Printer Friendly

Bioactivity of Extracts of Foeniculum vulgare and Ocimum basilicum against Heterotermes indicola (Wasmann).

Byline: Ayesha Aihetasham, Muhammad Saeed Akhtar, Maryam Umer, Khalid Zamir Rasib and Muhammad Imran Din


As Heterotermes indicola (Wasmann) is known to cause considerable damage to wood work in buildings. Efficacy of extracts of Foeniculum vulgare and Ocimum basilicum was studied against this termite. Chemical composition of plant extracts by chromatography-mass spectrometry (GC-MS) revealed five different compounds in F. vulgare: Piperidine, 3-isopropyl, Bicyclo[2.2.1]heptan-2-one, 1,3,3-trimethyl, Benzaldehyde, 4-methoxy, Estragole, 11-Octadecenoic acid, methyl ester and 9-Octadecenoic acid ethyl ester. Whereas nine different compounds were identified in extracts of O. basilicum. These were: 1-Isopropyl-2, 2-dimethylpropylideneamine, Camphor, Naphthalene, Thymol, 1,5,5- Trimethyl-6-x methylene-cyclohexene, Hexadecanoic acid, methyl ester, 9,12,15 Octadecatrienoic acid, methyl ester, 8, 11, 14-Eicosatrienoic acid and 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester.

Extracts of both the plants were found repellent to this termite. LT50 values of O. basilicum and F. vulgare against Heterotermes indicola were 60.91 and 115.9 h, respectively.

Key words

Bioactivity, Foeniculum vulgare, GC-MS, Ocimum basilicum, Heterotermes indicola.


Termites are abundant in tropical region and are very devastating to wood (Harris, 1971; Ajayi et al., 2012). Heterotermes spp. are structure-infesting termites that account for a significant proportion of damage wherever they occur and are confined to their respective climatic zones by the limits of soil moisture and temperature (Emerson, 1971; Saljoqi et al., 2012).

With the increasing spread of termite infestation, there is an increased need to find out human and environment safe treatments (Meepagala et al., 2006). Many attempts have been made in the field and in the laboratory to exploit the termite activity by plant extracts. Some plant species have been used in the past to explore its anti-termite activity (Adams et al., 1988). There is a growing interest in natural toxic substances from plants (Chang et al., 2001; Elango et al., 2012). Secondary metabolites like alkaloids, chromenes, coumarins and terpenoids, especially monoterpenoids are produced by the plants for their defense mechanism. These secondary metabolites have been evaluated for their domestic pests controlling properties. Attention towards oils was renewed in the 1990s with increasing expression of their fumigant and contact insecticidal activities for an extensive array of insects (Isman, 2000; Koul et al., 2008).

The harmful effects of phytochemicals against insects are manifested in numerous ways like inhibition of calling behavior (Khan and Saxena, 1986; Ahmed et al., 2011), delayed growth (Breuer and Schmidt, 1995; Ahmed et al., 2011), toxicity (Hiremath et al., 1997; Ahmed et al., 2011), avoidance of oviposition (Zhao et al., 1998; Ahmed et al., 2011), suppression in feeding (Wheeler and Isman, 2001; Ahmed et al., 2011) and drop of fertility (Muthukrishnan and Pushpalatha, 2001; Ahmed et al., 2011).

Present studies were undertaken to assess the toxic potential of the extracts of F. vulgare (fennel) and O. basilicum (niazbo) against H. indicola. Our objectives were (i) ethanolic extraction of selected plant seeds using soxhlet extractor and (ii) structural characterization of compounds of seeds extracts through GC-MS.


Collection of termites

Termite workers and soldiers of species H. indicola (Wasmann) were collected from old trees of Populus euramericana from Lahore. The termites were maintained for at least 1 week on water soaked filter papers and 5 g oven dried soil in each Petri-plate.

Seeds collection

Seeds of locally used medicinal plants, F. vulgare (Saunf/Fennel) and O. basilicum (Niazbo) were purchased from local market.

Preparation of extracts

The seeds of the medicinal plants were ground into fine powder using a grinder. Twenty grams of each seed powder was taken separately for extraction in Soxhlet extractor with 200 ml of ethanol. Rotary evaporator was used to obtain dried residues and stored in refrigerator for making stock solution. Stock solution was prepared for each plant extract by taking 1 g dried extract in 10ml of absolute ethanol to get a solution of 10% concentration. Concentrations used were10%, 5% and 3%.

Gas chromatography/mass spectrometry

All seed samples were analyzed by gas chromatography coupled with mass spectrometry. The gas chromatography conditions include a temperature range of 50 to 250AdegC with 4AdegC/min, with a solvent delay of 5 min. The temperature of injector was maintained at 250AdegC. Helium was used as an inert gas with a flow rate of 1.0 mL/min. and the volume of injected sample in the split less mode was 2uL. The MS conditions were the following: ionization energy, 70 eV; quadrupole temperature 100AdegC; scanning velocity, 1.6 scans/s; weight range, 40-500 amu.

The percent composition of the samples was calculated. The qualitative analysis was based on the percent area of each peak of the sample compounds. The mass spectrum of each compound was compared with the mass spectrum from the spectra library NIST 98 (USA National Institute of Science and Technology software).

Anti-termitic assay

Circular filter papers were cut and placed at the bottom of each sterilized glass Petri plate. Each filter paper was soaked with 0.5 ml of the 10%, 5% and 3% extracts concentrations. Petri plates containing filter paper were dried at ambient temperature. Fifty workers and five soldiers of H. indicola were added in each Petri plate. Observations were taken after every 2 h up to 12 h. Data for the mortality of the termite were recorded after an interval of 12 h up to 96 h.


Table I- Phytocompounds identified in ethanolic extract of F. vulgare.

Retention time###Phytocompounds###Relative percentage###Structural formulae

Minutes###composition (%)

5.225###Piperidine. 3-isopcopyl###3.79

5.752###Bicyclo[2.2.1]heptan-2-one. 1 .3.3-trimethyl###14.63


8.496###Benzaldehyde, 4-methoxy###4.19


17.620###11-Octadecenoic acid, methyl ester###20.24

18.206###9-Octadecenoic acid ethyl ester###15.09

Repellency assay

For the estimation of repellency filter papers of 9cm in diameter were cut into two equal halves. One half of each filter paper was treated with 10%, 5% and 3% concentration of extracts and second half was treated with distilled water (untreated). The two halves were placed into the Petri dishes with a cut space in the middle. A total of 10 termites were released into the middle space. Repellency was noted after every 15 min by counting the number of termites on treated (T) and untreated (UT) filter paper discs and experiment was conducted for 2 h. Three replicates were prepared for each concentration of all four plant extracts. A treatment concentration was considered repellent when 21 (sum of three replicates) of 30 termites were present on untreated filter paper for five consecutive readings.

Statistical analysis

Mortality percentage of termites was calculated and analyzed by using one way Anova values of P1%) were detected; most compounds were oxygenated monoterpenes. Linalool, geraniol, geranial, methyl chavicol and eugenol were active components against A. aegypti larvae.

The studied extracts of O. basilicum and F. vulgare contained biological active compound which showed greater potential against H. indicola. Control was established as preliminary test to check the termiticidal function of extracts with distilled water filter papers. Control was non toxic as most of the termites were remained alive for long time. Subsequently lethal time was determined as LT50 by Probit analysis. In our findings, O. basilicum showed high anti termitic activity with LT50 of 10%, 5% and 3% concentrations as 60.91, 121.2 and 154.6 h, respectively. 83% termites were killed in 10% concentration of O. basilicum which was reduced in F. vulgare to 37%. LT50 of F. vulgare extracts was 115.9, 162.6 and 184.7 h, respectively as shown in Figure 3.

When termite workers exposed to 10%, 5% and 3% concentrations of O. basilicum along with untreated filter papers. Result showed that 3% concentration was non repellent to H. indicola as less than 21 termites were present on untreated filter paper while 10% and 5% concentrations were found to be repellent, however all concentrations of F. vulgare i.e. 10%, 5% and 3% were repellent against H. indicola as shown in Figure 4.

Termites as being devastating organisms to the wood and related products, a variety of techniques have been used to control them; the use of artificial pesticides is the most common practice. These chemicals are suspect to be absolutely effective against termites, however, they proved to be obstinate in nature and become part of our food chain thereby leading to process of magnification. If there are any leakages after heavy rain these insecticides cause serious environmental hazards (Logan et al., 1990; Martius, 1998; Jamil et al., 2005; Qureshi et al., 2012). Many attempts have been made in field and laboratory to exploit anti termitic activities of plants extracts. Some plant species were used in past to explore their anti-termite activities, insecticidal properties and anti-feedant activities and contain certain chemicals that reduce termite growth or kill them (Adams et al., 1988; Qureshi et al., 2015). In this study the toxic potential of O. basilicum and F. vulgare was investigated against H. indicola.

Ethanol extracts of F. vulgare and O. basilicum have a potential to be used for termite control. Both the extracts were found toxic against H. indicola


Ethanol extracts of F. vulgare and O. basilicum have a potential to be used for termite control. Both the extracts were found toxic against H. indicola. Likewise, these extracts must also be tried against termite species in different ecological zones of Pakistan for understanding better control and management of other termite species.


We are grateful to the Department of Zoology, University of the Punjab, Lahore, Pakistan for providing laboratory facilities for research work which is greatly appreciated and acknowledged.

Statement of conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.


Abbas, M., Shahid, M., Iqbal, M., Anjum, F., Sharif, S., Ahmed, S. and Pirzada, T., 2013. Antitermitic activity and phytochemical analysis of fifteen medicinal plant seeds. J. Med. Pl. Res., 7: 1608-1617.

Adams, R.P., McDaniel, C.A. and Carter, F.I., 1988. Termiticidal activities in the heartwood, bark/sapwood and leaves of Junipers species from the United States. Biochem. Sys. Ecol., 16: 453-456.

Ahmed, S., Hussain, A., Zafar, M.I., Riaz, M.A. and Shahid, M., 2011. Evaluation of plant extracts on mortality and tunneling activities of subterranean termites in Pakistan. In: Pesticides in the modern world - Pests control and pesticides exposure and toxicity assessment (ed. M. Stoytcheva). INTECH Open Access Publisher. Available at:

Ajayi, O.E., Adedire, C.O. and Lajide, L., 2012. Evaluation of partially purified fractions of crude extracts of the leaves of Morinda lucida (Benth.) and Datura stramonium (L.) for suppression of wood damage by subterranean termites. J. agric. Sci., 4: 125.

Badgujar, S.B., Patel, V. and Bandivdekar, A., 2014. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res. Int., 2014: Article ID 842674.

Breuer, M.G.H. and Schmidt, G.H., 1995. Influence of a short period treatment with Melia azedarach extract on food intake and growth of the larvae of Spodoptera frugiperda (Lepidoptera; Noctuidae). J. Pl. Dis. Prot., 102: 633-654.

Chang, S.T., ChenG, S.S. and Wang, S.Y., 2001. Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). J. chem. Ecol., 27: 1267-1274.

Elango, G., Rahuman, A.A., Kamaraj, C., Bagavan, A., Zahir, A.A., Santhoshkumar, T. and Rajakumar, G., 2012. Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus. Ind. Crops Prod., 36: 524-530.

Emerson, A.E., 1971. Tertiary fossil species of the Rhinotermitidae (Isoptera) phylogeny, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bull. Am. Mus. nat. Hist., 146: 243-304.

Finney, D.J., 1971. Probit analysis, 3rd edn. Cambridge University, London, UK, pp. 333.

Govindarajan, M., Sivakumar. R., Rajeswary, M. and Yogalakshmi, K., 2013. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae) Exp. Parasitol., 134: 7-11.

Harris, W.V., 1971. Termites, their recognition and control. Longman Green and Co. Ltd., London, pp. 174.

Hiremath, I.G., Youngjoon, A., Soonll, K., Ahn, Y.J.L. and Kim, S.I., 1997. Insecticidal activity of Indian plant extracts against Nilaparvata lugens (Homoptera: Delphacidae). Appl. Ent. Zool., 32: 159-166.

Isman, M.B., 2000. Plant essential oils for pest and disease management. Crop Prot., 19: 603-608.

Jamil, K., Shaik, A.P., Mahboob, M. and Krishna, D., 2005. Effect of organ phosphorus and organochlorine pesticides (Monochrotophos, Chlorpyriphos, Dimethoate, and Endosulfan) on human lymphocytes in vitro. Drug Chem. Toxicol., 27: 133-144.

Khan, Z.R. and Saxena, R.C., 1986. Effect of steam distillate extracts of resistant and susceptible rice cultivars on behaviour of Sogatella furcifera (Homoptera: Delphacidae). J. econ. Ent., 79: 928-935.

Koul, O., Walia, S. and Dhaliwal, G.S., 2008. Essential oils as green pesticides: Potential and constraints. Biopest. Int., 4: 63-84.

Logan, J.W.M., Cowie, R.H. and Wood, T.G., 1990. Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bull. entomol. Res., 80: 309-330.

Martius, C., 1998. Perspectives for the biological control of termite (Insecta, Isoptera). Rev. Brasil. Ent., 41: 179-194.

Meepagala, K.M., Osbrink, W., Sturtz, G. and Lax, A., 2006. Plant-derived natural products exhibiting activity against formosan subterranean termites (Coptotermes formosanus). Pest Manage. Sci., 62: 565-570.

Muthukrishnan, J. and Pushpalatha, E., 2001. Effects of plant extracts on fecundity and fertility of mosquitoes. J. appl. Ent., 125: 31-35.

Nour, A.H., Yusoff, M.M. and Sandanasamy, J.D.O., 2012. Bioactive compounds from basil (Ocimum basilicum) essential oils with larvicidal activity against Aedes aegypti larvae. Int. Proc. chem. biol. environ. Engin., 46: 21-24.

Qureshi, N.A., Ashraf, A., Afzal, M., NaseerUllah, Iqbal, A. and Haleem, S., 2015. Toxic potential of Melia azedarach leaves extract against Odontotermes obesus and Microtermes obesi. Int. J. Biosci., 6: 120-127.

Qureshi, N.A., Qureshi, M.Z., Ali, N., Athar, M., AzizUllah, 2012. Protozoidal activities of Eucalyptus cammeldulensis, Dalbergia sissoo and Acacia arabica woods and their different parts on the entozoic flagellates of Heterotermes indicola and Coptotermes heimi. Afr. J. Biotechnol., 11: 12094-12102.

Saljoqi, A.R., Khan, M.A., Zell-e-Huma, Sattar, A., Misbah-Ullah and Khan, F., 2012. Behavioral changes of Heterotermes indicola (Isoptera: Rhinotermitidae) against some natural products. Pakistan J. Zool., 44: 1613-1622.

Wheeler, D.A. and Isman, M., 2001. Antifeedant and toxic activity off Trichilia americana extract against the larvae of Spodoptera litura. Ent. Exp. Appl., 98: 9-16.

Zhao, B., Grant, G.G., Langevin, D. and MacDonald, L., 1998. Deterring and inhibiting effects of quinolizidine alkaloids on the spruce budworm (Lepidoptera: Tortricidae) oviposition. Environ. Ent., 27: 984-992.
COPYRIGHT 2017 Asianet-Pakistan
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Aihetasham, Ayesha; Akhtar, Muhammad Saeed; Umer, Maryam; Rasib, Khalid Zamir; Din, Muhammad Imran
Publication:Pakistan Journal of Zoology
Article Type:Report
Date:Dec 31, 2017
Previous Article:BmARM-Like Protein from Silkworm, Bombyx mori (Lepidoptera) is Putatively Involved in Response against BmNPV Infection.
Next Article:Dominance and Influence of Social Context on Foraging by Eurasian Siskin (Carduelis spinus).

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters