrotypes), bioclimatic belts and application of the Aridic Index was found in Molero & Marfil (2015). The use of thermometric data provided by Target Region 2 in the Sierra Nevada, within the GLORIA project (Pauli & al., 2012; Gottfried & al., 2012; Fernandez-Calzado & al., 2012; Winkler & al., 2016), has been useful in confirming the data of the cryoromediterranean summits, and extrapolated from the meteorological stations.

Biogeography

Biogeography is a terrestrial science concerning the distribution of species, plant communities, habitats, biocoenosis, ecosystems, biomes and bioregions on Earth, as well as the relationships between them and their conditions. It takes into account the areas of taxa and syntaxa (chorology), in addition to information from other natural sciences (Geography, Botany, Synecology, Soil Science, Bioclimatology, Geology, etc.), and attempts to establish a hierarchic biogeographic typology of the lands on Earth. The main systematic unit ranks from the higher to lower are: kingdom, region, province, sector, district, country, landscape cell, tesela, and permatesela (Rivas-Martinez & al., 2007, 2011b, 2014). Terrestrial biogeography has been twinned with phytogeography due to the value and information of the plant species and their communities as bioindicators, in the definition and delimitation of its units.

The biogeographic typology proposed to Sierra Nevada National Park is based mostly on previous geobotanic publications of flora (Molero Mesa & Perez Raya, 1987; Rivas-Martinez & al., 1991; Molero Mesa & Gonzalez-Tejero, 1996; Fernandez Calzado & Molero Mesa, 2011b; Lorite, 2016; Marfil, 2017 in press.), vegetation, bioclimatology and biogeography, particularly in its correspondence with vegetation series and geoseries of the territory (Rivas Martinez & al., 1997; Molero Mesa & Marfil, 2015, 2017; Marfil, 2017 in press.), as well as on other works on vegetation, plant dynamics, and graphic representation of vegetation series, and geoseries in the area (Valle, 1985; Rivas-Martinez & al., 1986; Molero Mesa & al., 2001; Losa Quintana & al., 1986; Lorite & al, 1997; El Aallali & al, 1998; Fernandez Calzado & Molero Mesa, 2011a). Also key have been the global studies, vegetation, maps, and the records of the vegetation series of Spain (Rivas-Martinez & Loidi, 1999; Rivas-Martinez, 1987; Valle & al, 2003-2005; Rivas-Martinez & al, 2007, 2011a, 2011b). Geobotanical data have been the essential bases to sketch the new map of the districts and biogeographic territories (Map 1).

Results and Discussion

Biogeographic districts and territories of Sierra Nevada National Park with their adjacent areas (West Mediterranean Subregion)

The entire National Park belongs to the Mediterranean Region and has a typical Mediterranean climate, with pronounced summer drought that can last up to 9-12 months, depending on the year, particularly in the southeast low desertic and thermic zones (West Almeria District).

The biogeographic typology recognized and accepted at the district unit rank inside the National Park includes one region, one subregion, two provinces, five sectors and eight districts (Rivas-Martinez & al, 2007, 2014, 2017), with two biogeographic territories (countries). Out of the National Park in adjacent areas, there are four well-represented Betic districts: 42e. Filabres Sierran District, 42f. Baza Sierran District, 45b. Alfacar Sierran District and 45d. Almijara Sierran District (Map1):

45c. Trevenque Sierran District

This district is located between the basins of the Genil, Monachil, Dilar, Durcal, and Torrente rivers, with 196 [km.sup.2], (11%), mostly on dolomites, but also on limestones, calco-dolomites and clays, sometimes vertics. Contact in height with the Nevadense sector and at the base, towards the south, with the sector Alpujarreno-Gadorense. Maximum altitude in the Loma de los Panaderos, 2350 m asl, Las Sabinas, 2215 m asl, Trevenque, 2079 m asl, and Dornajo 2075 m asl. It spans the lower mesomediterranean to the lower oromediterranean thermotypes, with ombroclimates dry, subhumid, and lower humid at the beginning of oromediterranean belt (2050 m asl).

This is a diverse, cold district with a large amount of sandy dolomitic, dolomitic, and calco-dolomitic mountains (Trevenque, Tesoro, Dornajo, Sierra del Manar, etc.) where the mesomediterranean barely reaches 1300 m asl. and the rainfall is particularly high, but with a very permeable substrate. The series of mountain conifers Daphno hispanicaePino nevadensis S., in the upper supramediterranean and Rhamno infectoriae-Junipero sabinae S. in the lower oromediterranean, are good indicators of the territory, where the Holm oak series represents the largest potential area (Berberido hispanicae-Querco rotundifoliae S. and Paeonio coriaceaeQuerco rotundifoliae S.). Other bioindicators are included in Table 4.

The Nevada Sierran Sector covers 1290 [km.sup.2], the 75% of the total area of the park and occupies the central territory, with the highest peaks and metamorphic geological substrata (lastra). Seven large river basins (Guadalfeo, Grande de Adra, Andarax, Nacimiento, Guadix-Guadiana Menor, Genil and Durcal) originate in its summits. The thermotypes range from the thermomediterranean to the cryoromediterranean thermic belts, with arid to humid ombrotypes. The plant ecosystems have very high biodiversity.

In the oro- and cryoromediterranean bioclimatic belts, the special climatic conditions, high rate of endemic species and plant communities, afford strong independence to the summits. The melted deep winter snow gives rise to springs, streams, and high-altitude boggy soils, which harbour diverse hygrophilous plant communities (borreguiles). Entire months of winter registering T > 0[degrees]C (1 to 6 months) and an aridic summer ([Io.sub.7-8] < 2.0) gives rise to open, desertic-like upper oro- and cryoromediterranean vegetation. The lower oromediterranean belt, which starts at 2100-2150 m on the northern slope and at 2200-2250 m on the southern slope, rarely undergoes continuous freezes (gelid months). Before the anthropic destruction of pine forest (Pinus sylvestris subsp.nevadensis) the natural potential vegetation consisted of the dwarf hemispheric juniper communities of Juniperus hemisphaerica, which constituted the first seral vegetation stage of the Sierra Nevada Scots pine forest in the lower horizon. This community of junipers made up the climax vegetation in the medium and upper oromediterranean belts. The Sierra Nevada Scots pine (Pinus sylvestris subsp. nevadensis), widely cultivated, continues to be the potential vegetation particularly on shallow soils in the high levels of the upper supramediterranean horizon, where the woodlands of Quercus pyrenaica and Quercus rotundifolia as well as Acer granatense and Betula fontqueri grow well on deeper soils.

The High Nevada Sierran District (43b) is located in the central-western part of park. It contains all the forest flora and vegetation of the sector and the greatest number of ecosystems, plant communities, and endemic taxa. The marked differences between highlands (upper oro- and cryoromediterranean belts) and the lower areas make it possible to divide the area into two separate territories:

43b1. High Nevada Sierran Frigid Territory

Is the culminating zone of Sierra Nevada of (187 [km.sup.2], 11%), with a great part of the oromediterranean belt and all the cryoromediterranean belt of the national park. The upper oromediterranean horizon begins at 2500 m asl (2600 m asl south), with 3-4 months of temperatures below zero degrees and the cryoromediterranean from 2800-2850 m asl (2900-2950 m asl south), with 6 months of temperatures below zero. The series Genisto versicoloris-Junipero hemisphaericae S. is the climax dwarf prostrate shrubby juniper in the lower zone, mostly under 2800 m asl and in the cryoromediterranean a mosaic of permaseries occupy the different habitats of the high mountain. This belt and, in general, most of territory, is a desolate, desert-like environment with a great number of taxa endemic to Sierra Nevada and two types of characteristic ecosystems. The first is xerophytic frigid, which corresponds to associations of Nevadension purpureae and Holcion caespitosi (scree), which are extensive, while the second consists of hygrophilous peaty and boggy communities locally known as borreguiles (Festucion frigidae, Plantaginion nivalis), these being quite, scarce.

The ombrotypes range from the humid at the base south and western part of the territory changing to the dry or even the upper semiarid as the cryoromediterranean belt ascends (>3000 m). This territory has the highest number of frosty months. Some bioindicators of the territory are included in Table 5.

43b2. High Nevada Sierran Slopes Territory

This is a large area of 426 [km.sup.2] (25%) that occupies the siliceous substrates of the high slopes of the entire western Sierra Nevada, located in the Alhama, Genil, Durcal, and Guadalfeo (Torrente, Lanjaron, Poqueira, Trevelez) basins. The thermotypes go from the lower mesomediterranean to lower oromediterranean, with dry, subhumid, and lower humid ombroclimates at the beginning of oromediterranean belt. The mesomediterranean boundary is situated around 1200-1300 m asl in the Genil, Alhama, and Durcal basins, increasing towards the south, the Guadalfeo basin, to 1400-1450 m asl. The anthropogenic climatophilic pine forests (Avenello ibericae-Pinetum nevadensis) mark the transit to the Frigid Territory and confirm the potentiality of this territory between bioclimatic belts. The oak, Holm oak, ash, maple, birch, and alder forests and other associations typical of high rainfall or humid soils are common. Several bioindicators are listed in Table 6.

43a. East Nevada Sierran District

The eastern district of the sector, with 676 [km.sup.2] (39%), presents a gradual decrease in precipitations towards the east. It is located in the Guadix, Nacimiento, Andarax, and Grande de Adra basins. The high elevation also decreases towards the east: San Juan 2781 m asl, Chullo 2612 m asl, Almirez 2519 m asl, Polarda 2253 m asl, and Montenegro 1710 m asl. This district lacks in the cryoromediterranean vegetation belt. The great extent of this territory, with N, S, and E exposures, causes appreciable changes in thermotypes, ombrotypes, and continentality. At the summits, the oromediterranean belt begins at 2200 m asl on the northern slope and at 2300 m asl on the southern one. The deep soils with large periglacial stones appear to encourage the afforested Pinus sylvestris subsp.nevadensis, at present mostly of anthropogenic character. The seral and climatic vegetation of this area belong to Genisto versicoloris-Junipero hemisphaericae S. with Hieracio castellanae-Festucetum longiauriculatae as seral grassland, and particularly at lower altitudes and in the high summits the grasslands of Arenario frigidae-Festucetum indigestae develop quite well.

Thermotypes go from lower mesomediterranean to the lower oromediterranean and the ombrotypes from the semiarid to the lower humid. In the south, less moisture and higher temperatures characterize the transit towards the east. The boundary between the meso- and supramediterranean thermotypes in Rio Grande basin is located at 1450-1500 m asl and at 1500-1550 m asl climbing the Andarax river. The semiarid ombrotype begins to predominate towards Montenegro peak. On the northern slopes this boundary lies at 1250-1300 m asl. It is a cold district, largely semicontinental. It shares with the western district a great number of communities, series, and species. The Quercus pyrenaica oak series is absent, but the Quercus rotundifolia xeric synvariants are significant with respect to the western series. Table 7 shows some bioindicators.

40c. West Almeria District

This occupies an area of 83.9 [km.sup.2] (4.8%) in the low basins of the Nacimiento and Andarax rivers in the eastern limits of the National Park and reaches altitudes of close to 800 m on the slopes of the Sierra Nevada. The geological substrates are marls, sandstones, silts, alluvium materials, and calco-dolomites towards the base of the Sierra de Gador. The territory has low continentality where it is open towards the Mediterranean. The temperatures are the highest in the park, with thermotype predominant upper thermomediterranean and with little representation of the lower thermomediterranean. Rainfall is scarce, with upper arid and lower and upper semiarid ombrotypes. The vegetation differs markedly from that of the rest of the park, with very little cover and a general absence of trees, very open, poor, desertic, where the shrubby climax vegetation, has practically disappeared and there are some stages with steppe plants. The series, Zizipho loti-Mayteno europaei S. is probably extinct in the park. Some of the bioindicators in this district are listed in Table 8.

44a2. Gador Sierran East Nevada Territory

Territory with 115 [km.sup.2] (7%) in the basin of the Andarax river. Geological substrates sometimes complex, the limestones and calco-dolomites predominate and reach almost 2000 m asl on the slope of the Buitre. It presents greater oceanity, with upper thermomediterranean to the upper supramediterranean thermotypes, and with the upper semiarid to the upper subhumid ombroclimes. Contact with the Almerian sector means that the two sectors have species in common. In the mesomediterranean dry belt appears the East Penibetic calco-dolomiticolous series of the Holm oak, Paeonio coriaceae-Querco rotundifoliae S., synvariant with Phlomis almeriensis whereas in the supramediterranean subhumid belt on similar rocky soils, but higher than 1450 m asl the synvariant of Echinospartum boissieri is common, with Lavandula lanata belonging to Berberido hispanicae-Querco rotundifoliae S. Some bioindicators of this territory are included in Table 9.

Other small distrital territories exist in Sierra Nevada National Park:

45a. Vega of Granada District

With 10 [km.sup.2] (0.6%), it includes piedmont and meadows (vega) that converge towards the channel of the river Genil, and has heterogeneous conglomerates in the piedmont with marls and clays in the meadows area.

44b. Alpujarras District

This extends through the basin of the Guadalfeo river. In the national park, there are only fragments with 13 [km.sup.2] (0.7%). In the lower meso-mediterranean dry belt, on calco-dolomitic rocky soils and launas of the Alpujarrid substrata, the natural potential vegetation correspond to a thermic microforest of Quercus rotundifolia that belong to Paeonio coriaceae-Querco rotundifoliae S. with Rhamnus velutina and Phlomis purpurea.

42a. Hoya of Guadix District

Only marginal inside the Sierra Nevada National Park, this measures 11 [km.sup.2] (0.7%) of disjointed terrain. It has poor representation in the Guadix river basin, with substrates of basic and ultrabasic (mafic) nature. The thermotypes are upper mesomediterranean and lower supramediterranean, with semiarid and dry ombrotypes.

Other adjacent districts appear on the map but not within Sierra Nevada National Park, such as 42e Filabres Sierran D, 42f Baza Sierran D, 45b Alfacar Sierran D, and 54d Almijaran Sierran D.

Conclusion

A total of 2 provinces, 5 sectors, and 8 districts (one with two territories), map 1, are established in the Sierra Nevada National Park, identified from the application of bioclimatic indices (Rivas-Martinez & al., 2011c), by delimitation of thermotypes and ombrotypes (bioclimatic belts), the study of the territory and the recognition and discrimination of bioindicators, using flora, plant communities, and vegetation geopermaserie, series, and geoseries. The recognition of homogeneous territories (countries) is an essential tool for the management of Sierra Nevada National Park.

Acknowledgements

We are grateful for the facilities provided by the management and the PNSN staff, especially J. Sanchez Gutierrez and Blanca Ramos, for the development of the research carried out. The help of M. Ruiz Girela, J.M. Munoz Diaz and C. Sanchez Rojas has been important, and especially that of M.R. Fernandez Calzado.

Floristic Appendix

The taxa mentioned in the text follow the nomenclature used in Flora de Andalucia Oriental (Blanca & al. (Eds.) 2009), except the following

Iberis embergeri Serve: Iberis carnosa Willd. subsp. embergeri (Serve) Moreno

Phlomis almeriensis: Phlomis purpurea L. subsp. almeriensis (Pau) Losa & Rivas Goday

Ranunculus alismoides Bory: Ranunculus angustifolius DC. subsp. alismoides (Bory) Malag.

Ranunculus girelai: Ranunculus querubicus (J.A. Sanchez Rodr., M.J. Elias & M.A. Martin) Fern. Prieto, Sanna, M.Perez & Cires subsp. girelai Fern.Prieto, Molero Mesa, Munoz Diaz & Sanna

Sideritis luteola Font Quer

Vaccinium uliginosum subsp.nanum (Boiss.) Rivas-Martinez, Asensi, Molero Mesa & F. Valle

http://dx.doi.org/10.5209/LAZAROA.47929

References

Aspizua, R., Barea-Azcon, J.M., Bonet, F.J., Perez-Luque, A.J. & Zamora, R. (Eds.) 2012. Observatorio de Cambio Global Sierra Nevada: metodologias de seguimiento. Cons. Med. Amb. Junta de Andalucia.

Anderson, R.S., Jimenez-Moreno, G., Carrion, J.S. & Perez Martinez, C. 2011. Postglacial history of alpine vegetation, fire and climate from Laguna de Rio Seco, Sierra Nevada, southern Spain. Quaternary Sci. Rev. 30 (13-14): 1615-1629.

Blanca G., Cabezudo B., Cueto M., Salazar C. & Morales Torres, C. (Eds.) 2011. Flora Vascular de Andalucia Oriental. 4 vols. Cons. Med. Amb. Junta de Andalucia, Sevilla.

Canto, P. 2007. Vegetation series as a tool for Biogeography: a case study of the central Iberian Peninsula. Phytocoenologia 37(3-4): 417-442.

Capelo, J.H. 2003. Conceitos e Metodos da Fitossociologia. Formulacao Contemporanea e Metodos Numericos de Analise da Vegeacao. Est. Flor. Nal. Soc. Port. Ci. Flor. Oeiras.

Del Arco, M., Acebes, J.R. &. Perez de Paz, P.L. 1996. Bioclimatology and climatophilous vegetation of the Island of Hierro (Canary Islands). Phytocoenologia 26(4): 445-479.

Del Arco, M., Salas, M., Acebes, J.R, Marrero, M.C., Reyes Betancort, J.A. & Perez de Paz, P.L. 2002. Bioclimatology and climatophilous vegetation of Gran Canaria (Canary Islands). Ann. Bot. Fenn. 39: 15-41.

El Aallali, A., Lopez Nieto, J.M., Perez Raya, F. & Molero Mesa, J. 1998. Estudio de la vegetacion forestal en la vertiente sur de Sierra Nevada (Alpujarra Alta granadina). Itinera Geobot. 11: 387-402.

Fernandez-Calzado, M.R. 2007. Delimitacion del piso crioromediterraneo de Sierra Nevada. Mem. Doc. (ined). Univ. Granada, 301 pp. + CD.

Fernandez-Calzado, M.R. & Molero Mesa, J. 2011a. The cartography of vegetation in the cryoromediterranean belt of Sierra Nevada: a tool for biodiversity conservation. Lazaroa 32: 101- 115.

Fernandez-Calzado, M.R. & Molero Mesa, J. 2011b. High altitude flora of Sierra Nevada (Spain). Flora Medit. 21: 247-259.

Fernandez-Calzado, M.R., Molero-Mesa, J., Merzouki, A. & Casares-Porcel, M. 2012. Vascular plant diversity and climate change in the upper zone of Sierra Nevada, Spain. Plant Biosyst. 146(4): 1044-1053.

Florstchutz, F., Menendez Amor, J. & Wijmstra, T. A. 1971. Palynology of a thick Quaternary succession in southerm Spain. Paleogeogr. Paleocl. 10: 233-264.

Gehu, J.M. 2006. Dictionnaire de sociologie et synecologie vegetals. Nouvieu-en- Porthieu, Inter-Phytos. Berlin. J. Cramer, 899 pp.

Gehu, J.M. & Rivas-Martinez, S. 1981. Notions fondamentales de Phytosociologie. In: Dierschke, H. (Ed.). Sytaxonomie. Pp. 5-33. J. Cramer, Vaduz.

Gomez Ortiz, A. & al. 2002. Mapa geomorfologico de Sierra Nevada. Morfologia glaciar y periglaciar. Granada. Consejeria de Medio Ambiente. Junta de Andalucia. 86 pp. 1 mapa geomorfologico.

Gomez Ortiz, A., Palacios, D., Palade, B., Vazquez Selem, L. & Salvador Franch, F. 2012. The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology 159-160: 93-105.

Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Benito Alonso, J.L., Coldea, G., Dick, J., Erschbamer, B., Fernandez Calzado, M.R., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I. & Grabherr, G. 2012. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2(2): 111-115.

Jimenez-Moreno, G. 2016. Reconstruction of the vegetation from palynological analysis. In: Zamora, R. & al. (Eds.) Global Change Impacts in Sierra Nevada: Challenges for Conservation. Cons. Med. Amb. Ord. Terr. Junta de Andalucia. 208 pp.

Jimenez-Moreno, G. & Anderson, R.S. 2012. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quaternary Res. 77 (1): 44-53.

Jimenez-Moreno, G., Garcia Alix, A., Hernandez Corbalan, M.D. Anderson, R.S. & Delgado Huertas, A. 2013. Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quaternary Res. 79 (2): 110-122.

Loidi, J. 1991. Vegetation series: its use for small scale geobotanical mapping. Phytocoenosis 3 (n.s.): 119-122.

Lorite, J. 2016. An updated checklist of the vascular flora of Sierra Nevada (SE Spain). Phytotaxa 261(1): 1-57.

Lorite, J., Valle, F. & Ruiz-Polo, N. 1997. Cartography and vegetation dynamics in the Sierra Nevada, Almeria (S.E. Spain). Lagascalia 19(1-2): 601-608.

Lorite, J., Valle, F. & Salazar, C. 2003. Sintesis de la vegetacion edafohigrofila del Parque Natural y Nacional de Sierra Nevada. Monogr. Fl. Veg. Beticas 13: 47-110.

Lorite, J., Gomez, F., Mota, J.F. & Valle, F. 2007. Analysis of the orophilous vegetal communities of Baetic ranges in Andalusia (south-eastern Spain): Priority altitudinal-islands for conservation. Phytocoenologia 37: 625-644.

Losa Quintana, J.M., Molero Mesa J. Casares Porcel, M. & Perez-Raya, F. 1986. El paisaje vegetal de Sierra Nevada. La cuenca alta del Rio Genil. Serv. Publ. Univ. Granada. 285 pp. Granada.

Lousa, M. 2004. Bioclimatologia e series de vegetacao de Portugal. Lazaroa 25: 83-86.

Marfil, J.M. 2017. Estudio geobotanico global del Parque Nacional de Sierra Nevada (PNSN). Mem. Doc. (ined.). Univ. Granada. 202 pp.

Martin, J.M., Braga Alarcon, J.C. & Gomez Pugnaire M.T. 2008. Itinerarios geologicos por Sierra Nevada. Guia de campo por el Parque Nacional y Parque Natural de Sierra Nevada. Cons. Med. Amb. Junta de Andalucia.

Martinez-Parras, J.M. & Molero Mesa, J. 1983a. Ecologia y fitosociologia de Quercus pyrenaica Willd. en la provincia Betica. Los melojares beticos y sus etapas de sustitucion. Lazaroa 4: 91-104.

Martinez-Parras, J.M. & Molero Mesa, J. 1983b. Sobre la alianza Lonicero- Berberidion hispanicae O. de Bolos 1954, en la parte oriental de la provincia corologica betica. Collect. Bot. (Barcelona) 14: 327-337.

Martinez-Parras, J.M., Peinado, M. & Alcaraz, F. 1987a. Algunas comunidades orofilas de Andalucia Oriental. Lazaroa 7: 49-53.

Martinez-Parras, J.M., Peinado, M. & Alcaraz, F. 1987b. Datos sobre la vegetacion de Sierra Nevada. Lazaroa 7: 515-533.

Martinez-Parras, J.M., Peinado, M. & Alcaraz, F. 1987c. Comunidades vegetales de Sierra Nevada (Espana). Serv. Publ. Univ. Alcala de Henares. 74 pp.

Mesquita, S., Capelo, J. & de Sousa, J. 2004. Bioclimatologia da Ilha da Madeira: abordagem numerica. Quercetea 6: 47-59.

Molero Mesa, J. 1999. The vegetation of Sierra Nevada. Itinera Geobot. 13: 105- 118.

Molero Mesa, J & Gonzalez-Tejero, M.R. 1996. Catalogo y analisis floristico de la Flora orofila de Sierra Nevada. In: Chacon, J. & Rosua J.L. (Eds.). 1a Conf. Int. Sierra Nevada, 2 vols. Pp. 271-306. Granada.

Molero Mesa, J. & Marfil, J.M. 2015. The bioclimates of Sierra Nevada National Park. Int. J. Geobot. Research 5: 1-11.

Molero Mesa, J. & Marfil, J.M. 2017. Betic and Southwest Andalusia. In: Loidi, J. & Werger, M.J.A. (Eds.). The Vegetation of the Iberian Peninsula. Springer (in press).

Molero Mesa, J. & Perez Raya, F. 1987a. Estudio fitosociologico de los sabinares de Juniperus phoenicea L. en el sector Malacitano-Almijarense (provincia corologica Betica). Lazaroa 7: 301-306.

Molero Mesa, J. & Perez Raya, F. 1987b. La flora de Sierra Nevada. Avance sobre el catalogo floristico nevadense. Univ. Granada. 397 pp.

Molero Mesa, J., Perez Raya, F., Lopez Nieto, J. M., El Aallali, A. & Hita Fernandez, J. A. 2001. Cartografia y evaluacion de la vegetacion de Sierra Nevada. Mem. Fin. Inv. Cons. Med. Amb. Univ. Granada.

Mota, J.F. & Valle, F. 1987. Estudio Botanico-Ecologico de las cuencas altas de los rios Bayarcal, Paterna y Andarax. Serv. Publ. Dip. Almeria. 269 pp.

Mota, J.F., Perez-Garcia, F. J., Jimenez, M.L., Amate, J.J. & Penas, J. 2002. Phytogeographical relationships among high mountain areas in the Baetic Ranges (south Spain). Global Ecol. Biogeogr. 2: 497-504.

Oliva, M., Gomez Ortiz, A. & Schulte, L. 2010. Tendencia a la aridez en Sierra Nevada desde el Holoceno Medio inferida a partir de sedimentos lacustres. Bol. Asoc. Geogr. Esp. (52): 27-42.

Oliva, M., Schulte, L. & Gomez Ortiz, A. 2011. The role of aridification in constraining the elevation range of Holocene solifluction processes and associated landforms in the periglacial belt of the Sierra Nevada (Southern Spain). Earth Surf. Proc. Land. 36: 1279-1291.

Oliva, M. & Gomez Ortiz, A. 2012. Late Holocene environ-mental dynamics and climate variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from lake sediments and historical sources. Holocene 22 (8): 915-927.

Oliva, M., Gomez Ortiz, A., Palacios, D., Salvador Franch, F. & Salva, M. 2014. El Cuaternario en el macizo de Sierra Nevada. Evolucion paleoambiental y paisaje a partir de la interpretacion de registros naturales y documentos de epoca. Scripta Nova. Rev. Electr. Geogr. Ci. Soc. 18 (472). http://www.ub.es/ geocrit/sn/sn-472.htm.

Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Fernandez Calzado, M.R., Ghosn, D., Holten, J.I., Kanka, R., Kazakis, G., Kollar, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Molero Mesa, J., Nagy, L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P. & Grabherr, G. 2012. Recent plant diversity changes on Europe's mountain summits. Science 336: 353-355.

Peinado, M., Alcaraz, F. & Martinez-Parras, J.M. 1992. Vegetation of Southeastern Spain. Flora et Vegetatio Mundi 10: 1-487. J. Cramer, Berlin.

Perez-Luque, A.J., Perez-Perez, R. & Bonet, F.J. 2016a. Climate change over the last 50 years in Sierra Nevada. In: Zamora, R., Perez-Luque, A.J., Bonet, F.J., Barea-Azcon, J.M. & Aspizua, R. (Eds.). Global Change Impacts in Sierra Nevada: Challenges for Conservation. Pp. 24-26. Cons. Med. Amb. Ord. Terr. Junta de Andalucia, Granada.

Perez-Luque, A.J., Perez-Perez, R., Aspizua, R., Munoz, J.M., & Bonet, F.J. 2016b. Climate in Sierra Nevada: present and future. In: Zamora, R., Perez-Luque, A.J., Bonet, F.J., Barea-Azcon, J.M. & Aspizua, R. (Eds.). Global Change Impacts in Sierra Nevada: Challenges for Conservation. Pp. 27-31. Cons. Med. Amb. Ord. Terr. Junta de Andalucia, Granada.

Perez Raya, F. 1987. La vegetacion en el sector Malacitano-Almijarense de Sierra Nevada: investigaciones sintaxonomicas y sinfitosociologicas. Ser. Publ. Univ. Granada. 350 pp.

Perez Raya, F. & Molero Mesa, J. 1988a. Consideraciones sobre el orden Rosmarinetalia Br.- Bl. (1931) 1952 en Sierra Nevada (Granada, Espana). Mem. Soc. Brot. 28: 137-156.

Perez Raya, F. & Molero Mesa, J. 1988b. El orden Festuco hystricis-Poetalia ligulatae en la provincia corologica Betica. Bol. Soc. Brot. ser. 2 63: 147-152.

Perez Raya, F. & Molero Mesa, J. 1989. El orden Lygeo spartii-Stipetalia tenacissimae en el sector Malacitano-Almijarense de Sierra Nevada (Granada, Espana). Ars Pharm. 29(2-3): 245-256.

Pons, A. & Reille, M. 1988. The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeogr. Palaeoclim. 66: 243-263.

Prieto, P. 1971. Vegetacion de Sierra Nevada. La cuenca de Monachil. Col. Monogr. Univ. Granada 11. 218 pp.

Quezel, P. 1953. Contribution a l'etude phytosociologique et geobotanique de la Sierra Nevada. Mem. Soc. Brot. 9: 5-82.

Rivas Goday, S. & Rivas Martinez, S. 1968. Matorrales y tomillares de la Peninsula Iberica comprendidos en la clase Ononido-Rosmarinetea. Br. Bl.1947. An. Inst. Bot. Cavanilles 25:5- 179.

Rivas Goday, S. & Rivas Martinez, S. 1971. Vegetacion potencial de la provincia de Granada. Trab. Dep. Bot. Fis. Veg. 4: 3-85.

Rivas-Martinez, S. 1961. Los pisos de la vegetacion de Sierra Nevada. Bol. R. Soc. Esp. Hist. Nat sec. Biol. 59: 55-64.

Rivas-Martinez, S. 1976. Sinfitosociologia, una nueva metodologia para el estudio del paisaje vegetal. An. Inst. Bot. Cavanilles 33: 179-188.

Rivas-Martinez, S. 1981. Les etages bioclimatiques de la vegetation de la Peninsule Iberique. An. Jard. Bot. Madrid 37(2): 251-268.

Rivas-Martinez, S. 1982a. Mapa de las series de vegetacion de la provincia de Madrid. Publ. Serv. For. Med. Ambiente. Dip. Prov. Madrid.

Rivas-Martinez, S. 1982b. Les etages bioclimatiques, secteurs chorologiques et series de vegetation de l'Espagne mediterraneenne. Ecol. Medit. 8(1-2): 275-288.

Rivas-Martinez, S. 1983. Series de vegetacion de la region eurosiberiana de la Peninsula Iberica. Lazaroa, 4: 155-166.

Rivas-Martinez, S. 1984. Pisos bioclimaticos de Espana. Lazaroa, 5: 33-43.

Rivas-Martinez, S. 1987. Mapa de series de vegetacion de Espana. ICONA Ser Tec. 268 p. + 30 mapas. Madrid.

Rivas-Martinez, S. 1988. Bioclimatologia, Biogeografia y Series de Vegetacion de Andalucia occidental. Lagascalia 15 (extra): 91-119.

Rivas-Martinez, S. 1991. Bioclimatic belts of West Europe (relations between bioclimate and plant ecosystems). Proc. Eur. School Climate Nat. Hazards Course (Arles, 1990). 225- 246. Strasbourg.

Rivas-Martinez, S. 1994. Dynamic-zonal phytosociology as landscape science. Phytocoenologia 24: 23-25.

Rivas-Martinez, S. 1996. Geobotanica y Climatologia. Discurso investidura Dr. 'Honoris Causa' Universidad de Granada. Serv. Publ. Univ. Granada. 98 p.

Rivas-Martinez, S. 2004. Global Bioclimatics. http://www.globalbioclimatics.org.

Rivas-Martinez, S. 2005a. Avances en Geobotanica. Discurso Apertura Curso Acad. R. Acad. Nal. Farmacia.

Rivas-Martinez, S. 2005b. Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst. 139 (2): 135-144. doi: 10.1080/11263500500193790.

Rivas-Martinez, S. & Costa, M. 1998. Datos sobre la vegetacion y el bioclima del Valle de Aran. Acta Bot. Barcinon. 45: 473-499.

Rivas-Martinez S. & Loidi, J. 1999. Biogeography of the Iberian Peninsula. Itinera Geobot. 13: 49-68

Rivas-Martinez, S., Fernandez-Gonzalez, F. & Sanchez-Mata, D. 1986. Datos sobre la vegetacion del Sistema central y Sierra Nevada. Op. Bot. Pharm. Compl. 2: 3-136. Madrid.

Rivas-Martinez, S., Asensi, A., Molero-Mesa, J. & Valle, F. 1991a. Endemismos vasculares de Andalucia. Rivasgodaya 6: 5-76.

Rivas-Martinez, S., Bascones, J.C., Diaz Gonzalez, T.E., Fernandez-Gonzalez, F. & Loidi, J. 1991b. La vegetacion del Pirineo Occidental y Navarra. Itinera Geobot. 5: 5-456.

Rivas-Martinez, S., Asensi, A., Diez, B., Molero, J. & Valle, F. 1997. Biogeographical synthesis of Andalusia (southern Spain). J. Biogeogr. 24: 915-928.

Rivas-Martinez, S., Fernandez-Gonzalez, F., Loidi, J., Lousa, M. & Penas, A. 2001. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot. 14: 5-341.

Rivas-Martinez, S., Fernandez-Gonzalez, F., Loidi, J., Lousa, M. & Penas, A. 2002a. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part I. Itinera Geobot. 15(1): 5-432.

Rivas-Martinez, S., Fernandez-Gonzalez, F., Loidi, J., Lousa, M. & Penas, A. 2002b. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. Itinera Geobot. 15(2): 433-922.

Rivas-Martinez, S. & al. 2007. Mapas de series, geoseries y geopermaseries de vegetacion de Espana [Memoria del mapa de vegetacion potencial de Espana]. Parte I. Itinera Geobot. 17: 5-436.

Rivas-Martinez, S. & coautores. 2011a. Mapa de series, geoseries y geopermaseries de vegetacion de Espana, vol. I. Itinera Geobot. 18 (1): 5-424.

Rivas-Martinez, S. & coautores. 2011b. Mapa de series, geoseries y geopermaseries de vegetacion de Espana, vol. II. Itinera Geobot. 18 (2): 425-800.

Rivas-Martinez, S., Rivas Saenz, S. & Penas, A. 2011c. Worldwide bioclimatic classification system. Global Geobot. 1: 1-638 + 4 maps.

Rivas-Martinez, S., Penas, A., Diaz Gonzalez, T.E., del Rio, S. Canto, P., Herrero, L., Pinto Gomes, C. & Costa, J.C. 2014. Biogeography of Spain and Portugal. Preliminary typological synopsis. Int. J. Geobot. Research 4(1): 1-64.

Rivas-Martinez, S., Penas, A., Diaz Gozalez, T. E., Canto, P., del Rio, S. & Molero, J. 2017. Biogeographic units of Iberian Peninsula and Balearic islands to district level. In: Loidi, J. & Werger, M.J.A. (Eds.). The Vegetation of the Iberian Peninsula. Springer (in press).

Salazar, C., Lorite, J., Garcia-Fuentes, A., Torres, J.A., Cano, E. & Valle, F. 2001. A phytosociological study of the hygrophilous vegetation of Sierra Nevada (Southern Spain). Studia Geobot. 20: 17-32

Sanchez Gomez, P. & Alcaraz, F. 1993. Flora, Vegetacion y Paisaje vegetal de las sierras de Segura orientales. Publ. Inst. Est. Albacetenses. Serie I, Estudios, 69. Albacete.

Sanchez-Gomez, P., Mota, J.F. & Gomez Mercado, F. 1994. Utilizacion de criterios bioclimaticos y floristicos en la subdivision biogeografica del sector Subbetico (provincia Betica). Acta Bot. Malacitana 19: 185-198.

Valle, F. 1985. Mapa de las series de vegetacion de Sierra Nevada. Ecol. Medit. 11: 184-199.

Valle, F. & al. (Eds.) 2003-2005. Modelos de restauracion forestal. Vol. I-IV. Cons. Med. Amb. Junta de Andalucia.

Vera, J.A. (Ed.) 2004. Geologia de Espana. SGE-IGME, Madrid. 890 pp. 2 mapas + CD.

Winkler, M., Lamprecht, A., Steinbauer, K., Hulber, K., Theurillat, J.P., Breiner, F., Choler, P., Ertl, S., Gutierrez Giron, A. Rossi, G., Vittoz, P. Akhalkatsi, M., Bay, C., Benito Alonso, J.L., Bergstrom, T., Carranza, M.L., Corcket, E., Dick, J., Erschbamer, B., Fernandez Calzado, M.R., Fosaa, A.M., G. Gavilan, R., Ghosn, D., Gigauri, K., Huber, D., Kanka, R., Kazakis, G., Klipp, M., Kollar, J., Kudernatsch, T., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, P., Moiseev, D., Molau, U., Molero Mesa, J., Morra di Cella, U., Nagy, L., Petey, M., Puscas, M., Rixen, C., Stanisci, A., Suen, M., O. Syverhuset, A., Tomaselli, M., Unterluggauer, P., Ursu, T., Villar, V., Gottfried, M. and Pauli, H. 2016. The rich sides of mountain summits--a pan--European view on aspect preferences of alpine plants. J. Biogeogr. 43(11): 2261-2273.

Zamora, R., Perez-Luque, A.J., Bonet, F.J., Barea-Azcon, J.M. & Aspizua, R. (Eds.) 2016. Global Change Impacts in Sierra Nevada: Challenges for Conservation. Cons. Med. Amb. Ord. Terr. Junta de Andalucia, Granada. 208 pp.

Jose Miguel Marfil (1), Joaquin Molero (1), Paloma Canto (2), Salvador Rivas- Martinez (3)

Received 22 February 2016 / Accepted 22 March 2016

(1) Department of Botany, University of Granada, Granada, Spain. Email: jmolero@ugr.es.

(2) Department of Plant Biology II, University Complutense, E-28040 Madrid, Spain.

(3) Phytosociological Research Center, Collado-Villaba, Madrid, Spain.

Caption: Map 1. Biogeographic districts and territories of Sierra Nevada National Park and adjacent areas.
Table 1. Main glacial and interglacial periods in Sierra Nevada since
last Wurm

32-30Ka--Wurm maximum                      Sierra Nevada glacial
                                             maximum
15-14Ka--Late glacial. Glaciers melting    Glaciers restricted to
                                             summits areas
11-7Ka--Old Holocene                       Complete glacier melts;
                                             temperature,
                                             precipitation increase
7-4Ka--Middle Holocene. Climatic optimum   Higher temperature and
                                             rainfalls
4-2.3Ka--Anthropic impact begins           Alternation of aridic to
                                             rainy and cold to warmer
                                             periods
2.3-0.85Ka-Roman and Medieval periods      Precipitation increases
                                             moderately
0.85-0.15Ka--Little Ice Age                Temp. decreases [greater
                                             than or equal to]
                                             1.0[degrees]C.
                                             Snowfields and glaciers
                                             in summits
21th century                               One small buried rock
                                             glacier remain in "Corral
                                             del Veleta"

Table 2. Synoptic table of Worldwide bioclimatic classification system
(Rivas/Martinez, Rivas/Saenz & A. Penas). (Updated 13/02/2017)
For detailed information on indices and other features see
globalbioclimatics.org

Macrobioclimate (1)                 Bioclimate (5)

Tropical                                               Abbr.

Zone warm:            Tr. Pluvial                      trpl
equatorial,           Tr. Pluviseasonal                trps
eutropical and        Tr. Xeric                        trxe
subtropical           Tr. Desertic                     trde
(0[degrees] to        Tr. Hyperdesertic                trhd
36[degrees] N & S).
In subtropical
(23[degrees] to
36[degrees] N & S)
at <200 m two
values: T [greater
than or equal to]
25[degrees], m
[greater than or
equal to]
10[degrees], Itc
[greater than or
equal to] 580. If
[Pcm.sub.2] <
[Pcm.sub.1]>
[Pcm.sub.3] y Pss >
Psw, two values: T
[greater than or
equal to]
21[degrees], M
[greater than or
equal to]
18[degrees], It
[greater than or
equal to] 470.
Eurasia and Africa:
25[degrees] to
36[degrees] N >2000
m is not tropical.

   Mediterranean                                       Abbr.

Zone warm:            Me. Pluviseasonal Oceanic        mepo
subtropical and       Me. Pluviseasonal Continental    mepc
temperate             Me. Xeric Oceanic                mexo
eutemperate           Me. Xeric Continental            mexe
(23[degrees] to       Me. Desertic Oceanic             medo
52[degrees] N& S),    Me. Desertic Continental         mede
with aridity P <      Me. Hyperdesertic Oceanic        meho
2T, at least two      Me. Hyperdesertic Continental    mehc
months in summer:
[Ios.su.2] [less
than or equal to]
2, [Iosc.sub.4]
[less than or equal
to] 2. In
subtropical
(23[degrees] to
36[degrees] N & S)
at least two
values: T <
25[degrees], m <
10[degrees], Itc <
580.

     Temperate                                         Abbr.

Zone warm:            Te. Hyperoceanic                 teho
subtropical and       Te. Oceanic                      teoc
temperate             Te. Continental                  teco
(23[degrees] to       Te. Xeric                        texe
66[degrees] N &
23[degrees] to
54[degrees] S).
From 23[degrees] to
36[degrees] N & S,
at <200 m, at least
two values: T <
21[degrees], M <
18[degrees], Itc <
470. [Ios.sub.2]>
2, [Iosc.sub.4] >
2.

      Boreal                                           Abbr.

Zones temperate and   Bo. Hyperoceanic                 boho
cold (42[degrees]     Bo. Oceanic                      booc
to 72[degrees] N,     Bo. Subcontinental               bosc
49[degrees] to        Bo. Continental                  boco
56[degrees] S). At    Bo. Hypercontinental             bohc
< 200 m: Ic [less     Bo. Xeric                        boxe
than or equal to]
11 : T [less than
or equal to]
6[degrees], Tp =
380-720; Tps > 320;
Ic = 11-21 : T
[less than or equal
to] 5.3[degrees],
Tp = 380-720; Ic =
21-28: T [less than
or equal to]
4.8[degrees], Tp =
380-740; Ic = 28-
45: T [less than or
equal to]
4.3[degrees], Tp =
380-800; Ic
[greater than or
equal to] 45: T
[less than or equal
to] 0[degrees], Tp
= 380-800.

       Polar                                           Abbr.

Zones temperate and   Po. Hyperoceanic                 poho
cold (51[degrees]     Po. Oceanic                      pooc
to 90[degrees] N &    Po. Continental                  poco
S). At < 100 m: Tp    Po. Xeric                        poxe
< 380.                Po. Pergelid                     pope

Macrobioclimate (1)                   c

Tropical                  Ic           Io          Iod2

Zone warm:                --        [greater       >2.5
equatorial,                         than or
eutropical and                     equal to]
subtropical                           3.6
(0[degrees] to            --        [greater    [less than       --
36[degrees] N & S).                 than or      or equal
In subtropical                     equal to]     to] 2.5
(23[degrees] to                       3.6
36[degrees] N & S)        --        1.0-3.6         --           --
at <200 m two             --        0.2-1.0         --           --
values: T [greater        --         < 0.2          --           --
than or equal to]
25[degrees], m
[greater than or
equal to]
10[degrees], Itc
[greater than or
equal to] 580. If
[Pcm.sub.2] <
[Pcm.sub.1]>
[Pcm.sub.3] y Pss >
Psw, two values: T
[greater than or
equal to]
21[degrees], M
[greater than or
equal to]
18[degrees], It
[greater than or
equal to] 470.
Eurasia and Africa:
25[degrees] to
36[degrees] N >2000
m is not tropical.

   Mediterranean          Ic           Io

Zone warm:            [less than     > 2.0          --           --
subtropical and        or equal
temperate               to] 21
eutemperate              > 21         >2.0          --           --
(23[degrees] to       [less than    1.0-2.0         --           --
52[degrees] N& S),     or equal
with aridity P <        to] 21
2T, at least two         > 21       1.0-2.0         --           --
months in summer:     [less than    0.2-1.0         --           --
[Ios.su.2] [less       or equal
than or equal to]       to] 21
2, [Iosc.sub.4]          > 21       0.2-1.0         --           --
[less than or equal   [less than      <0.2          --           --
to] 2. In              or equal
subtropical             to] 21
(23[degrees] to          > 21         <0.2          --           --
36[degrees] N & S)
at least two
values: T <
25[degrees], m <
10[degrees], Itc <
580.

     Temperate            Ic           Io

Zone warm:            [less than     > 3.6          --           --
subtropical and        or equal
temperate               to] 11
(23[degrees] to         11-21        > 3.6          --           --
66[degrees] N &          >21         > 3.6          --           --
23[degrees] to         [greater    [less than       --           --
54[degrees] S).        than or      or equal
From 23[degrees] to     equal       to] 3.6
36[degrees] N & S,      to] 4
at <200 m, at least
two values: T <
21[degrees], M <
18[degrees], Itc <
470. [Ios.sub.2]>
2, [Iosc.sub.4] >
2.

      Boreal              Ic           Io           Tp           T

Zones temperate and   [less than      >3.6       [greater    <6.0
cold (42[degrees]      or equal                  than or      [degrees]
to 72[degrees] N,       to] 11                    equal
49[degrees] to                                   to] 720
56[degrees] S). At      11-21         >3.6       [greater    [less than
< 200 m: Ic [less                                than or      or equal
than or equal to]                                 equal       to] 5.3
11 : T [less than                                to] 720     [degrees]
or equal to]            21-28         >3.6       [greater    [less than
6[degrees], Tp =                                 than or      or equal
380-720; Tps > 320;                               equal       to] 4.8
Ic = 11-21 : T                                   to] 740     [degrees]
[less than or equal
to] 5.3[degrees],       28-46         >3.6       [greater    [less than
Tp = 380-720; Ic =                               than or      or equal
21-28: T [less than                               equal       to] 3.8
or equal to]                                     to] 800     [degrees]
4.8[degrees], Tp =
380-740; Ic = 28-        >46           --        [greater    [less than
45: T [less than or                              than or      or equal
equal to]                                         equal       to] 0.0
4.3[degrees], Tp =                               to] 800     [degrees]
380-800; Ic              <46       [less than    [greater    [less than
[greater than or                    or equal     than or      or equal
equal to] 45: T                     to] 3.6       equal       to] 3.8
[less than or equal                              to] 800     [degrees]
to] 0[degrees], Tp
= 380-800.

       Polar              Ic           Io           Tp

Zones temperate and   [less than      >3.6          >0           --
cold (51[degrees]      or equal
to 90[degrees] N &      to] 11
S). At < 100 m: Tp      11-21         >3.6          >0           --
< 380.                   >21          >3.6          >0           --
                       [greater    [less than       >0           --
                       than or      or equal
                        equal       to] 3.6
                        to] 4
                          --           --           -0           --

Macrobioclimate (1)                   Thermoclimatic types

Tropical                                         It      Tp (2)   Abbr.
                                               (Itc)

Zone warm:            1. Infratropical        690-890    >2900     itr
equatorial,           2. Thermotropical       490-690    >2300     ttr
eutropical and        3. Mesotropical         320-490    >1700     mtr
subtropical           4. Supratropical        160-320    >1000     str
(0[degrees] to        5. Orotropical            <160    600-1000   otr
36[degrees] N & S).   6. Cryorotropical          --      1-600     ctr
In subtropical        7. Gelid (3)               --        0       gtr
(23[degrees] to
36[degrees] N & S)
at <200 m two
values: T [greater
than or equal to]
25[degrees], m
[greater than or
equal to]
10[degrees], Itc
[greater than or
equal to] 580. If
[Pcm.sub.2] <
[Pcm.sub.1]>
[Pcm.sub.3] y Pss >
Psw, two values: T
[greater than or
equal to]
21[degrees], M
[greater than or
equal to]
18[degrees], It
[greater than or
equal to] 470.
Eurasia and Africa:
25[degrees] to
36[degrees] N >2000
m is not tropical.

   Mediterranean                              It (Itc)   Tp (2)   Abbr.

Zone warm:            1. Inframediterranean   450-580    > 2400    ime
subtropical and       2. Thermomediterranean  350-450    > 2100    tme
temperate             3. Mesomediterranean    220-350    > 1500    mme
eutemperate           4. Supramediterranean    < 220     > 900     sme
(23[degrees] to       5. Oromediterranean        --     500-900    ome
52[degrees] N& S),    6. Cryoromediterranean     --      1-500     eme
with aridity P <      7. Gelid (3)               --        0       gme
2T, at least two
months in summer:
[Ios.su.2] [less
than or equal to]
2, [Iosc.sub.4]
[less than or equal
to] 2. In
subtropical
(23[degrees] to
36[degrees] N & S)
at least two
values: T <
25[degrees], m <
10[degrees], Itc <
580.

     Temperate                                   It        tp     Abbr.
                                               (Itc)    (2,y 4)

Zone warm:            1. Infratemperate         >410     > 2350    ite
subtropical and       2. Thermotemperate      290-410    > 2000    tte
temperate             3. Mesotemperate        190-290    > 1400    mte
(23[degrees] to       4. Supratemperate (4)    < 190     > 800     ste
66[degrees] N &       5. Orotemperate (4)        --     380-800    ote
23[degrees] to        6. Cryorotemperate         --      1-380     cte
54[degrees] S).       7. Gelid (3)               --        0       gte
From 23[degrees] to
36[degrees] N & S,
at <200 m, at least
two values: T <
21[degrees], M <
18[degrees], Itc <
470. [Ios.sub.2]>
2, [Iosc.sub.4] >
2.

      Boreal                                               Tp     Abbr.

Zones temperate and   1. Thermoboreal            --      > 680     tbo
cold (42[degrees]     2. Mesoboreal              --     580-680    mbo
to 72[degrees] N,     3. Supraboreal             --     480-580    sbo
49[degrees] to        4. Oroboreal               --     380-480    obo
56[degrees] S). At    5. Cryoroboreal            --      1-380     cbo
< 200 m: Ic [less     6. Gelid (3)               --        0       gbo
than or equal to]
11 : T [less than
or equal to]
6[degrees], Tp =
380-720; Tps > 320;
Ic = 11-21 : T
[less than or equal
to] 5.3[degrees],
Tp = 380-720; Ic =
21-28: T [less than
or equal to]
4.8[degrees], Tp =
380-740; Ic = 28-
45: T [less than or
equal to]
4.3[degrees], Tp =
380-800; Ic
[greater than or
equal to] 45: T
[less than or equal
to] 0[degrees], Tp
= 380-800.

       Polar                                               Tp     Abbr.

Zones temperate and   1. Infrapolar (6)                 380-600    ipo
cold (51[degrees]     2. Thermopolar             --     280-380    tpo
to 90[degrees] N &    3. Mesopolar               --     100-280    mpo
S). At < 100 m: Tp    4. Suprapolar (3)          --      1-100     spo
< 380.                5. Gelid (3,7)             --        0       gpo

Macrobioclimate (1)             Ombroclimatic types

Tropical                                       Io       Abbr.

Zone warm:            1. Ultrahyperarid       <0.2       uha
equatorial,           2. Hyperarid          0.2-0.4      har
eutropical and        3. Arid               0.4-1.0      ari
subtropical           4. Semiarid           1.0-2.0      sar
(0[degrees] to        5. Dry                2.0-3.6      sec
36[degrees] N & S).   6. Subhumid           3.6-6.0      shu
In subtropical        7. Humid              6.0-12.0     hum
(23[degrees] to       8. Hyperhumid        12.0-24.0     hhu
36[degrees] N & S)    9. Ultrahyperhumid    [greater     uhh
at <200 m two                               than or
values: T [greater                         equal to]
than or equal to]                              24
25[degrees], m
[greater than or
equal to]
10[degrees], Itc
[greater than or
equal to] 580. If
[Pcm.sub.2] <
[Pcm.sub.1]>
[Pcm.sub.3] y Pss >
Psw, two values: T
[greater than or
equal to]
21[degrees], M
[greater than or
equal to]
18[degrees], It
[greater than or
equal to] 470.
Eurasia and Africa:
25[degrees] to
36[degrees] N >2000
m is not tropical.

   Mediterranean                               Io       Abbr.

Zone warm:            1. Ultrahyperarid      < 0.2       uha
subtropical and       2. Hyperarid          0.2-0.4      har
temperate             3. Arido              0.4-1.0      ari
eutemperate           4. Semiarid           1.0-2.0      sar
(23[degrees] to       5. Dry                2.0-3.6      sec
52[degrees] N& S),    6. Subhumid           3.6-6.0      shu
with aridity P <      7. Humid              6.0-12.0     hum
2T, at least two      8. Hyperhumid        12.0-24.0     hhu
months in summer:     9 Ultrahyperhumid      > 24.0      uhh
[Ios.su.2] [less
than or equal to]
2, [Iosc.sub.4]
[less than or equal
to] 2. In
subtropical
(23[degrees] to
36[degrees] N & S)
at least two
values: T <
25[degrees], m <
10[degrees], Itc <
580.

     Temperate                                 Io       Abbr.

Zone warm:
subtropical and       4. Semiarid             <2.0       sar
temperate             5. Dry                2.0-3.6      sec
(23[degrees] to       6. Subhumid           3.6-6.0      shu
66[degrees] N &       7. Humid              6.0-12.0     hum
23[degrees] to        8. Hyperhumid        12.0-24.0     hhu
54[degrees] S).       9. Ultrahyperhumid     > 24.0      uhh
From 23[degrees] to
36[degrees] N & S,
at <200 m, at least
two values: T <
21[degrees], M <
18[degrees], Itc <
470. [Ios.sub.2]>
2, [Iosc.sub.4] >
2.

      Boreal                                   Io       Abbr.

Zones temperate and   4. Semiarid             <2.0       sar
cold (42[degrees]     5. Dry                2.0-3.6      sec
to 72[degrees] N,     6. Subhumid           3.6-6.0      shu
49[degrees] to        7. Humid              6.0-12.0     hum
56[degrees] S). At    8. Hyperhumid        12.0-24.0     hhu
< 200 m: Ic [less     9. Ultrahyperhumid     > 24.0      uhh
than or equal to]
11 : T [less than
or equal to]
6[degrees], Tp =
380-720; Tps > 320;
Ic = 11-21 : T
[less than or equal
to] 5.3[degrees],
Tp = 380-720; Ic =
21-28: T [less than
or equal to]
4.8[degrees], Tp =
380-740; Ic = 28-
45: T [less than or
equal to]
4.3[degrees], Tp =
380-800; Ic
[greater than or
equal to] 45: T
[less than or equal
to] 0[degrees], Tp
= 380-800.

       Polar                                   Io       Abbr.

Zones temperate and   4. Semiarid             <2.0       sar
cold (51[degrees]     5. Dry                2.0-3.6      sec
to 90[degrees] N &    6. Subhumid           3.6-6.0      shu
S). At < 100 m: Tp    7. Humid              6.0-12.0     hum
< 380.                8. Hyperhumid        12.0-24.0     hhu
                      9. Ultrahyperhumid     >24.0       uhh

(1) North and south of equatorial and eutropical latitudinal belt
(23[degrees]N & 23[degrees] S), if the locality is at 200 m altitude
or higher, the thermical values at this altitude must be calculated
increasing T in 0.6[degrees], M in 0.5[degrees], and It or Itc in 13
units, every 100 m higher than 200 m asl. But if the locality is
northern 48[degrees] N or southern 51[degrees] S, the increases are T
in 0.4[degrees] and Tp in 12 units, every 100 m higher than 200 m asl.
(2) If Ic [greater than or equal to] 21 (continental) or It o Itc
<120 the thermotype must by calculated through Tp values, and the
theorie values of Tp at 200 m asl increasing 55 units every 100 m
exceding that altitude. (3) In the pergelid bioclimate (polar), the
upper suprapolar and the gelid thermotype on recognize the following
ombrotypes (chionotypes): un-snowy (<50 mm), scanty-snowy (50-200 mm),
low-snowy (200-400 mm), medium-snowy (400-600 mm), high-snowy (600-
1000 mm), super-snowy (1000-2000 mm), ultra-snowy (>2000 mm). (4) The
hemiboreal thermotype (hbo) is used inside the temperate
macrobioclimate, north of 45[degrees]N and south 49[degrees]S, within
the following values: Ic <21, altitude <400 m, tp 720-900; Ic 21-28,
altitude <600 m, tp 740-900; Ic >28, alt. <1000 m, tp 800-900. (5)
Bioclimatic variants: steppic (stp), submediterranean (sbm), bixeric
(bix), antitropical (ant), seropluvial (spl), polar semiboreal
(posbo), semipolar subantarctic (sepos), tropical semimediterranean
desertic (trsmd), polar euhyperoceanic (poeuhy), boreal subantarctic
(bosuba) and temperte subantartic (tesuba). (6) The infrapolar
thermotype (Tp: 380-600) only correspond to semipolar antarctic
insular bioclimatic variant in the coast [values. Alt <100 m, T <7,
5[degrees], Tp <600, Tps <280, Tmax <10[degrees], Ic <8, Io >10];
the polar semiboreal bioclimatic variant correspond to
semicontinental-hyperoceanic hyperhumid oroboreal treeless arctic
tundra territories [values: Tp 380-480, Ic <28, Tmax [less than or
equal to] 11[degrees], Tps [greater than or equal to] 320], (7) In the
polar pergelid bioclimate on identify three gelid thermotypes in the
Antarctic Region and only two in the Circumarctic Region: hypogelid
(T -10[degrees] to -25[degrees], Tp 0, Tpmax <30, Tpamax <500, Twmax
<-7[degrees]); hypergelid (T -25[degrees] to -45[degrees], Tp 0, Tpmax
0, Tpamax 300, Twmax -7[degrees] to -22[degrees]); ultragelid (T
<-45[degrees], Tp 0, Tpmax 0, Tpamax 0, Twmax <-22[degrees]; only in
Antarctica).

Table 3. Bioclimatic data of Sierra Nevada National Park. T: Annual
Average Temperature; Tp: Annual Positive Temperature; Ts: Summer
Temperature; P: Annual precipitation; Pp: Annual Positive
Precipitation; Itc: Compensated Thermicity Index; Ic: Continentality
Index; AI: Aridic Index; Io: Ombrothermic Index; Io6 (June); Io7
(July); Io8 (August): Monthly Ombrothermic Index; U: upper; L: lower;
subhum: subhumid; sarid: semiarid; GR: Granada province; AL: Almeria
province.

Localities                         Lat. & long.

Rioja, AL                 36[degrees]51'N-2[degrees]27'W
Velez de Benaudalla, GR   36[degrees]50'N-3[degrees]30'W
Orgiva, GR                36[degrees]54'N-3[degrees]25'W
Alboloduy, GR             37[degrees]08'N-2[degrees]37'W
Tabernas, GR              37[degrees]03'N-2[degrees]23'W
Canjayar, AL              36[degrees]54'N-3[degrees]25'W
Rambla de Guadix, AL      37[degrees]01'N-2[degrees]40'W
Granada Base Aerea, GR    37[degrees]19'N-3[degrees]38'W
Lanjaron, GR              36[degrees]55'N-3[degrees]29'W
Granada Cart, GR          37[degrees]11'N-3[degrees]36'W
Albunuelas, GR            36[degrees]53'N-3[degrees]37'W
Padul, GR                 37[degrees]1'N-3[degrees]37'W
Pinos Genil, GR           37[degrees]9'N-3[degrees]30'W
Monachil, GR              37[degrees]8'N-3[degrees]32'W
Benalua de Guadix, GR     37[degrees]21'N-3[degrees]09'N
Durcal, GR                37[degrees]0'N-3[degrees]33'W
Cadiar, GR                36[degrees]56'N-3[degrees]10'W
Laujar, AL                36[degrees]59'N-2[degrees]53'W
Finana, AL                37[degrees]10'N-2[degrees]50'W
Dilar C. Electrica, GR    37[degrees]04'N-3[degrees]32'W
Ohanes, AL                37[degrees]02'N-2[degrees]44'W
Pampaneira,GR             36[degrees]56'N-3[degrees]21'W
Canar Jarales, GR         36[degrees]55'N-3[degrees]25'W
Jerez del M., GR          37[degrees]ll'N-3[degrees]9'W
Hueneja, GR               37[degrees]9'N-2[degrees]57'W
Laujar Monte. AL          37[degrees]1'N-2[degrees]53'W
Berchules, GR             36[degrees]58'N-3[degrees]11'W
Robledal de Canar, GR     36[degrees]57'N-3[degrees]25'W
Laujar Cerec., AL         37[degrees]2'N-2[degrees]54'W
S.de Lujar-Orgiva, GR     36[degrees]49'N-3[degrees]24'W
Piedra Soldados, GR       37[degrees]9'N-3[degrees]15'W
Laguna Seca, AL           37[degrees]05'N-2[degrees]57'W
S.Nevada Alb., GR         37[degrees]5'N-3[degrees]23'W
Veleta Peak, GR           36[degrees]57'N-3[degrees]25'W

Localities                Alt. m   Years    T      Tp     Ts     P

Rioja, AL                  127     55-92   18.8   2254   756    206
Velez de Benaudalla, GR    130     51-99   18.2   1978   714    487
Orgiva, GR                 450     53-91   16.5   1978   701    476
Alboloduy, GR              460     65-92   17.7   2119   745    241
Tabernas, GR               490     55-98   18.0   2166   774    242
Canjayar, AL               610     51-90   17.7   2127   783    350
Rambla de Guadix, AL       616     08-14   17.2   2064   754    171
Granada Base Aerea, GR     687     61-10   15.3   1464   727    371
Lanjaron, GR               710     46-99   15.0   1796   641    494
Granada Cart, GR           720     61-92   15.4   1848   719    469
Albunuelas, GR             730     55-99   15.5   1857   703    496
Padul, GR                  753     55-99   16.0   1916   723    417
Pinos Genil, GR            774     51-92   13.9   1668   653    572
Monachil, GR               810     25-92   14.2   1708   661    480
Benalua de Guadix, GR      865     51-91   14.8   1702   661    289
Durcal, GR                 890     61-92   15.3   1832   718    509
Cadiar, GR                 916     61-90   14.2   1708   624    607
Laujar, AL                 921     55-92   14.6   1753   664    531
Finana, AL                 950     66-99   14.3   1716   704    288
Dilar C. Electrica, GR     980     54-92   13.6   1632   647    637
Ohanes, AL                 1000    63-96   14.9   1794   700    385
Pampaneira,GR              1060    67-92   14.5   1742   653    666
Canar Jarales, GR          1071    54-99   13.3   1596   591    591
Jerez del M., GR           1223    51-92   12.8   1531   610    377
Hueneja, GR                1278    58-92   12.3   1472   614    439
Laujar Monte. AL           1280    61-10   13.2   1585   639    605
Berchules, GR              1319    61-92   12.5   1496   613    683
Robledal de Canar, GR      1735    08-14   10.9   1308   566    793
Laujar Cerec., AL          1780    61-10   10.7   1280   559    661
S.de Lujar-Orgiva, GR      1842    65-77   8.5    1020   509    702
Piedra Soldados, GR        2155    08-14   7.5    899    459    516
Laguna Seca, AL            2300    08-14   6.5    780    457    519
S.Nevada Alb., GR          2510    75-14   4.9    593    414    761
Veleta Peak, GR            3097    08-14   1.7    440    318    180

Localities                 Pp    Itc     Ic     AI     Io    [Io.sub.6]

Rioja, AL                 206    428    15.0   1143   0.9       0.74
Velez de Benaudalla, GR   487    429    12.6   649    2.2       0.96
Orgiva, GR                476    352    15.1   652    2.4       0.54
Alboloduy, GR             241    389    15.4   903    1.1       0.31
Tabernas, GR              242    389    16.7   916    1.1       0.37
Canjayar, AL              350    374    18.3   733    1.7       0.53
Rambla de Guadix, AL      171    410    16.2   1142   0.8       0.05
Granada Base Aerea, GR    371    295    18.6   604    2.5       1.09
Lanjaron, GR              494    322    13.9   585    2.8       0.74
Granada Cart, GR          469    298    18.0   565    2.5       0.81
Albunuelas, GR            496    309    17.0   656    2.7       0.67
Padul, GR                 417    321    17.4   595    2.2       0.92
Pinos Genil, GR           572    261    16.9   518    3.4       1.16
Monachil, GR              480    289    17.0   544    2.8       0.91
Benalua de Guadix, GR     289    276    17.9   531    1.7       1.14
Durcal, GR                509    289    18.9   565    2.8       1.02
Cadiar, GR                607    282    15.7   541    2.3       0.91
Laujar, AL                531    294    16.0   545    3.0       0.69
Finana, AL                288    268    19.4   668    1.7       0.51
Dilar C. Electrica, GR    637    259    17.8   522    3.9       1.07
Ohanes, AL                385    294    17.6   652    2.2       0.58
Pampaneira,GR             666    302    14.9   502    3.8       1.50
Canar Jarales, GR         591    255    17.2   521    3.7       0.80
Jerez del M., GR          377    236    16.3   500    2.5       1.06
Hueneja, GR               439    221    17.2   511    3.0       0.92
Laujar Monte. AL          605    259    16.5   446    3.8       0.92
Berchules, GR             683    233    16.7   480    4.6       1.25
Robledal de Canar, GR     793    171    15.6   524    6.1       0.44
Laujar Cerec., AL         661    189    16.0   349    5.2       1.43
S.de Lujar-Orgiva, GR     702    127    17.0   454    6.9       1.25
Piedra Soldados, GR       467     73    18.3   438    5.9       1.35
Laguna Seca, AL           457     66    17.8   393    5.9       1.33
S.Nevada Alb., GR         307    -23    20.1   296    5.2       4.70
Veleta Peak, GR            58    -110   18.1   477    1.4       0.42

Localities                [Io.sub.7]   [Io.sub.8]

Rioja, AL                    0.06         0.07
Velez de Benaudalla, GR      0.15         0.13
Orgiva, GR                   0.13         0.18
Alboloduy, GR                0.09         0.14
Tabernas, GR                 0.06         0.12
Canjayar, AL                 0.09         0.27
Rambla de Guadix, AL         0.08         0.21
Granada Base Aerea, GR       0.08         0.09
Lanjaron, GR                 0.13         0.24
Granada Cart, GR             0.13         0.18
Albunuelas, GR               0.13         0.12
Padul, GR                    0.06         0.12
Pinos Genil, GR              0.14         0.25
Monachil, GR                 0.10         0.22
Benalua de Guadix, GR        0.11         0.41
Durcal, GR                   0.06         0.09
Cadiar, GR                   0.17         0.16
Laujar, AL                   0.11         1.25
Finana, AL                   0.32         0.14
Dilar C. Electrica, GR       0.20         0.19
Ohanes, AL                   0.09         0.21
Pampaneira,GR                0.17         0.20
Canar Jarales, GR            0.13         0.30
Jerez del M., GR             0.28         0.54
Hueneja, GR                  0.30         1.48
Laujar Monte. AL             0.22         0.42
Berchules, GR                0.17         0.22
Robledal de Canar, GR        0.14         0.18
Laujar Cerec., AL            0.47         0.61
S.de Lujar-Orgiva, GR        0.07         0.16
Piedra Soldados, GR          0.27         0.23
Laguna Seca, AL              0.13         0.60
S.Nevada Alb., GR            0.47         0.57
Veleta Peak, GR              0.38         0.23

Localities                         Isobioclimates

Rioja, AL                 L. thermomediterranean- U. arid
Velez de Benaudalla, GR   L. thermomediterranean- L. dry
Orgiva, GR                U. thermomediterranean- L. dry
Alboloduy, GR             U. thermomediterranean- L. sarid
Tabernas, GR              U. thermomediterranean- L. sarid
Canjayar, AL              U. thermomediterranean-U. sarid
Rambla de Guadix, AL      L. thermomediterranean-U. arid
Granada Base Aerea, GR    L. mesomediterranean-L. dry
Lanjaron, GR              L. mesomediterranean-L. dry
Granada Cart, GR          L. mesomediterranean-L. dry
Albunuelas, GR            L. mesomediterranean-L. dry
Padul, GR                 L. mesomediterranean-L. dry
Pinos Genil, GR           U. mesomediterranean-U. dry
Monachil, GR              L. mesomediterranean-U. dry
Benalua de Guadix, GR     U. mesomediterranean-U. sarid
Durcal, GR                L. mesomediterranean-U. dry
Cadiar, GR                U. mesomediterranean-L. dry
Laujar, AL                L. mesomediterranean-U. dry
Finana, AL                U. mesomediterranean-U. sarid
Dilar C. Electrica, GR    U. mesomediterranean-L. subhum.
Ohanes, AL                L. niesomediterranean-L. dry
Pampaneira,GR             L. mesomediterranean-L. subhum.
Canar Jarales, GR         U. mesomediterranean-L. subhum.
Jerez del M., GR          U. mesomediterranean-L. dry
Hueneja, GR               U. mesomediterranean-U. dry
Laujar Monte. AL          U. mesomediterranean-L. subhum.
Berchules, GR             U. mesomediterranean-L. subhumid
Robledal de Canar, GR     L. supramediterranean-L. humid
Laujar Cerec., AL         L. supramediterranean-U. subhum.
S.de Lujar-Orgiva, GR     U. supramediterranean-L. humid
Piedra Soldados, GR       L. oromediterranean-U. subhum.
Laguna Seca, AL           L. oromediterranean-U. subhum.
S.Nevada Alb., GR         U. oromediterranean-U. subhum.
Veleta Peak, GR           L. cryoromediterranean-L. sarid

Table 4. Trevenque Sierran District bioindicators. S: sigmetum; T:
thermomediterranean; M: mesomediterranean; S: supramediterranean; O:
oromediterranean; C: cryoromediterranean.

45c. Trevenque Sierran District. SNNP                Thermotypes

                                            T     M     S     O     C

Sigmataxa, Syntaxa
Daphno hispanicae-Pino nevadensis S.       --    --     x     x    --
Brachypodio boissieri-Querco               --     x     x    --    --
  rotundifoliae S.
Berberido hispanicae-Querco                --    --     x    --    --
  rotundifoliae S.
Brachypodio boissieri-Pino halepensis S.   --     x    --    --    --
Festuco hystricis-Astragaletum             --    --    --     x    --
  granatensis
Convolvulo boissieri-Andryaletum           --    --     x    --    --
  agardhii
Brachypodio boissieri-Trisetetum           --    --     x    --    --
  velutini
Thymo gracilis-Lavanduletum lanatae        --     x    --    --    --
Taxa
Hippocrepis nevadensis                     --    --     x     x    --
Chamaespartium undulatum                   --    --     x    --    --
Rothmaleria granatensis                    --    --     x    --    --
Laserpitium longiradium                    --    --     x    --    --
Helianthemum pannosum                      --    --     x    --    --
Erodium boissieri                          --    --     x    --    --
Lomelosia pulsatilloides                   --    --     x    --    --
Linaria saturejoides subsp. angustealata   --     x     x    --    --

Table 5. Frigid High Nevada Sierran Summits Territory bioindicators.
Ps: permasigmetum, Ms: minorisigmetum; T: thermomediterranean; M:
mesomediterranean; S: supramediterranean; O: oromediterranean; C:
cryoromediterranean.

43b1. Frigid High Nevada Sierran                      Thermotypes
Summits Territory. SNNP
                                            T     M     S     O     C

Sigmataxa, Permasigmeta
Erigeronto frigidi-Festuco clementei Ps.   --    --    --    --     x
Genisto versicoloris-Junipero              --    --    --     x    --
  hemisphaericae Ms.
Festuco moleroi-pseudoeskiae Ps.           --    --    --     x     x
Violo crassiusculae-Linario glacialis      --    --    --     x     x
  Ps.
Campanulo willkommii-Polysticho            --    --    --     x     x
  lonchitidis Ps.
Ranunculo acetosellifolii-Vaccinio nani    --    --    --     x     x
  Ps.
Nardo strictae-Festuco ibericae Ps.        --    --    --     x     x
Saxifrago nevadensis Ps.                   --    --    --    --     x
Taxa
Artemisia granatensis                      --    --    --     x     x
Festuca frigida                            --    --    --     x     x
Ranunculus alismoides                      --    --    --     x     x
Trisetum glaciale                          --    --    --     x     x
Iberis embergeri                           --    --    --     x     x
Pedicularis verticillata subsp.            --    --    --     x     x
  caespitosa
Vaccinium uliginosum subsp. nanum          --    --    --     x     x
Cerastium alpinum subsp. nevadense         --    --    --    --     x

Table 6. High Nevada Sierran Slopes Territory bioindicators. Gs:
geosigmetum; S: sigmetum; T: thermomediterranean; M:
mesomediterranean; S: supramediterranean; O: oromediterranean; C:
cryoromediterranean.

43b2. High Nevada Sierran Slopes                     Thermotypes
Territory. SNNP
                                            T     M     S     O     C
Sigmataxa, Syntaxa
Genisto versicoloris-Junipero              --    --    --     x    --
  hemisphaericae S.
Avenello ibericae-Pino nevadensis S.       --    --     x     x    --
Berberido hispanicae-Aceri                 --    --     x    --    --
  granatensis S.
Carici camposii-Alno glutinosae Gs.        --    --     x    --    --
Aceri granatensis-Fraxino                  --    --     x    --    --
  angustifoliae S.
Adenocarpo decorticantis-Querco            --     x     x    --    --
  pyrenaicae S.
Agrostio nevadensis-Genistetum             --    --    --     x    --
  versicoloris
Rhamno cathartici-Loniceretum arboreae     --    --    --     x    --
Taxa
Arabis margaritae                          --    --    --     x    --
Tephroseris elodes                         --    --    --     x    --
Thymus pulegioides                         --    --     x     x    --
Salix caprea                               --    --     x    --    --
Sorbus hybrida                             --    --     x    --    --
Heracleum sphondylium subsp. granatense    --     x     x    --    --
Laserpitium latifolium subsp. nevadense    --     x     x    --    --
Quercus pyrenaica                          --     x     x    --    --

Table 7. East Nevada Sierran District bioindicators. S: Sigmetum; T:
thermomediterranean; M: mesomediterranean; S: supramediterranean; O:
oromediterranean; C: cryoromediterranean.

43a. East Nevada Sierran District. SNNP              Thermotypes

                                            T     M     S     O     C

Sigmataxa, Syntaxa
Genisto versicoloris-Junipero              --    --    --     x    --
  hemisphaericae S.
Avenello ibericae-Pino nevadensis S.       --    --     x     x    --
Dactylido hispanicae-Festucetum            --    --     x    --    --
  scariosae
Adenocarpo decorticantis-Querco            --     x     x    --    --
  rotundifoliae S.
Dorycnio recti-Salici pedicellatae S.      --     x    --    --    --
Genisto versicoloris-Cytisetum             --    --    --     x    --
  nevadensis
Teucrio compacti-Quercetum cocciferae      --     x    --    --    --
Thymo gracilis-Cistetum ladaniferi         --     x    --    --    --
Taxa                                       --    --    --    --    --
Ranunculus girelai                         --    --    --     x    --
Erysimum baeticum                          --    --     x     x    --
Artemisia chamaemelifolia                  --    --     x     x    --
Saxifraga trabutiana                       --    --     x    --    --
Pinguicula grandiflora                     --    --     x    --    --
Moehringia fontqueri                       --    --     x    --    --
Centaurea pulvinata                        --    --     x    --    --
Sideritis luteola                          --     x    --    --    --

Table 8. West Almeria District bioindicators. T: thermomediterranean;
M: mesomediterranean; S: supramediterranean; O: oromediterranean; C:
cryoromediterranean.

40c. West Almeria District. SNNP                     Thermotypes

                                            T     M     S     O     C
Sigmataxa, Syntaxa
Ephedro fragilis-Pino halepensis S.         x     x    --    --    --
  synv. with Launea lanigera
Zizipho loti-Mayteno europaei S.            x    --    --    --    --
Lonicero biflorae-Populo albae S.           x    --    --    --    --
Dactylido hispanicae-Lygeetum sparti        x     x    --    --    --
Suaedo verae-Salsoletum oppositifoliae      x     x    --    --    --
Atriplici glaucae-Hammadetum articulatae    x     x    --    --    --
Helianthemo almeriensis-Sideritidetum       x    --    --    --    --
  pusillae
Anabasio hispanicae-Euzomodendretum         x    --    --    --    --
  bourgeani
Taxa
Hammada articulata                          x     x    --    --    --
Suaeda pruinosa                             x     x    --    --    --
Plantago ovata                              x     x    --    --    --
Whitania frutescens                         x    --    --    --    --
Euzomodendron bourgaeanum                   x    --    --    --    --
Anthyllis terniflora                        x    --    --    --    --
Salsola papillosa                           x    --    --    --    --
Forsskaolea tenacissima                     x    --    --    --    --

Table 9. Gador Sierran East Nevada Territory. T: thermomediterranean;
M: mesomediterranean; S: supramediterranean; O: oromediterranean; C:
cryoromediterranean.

44a2. Gador Sierran East Nevada                     Thermotypes
Territory. SNNP
                                            T     M     S     O     C

Sigmataxa, syntaxa
Berberido hispanicae-Querco                --    --     x    --    --
  rotundifoliae S.
Paeonio coriaceae-Querco rot. S. sinv.     --     x    --    --    --
  with Phlomis almeriensis
Rhamno almeriensis-Pino halepensis S.      --     x    --    --    --
Helictotricho filifolii-Festucetum         --    --     x    --    --
  scariosae
Convolvulo lanuginosi-Lavanduletum         --     x     x    --    --
  lanatae
Genisto retamoidis-Phlomidion               x     x    --    --    --
  almeriensis
Saturejo micranthae-Thymbrion capitatae     x     x    --    --    --
Lapiedro martinezii-Stipetum                x     x    --    --    --
  tenacissimae
Taxa
Centaurea gadorensis                       --    --     x    --    --
Teucrium bicoloreum                        --    --     x    --    --
Echinospartum boissieri                    --     x     x    --    --
Ephedra nebrodensis                        --     x     x    --    --
Lavatera oblongifolia                       x     x    --    --    --
Salvia candelabrum                          x     x    --    --    --
Phlomis almeriensis                         x     x    --    --    --
Lavandula lanata                            x     x    --    --    --
COPYRIGHT 2017 Universidad Complutense de Madrid
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Marfil, Jose Miguel; Molero, Joaquin; Canto, Paloma; Rivas-Martinez, Salvador
Publication:Lazaroa
Date:Jan 1, 2017
Words:11075
Previous Article:Conceptual baseline for a global checklist of gypsophytes/Base conceptual para un catalogo global de gipsofitos verificado/Base conceptual para un...
Next Article:Plant communities supported by the geological setting: the case history of the Isole dei Ciclopi (east Sicily)/La vegetacion y su relacion con el...
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters