Bioactive crude plant seed extracts from the NCAUR oilseed repository.
SummaryOver four-hundred crude extracts from 202 plant species distributed among 131 plant families were evaluated for their bioactivity against brine shrimp (Artemia salina). Activity was determined for both the organic [CH.sub.2] [CI.sub.2]:MeOH) and aqueous extracts against A. salina in a 96 well-plate assay. Of the greater than four-hundred extracts tested, 21 organic and 6 aqueous extracts demonstrated potent cytotoxic activity [LC.sub.50] = <100 [micro]g/ml). Three of these organic extracts (Crateva religiosa, Diospyros dichrophylla, and Olax subscorpioidea) were chosen for chemical investigations due to their high activity and a lack of prior investigations. Chemical analysis of these extracts resulted in the isolation of oleanolic acid (1) and 4-epi-hederagenin (2) from C. religiosa, isodiospyrin (3) from D. dichrophylla, and santalbic acid (4) from O. subscorpioidea.
Key words: cytotoxic, brine shrimp, Artemia salina, extract, plant, seed, Crateva religiosa, Diospyros dichrophylla, Olax subscorpioidea
Introduction
The National Center for Agricultural Utilization Research in Peoria, Illinois is home to a vast and diverse seed repository. This collection contains greater than 15,000 separate seed accessions from more than 130 plant families. It was originally established to identify and quantify the oil composition in a vast array of seeds which may prove economically beneficial. The material remaining after extraction of the oil from various varieties of seeds has often been shown to contain important protein and phytochemical components, such as those found in soy and walnuts.
Our intention is to use this diverse collection of seeds as a source of biologically active natural products with potentially unique structures and mechanisms of action. In general, two different species from every family within this collection were chosen for evaluation, the seeds were extracted with three increasing polarity extractions, and the cytotoxic activity of both the organic ([CH.sub.2][CI.sub.2]:MeOH, 1:1) and aqueous extracts against Arternia Salina was determined. It has been demonstrated that activity against A. sauna correlates well with cytotoxic and antiplasmodial activity (Meyer et al., 1982), as well as other pharmacological activities (Solis et al., 1993). Presented here is the brine shrimp screening data from over 400 crude extracts prepared from 202 plant species. In addition to screening data, the chemical investigation of three bioactive extracts will be discussed.
* Material and Methods
Plant material and extract preparation
Over four hundred different crude seed extracts were prepared from more than two-hundred different plant species collected at various locations throughout the world. The seeds are part of an oilseed repository housed in Peoria, Illinois where each collection has been given a unique identifier and authenticated by USDA taxonomists in Beltsville, Maryland.
Approximately 10 g of seeds from each species were ground in a coffee grinder (Braun, Type 4041). Ground material was placed in a 300 ml separatory funnel (glass wool above the stop-cock for filtration) and soaked in 200 ml of hexane for 18 hours at which time the solvent was drained and the extract concentrated by rotary evaporation. Seed material was allowed to air dry for 6 hours followed by the addition of 200 ml of [CH.sub.2][Cl.sub.2]:MeOH (1:1). After soalting for 18 hours, the solvent was drained and the extract concentrated by rotary evaporation. Lastly, the seed material was allowed to air dry for 6 hours at which time 150 ml of deionized water was added to the separatory funnel and soaked for 18 hours. The aqueous extract was drained, frozen, and placed on a lyophilizer until all water was removed. A portion of both the water and [CH.sub.2][Cl.sub.2]:MeOH extracts were analyzed in the brine shrimp toxicity screen. The hexane extract was not analyzed in this screen due to the insoluble nature of thi s extract in both DMSO and [H.sub.2]O. Prior to chemical investigations of biologically active extracts, approximately 500 g of seeds were extracted using the above procedure with solvent and flask size adjustments made to scale.
Fractionation of Crateva reilgiosa investigation
700 g of Crateva religiosa seeds were extracted as described above to yield hexane (2.0 g), [CH.sub.2][Cl.sub.2] MeOH (6.7 g), and [H.sub.2]O (35 g) extracts. A portion (5 g) of the [CH.sub.2][Cl.sub.2] MeOH, (1:1) extract was dissolved in 50 ml [CH.sub.2][Cl.sub.2] MeOH and applied to a flash chromatography column (5 cm x 50 cm) that had been packed with silica gel (170 g, Merck, 70-230 mesh, 40 A). The column was eluted with mixtures of increasing polarity of [CH.sub.2][Cl.sub.2] MeOH to produce active fraction B ([CH.sub.2][Cl.sub.2] MeOH, 8:2). A portion of fraction B (200 mg) was dissolved in 10 ml of [CH.sub.2][Cl.sub.2] MeOH (1:1) and applied to a flash column (3.5 cm x 100 cm) that had been filled with LH-20 (Sigma, Inc.) and equilibrated in [CH.sub.2][Cl.sub.2]:MeOH (1:1). The column was eluted with 11 of [CH.sub.2][Cl.sub.2]:MeOH (1:1) and passed through a UV-absorbance detector (ISCO V-4) monitoring at 254 nm. Fractions 3 and 4 were the only fractions of the 6 obtained that demonstrated activity ag ainst brine shrimp. Fraction 3 contained 39 mg of oleanolic acid (1). Fraction 4 (12 mg) was further purified by preparative TLC (EM Sciences, Silica Gel, 20 x 20 cm, 0.250 mm thick, [CH.sub.2][Cl.sub.2]:MeOH 9:1) to produce 8 mg of 4-epi-hederagenin (2). Compounds 1 and 2 were identified by comparison of (13) C-NMAR chemical shift data with that which was reported in the literature (Kizu and Tomimori, 1982; Nie et al., 1984; Agrawal and Jam, 1992).
Fractionation of Diospyros dichrophylla investigation
200 g of Diospyros dichrophylla seeds were separated into inner seed and hull. Inner seeds were extracted as described above to yield hexane (2.4 g), [CH.sub.2][Cl.sub.2]:MeOH (1:1, 9.2 g), and [H.sub.2]O (27 g) extracts. A portion (5 g) of the [CH.sub.2][Cl.sub.2]:MeOH, (1:1) extract was dissolved in 50 ml of [CH.sub.2][Cl.sub.2]:MeOH and applied to a flash chromatography column (5 cm x 50 cm) that had been packed with silica gel (170 g, Merck, 70-230 mesh, 40 A). The column was eluted with [CH.sub.2][Cl.sub.2]:MeOH mixtures of increasing polarity to yield active fraction B ([CH.sub.2][Cl.sub.2]:MeOH, 99:1). Fraction B (0.4 g) was further purified using a flash-chromatography column (5 cm x 50 cm) that had been packed with silica gel (140 g, Merck, 70-230 mesh, 40 A) and equilibrated in [CH.sub.2][Cl.sub.2]. The column was eluted with [CH.sub.2][Cl.sub.2] to produce 45 mg of active fraction 2 which was shown to be isodiospyrin (3) Compound 3 was identified by comparison of its (1) HNMR data with that which h ad previously been reported (Lillie and Musgrave, 1977).
Fractionation of Olax subscorpioidea investigation
98 g of Olax subscorpioidea seeds were ground as described above, placed in a Soxhlet extractor containing 11 of [CH.sub.2][Cl.sub.2], and exhaustively extracted for 18 h to yield 1.4 g of crude extract. This procedure was repeated using MeOH as the extracting solvent to give 5.8 g of extract. A portion (3.2 g) of the MeOH extract was dissolved in 20 ml of MeOH and applied to a flash chromatography column (5 cm x 50 cm) that had been packed with reverse phase silica gel (Waters, Inc., preparative C-18, 55-105 [micro]m, 125 A). The column was eluted with decreasing polarity mixtures of MeOH : [H.sub.2]O to produce 40 mg of an active fraction C (100% MeOH). Fraction C was further purified by reverse phase preparative HPLC (ODS-3,250 x 30 mm i.d., 30 ml/min, 5 [micro]m) using isocratic conditions of acetonitrile (0.025% TFA) : [H.sub.2]O (0.025% TFA) (8:2). This led to the purification of santalbic acid (4) (5.7 mg). Compound 4 was identified by mass spectroscopy and various one- and two-dimensional NMR spectros copic techniques.
Brine Shrimp Assay
The procedure described below is a modification of two previously published methods (Meyer et al., 1982; Solis et al., 1993). Brine shrimp eggs (Artemia salina) were obtained online (www.brineshrimpdirect.com) and stored at 10 [degrees]C until used. 400 mg of eggs were added to 11 of deionized water containing 40 g of sea salts (Sigma Chemical Co.). Air was bubbled through the resulting solution for 36 hours at 27 [degrees]C at which time the larvae (nauplii) were collected with a Pasteur pipette by attracting the organisms to one side of the vessel with a light source.
Test compounds, extracts, and fractions were originally made up at a concentration of 1 mg/ml in artificial seawater except for water insoluble compounds, which were dissolved in 50 [micro]1 of DMSO prior to adding enough water to make a 1 mg/ml solution. Serial dilutions were performed in 100 [micro]l of seawater in triplicate in the wells of a 96 well microplate to give appropriate concentrations. Control wells for both water and DMSO were included with each experiment. A 100 [micro]l solution of nauplii (containing 10-30 individuals) was added to each well and the covered plate incubated for 24 hours at 27 [degrees]C. The number of nonmotile and the total number of nauplii were counted in each well using a binocular microscope (x10). [LC.sub.50] values were then calculated by Probit analysis (Finney, 1971).
* Results
The results from screening seed extracts of 202 different plant species against A. salina are shown in Table 1. Both the organic and aqueous extractions from nearly all of the species have been screened and the corresponding [LC.sub.50] values are given. Approximately 28% of the organic extracts demonstrated activity at or below 1000 [micro]g/ml while only 5.6% of the aqueous extracts showed this level of activity. Furthermore, only 9.8% of the organic and 2.8% of the aqueous extracts demonstrated activity low enough ([LC.sub.50] = <100 [micro]/ml) to merit chemical investigation.
These very active ([LC.sub.50] = <100 [micro]g/ml) organic extracts include Anacardium occidentale, Annona reticulate, Garuga pinnata, Crateva religiosa, Cephalotaxus fortunei, Anogeissus pendula, Juniperus osteosperma, Dipterocarpus grandiflorus, Diospyros dichrophylla, Gnetum scandens, Mammea africana, Gonocaryum lobbianum, Strychnos aculeate, Melia azedarach, Mirabilis jalapa, Olax subscorpioidea, Ximenia americana, Pittosporum crassifolium, Plantago aristata, Albizia amara, and Strychnos potatorum. The very active aqueous extracts include Annona reticulate, Juniperus osteosperma, Myrica nagi, Mirabilis jalapa, Ximenia americana, and Gardenia turgida. Certain organic and aqueous extracts were chosen for chemical investigation only if a quick search of the literature suggested that particular species had not been previously investigated or it had been previously investigated but cytotoxic compounds had not been isolated.
In nearly all species extracted, if activity was shown in the aqueous extract, activity was also observed in the organic extract. The exceptions to this observation include Limnanthes douglasii, Myrica nagi, and Camellia japonica var. spontanea. The aqueous extracts from all three of these species were active ([LC.sub.50] = <1000 [micro]g/ml); however, their organic extracts were completely inactive.
Contrary to the above observation, if the organic extract was active, the aqueous extract was usually inactive. In fact, of the sixty organic extracts which demonstrated activity ([LC.sub.50] = <1000 [micro]g/ml), in only nine of these were their corresponding aqueous extracts also active ([LC.sub.50] = <1000 [micro]g/ml). These nine species consist of Acer ginnala, Annona reticulate, Anogeissus pendula, Juniperus osteosperma, Mammea africana, Melia toosendan, Mirabilis jalapa, Ximenia americana, and Gardenia turgida.
* Discussion
Of the 21 organic and 6 aqueous extracts that demonstrated strong activity against A. salina, only three of the organic extracts have been chosen for further investigation. Those three are Crateva religiosa, Diospyros dichrophylla, and Olax subscorpioidea. The organic extracts from all three species demonstrated activity below 100 [micro]g/ml and an initial examination of the literature indicated that no prior chemical investigations had been performed for cytotoxic compounds.
The organic extract of seeds from Crateva religiosa was highly active ([LC.sub.50] = 1.31 [micro]g/ml) against A. salina and a bioassay-guided fractionation was performed in an attempt to isolate the active compound(s). This extract was purified by flash column chromatography on silica gel followed by size-exclusion flash chromatography using LH-20 to yield oleanolic acid (1) and a second impure triterpene. This second compound was further purified by preparative TLC to yield 4-epi-hederagenin (2). Both compounds had been previously isolated from plants of different genera and their [C-NMR.sup.13] data were in full agreement with previously reported values (Kizu and Tomimori, 1982; Nie et al., 1984; Agrawal and Jan, 1992). Their [LC.sub.50] values against A. sauna are reported in Table 2.
Seeds from Diospyros dichrophylla were separated into inner seed and hulls. Both were extracted in an identical manner and it was shown that an organic extract of the inner seed was highly active ([LC.sub.50] = 29 [micro]g/ml) while the hull extracts were completely inactive. This organic extract was twice purified using silica gel flash column chromatography to produce the active compound isodiospyrin (3) ([LC.sub.50] = 0.13 [micro]g/ml). Isodiospyrin (3) was originally isolated from Diospyros mespiliformis and to our knowledge, this is the first report on its isolation from Diospyros dichrophylla. The structure of isodiospyrin (3) was elucidated by various one- and two-dimensional NMR spectroscopy techniques as well as comparison of its [H-NMR.sup.1] data with that which had previously been reported (Lillie and Musgrave, 1977).
Bioassay-guided investigation of the methanol extract from Olax subscorpioidea was performed due to its high activity against A. salina ([LC.sub.50] 44.8 [micro]g/ml). The extract was purified using reverse phase flash column chromatography followed by reverse phase HPLC to produce the active compound santalbic acid (4) ([LC.sub.50] = 26.3 [micro]g/ml). The structure of santalbic acid (4) was determined by mass spectroscopy and one- and two-dimensional NMR spectroscopic techniques. Santalbic acid (4) had been previously isolated from Santalum acuminatum and was shown to possess antibacterial activity (Jones et al., 1995). To our knowledge this is first report on the isolation of santalbic acid from Olax subscorpioidea.
Table 1 Toxicity of crude plant seed extracts against Artemia salina. Family Species Plant Part Acanthaceae Justicia simplex D. Don seed Acanthaceae Monechma debile (Forsk.) Nees seed Aceraceae Acer campestre L. seed Aceraceae Acer ginnala Maxim. seed Alangiaceae Alangium salviifolium (L.F.) seed Wangerin Amaranthaceae Aerva sanguinolenta Blume seed Amaranthaceae Amaranthus hybridus L. seed Anacardiaceae Anacardium occidentale L. inner seed Anacardiaceae Anacardium occidentale L. hull Anacardiaceae Harpephyllum caifrum Bernh. seed Annonaceae Annona reticulata L. seed Annonaceae Monodora myristica Dunal seed Apiaceae Coriandrum sativum L. seed Apiaceae Eryngium campestre L. seed Apocynaceae Thevetia peruviana (Pers.) seed K. Schum. Aquifoliaceae Ilex insignis Hook. F. seed Aquifoliaceae Ilex purpurea Hassk. seed Arecaceae Phoenix reclinata Jacq. seed Aristolochiaceae Aristolochia clematitis L. seed Asclepiadaceae Asciepias incarnata L. seed Asclepiadaceae Asciepias syriaca L. seed Asteraceae Ageratum conyzoides L. seed Asteraceae Carthamus tinctorius L. seed Balsaminaceae Impatiens balsamina L. seed Berberidaceae Podophyllum emodi Wall. ex Hook. F. seed and Thorns. Betulaceae Carpinus betulus L. seed Betulaceae Carpinus betulus L. seed Bignoniaceae Campsis grandiflora (Thunb.) seed Loisel. Bignoniaceae Catalpa speciosa Warder seed Bombacaceae Adansonia digitata L. seed Bombacaceae Durio pinangianus (Becc.) Ridley seed Boraginaceae Cerinthe minor L. seed Boraginaceae Echium plantagineum L. seed Brassicaceae Brassica compestris L. seed Brassicaceae Eruca sativa Mill. seed Burseraceae Garuga pinnata Roxb. seed Buxaceae Simmondsia chinensis (Link) seed C. Schneid. Cactaceae Pachycereus pecten-aboriginum seed (Engelm.) Britt. et Rose Calycanthaceae Chimonanthus praecox (L.) Link seed Campanulaceae Lobelia inflata (L.) seed Campanulaceae Prismatocarpus roelloides Sond. seed Cannaceae Canna indica L. seed Capparaceae Capparis spinosa L. seed Capparaceae Crateva religiosa Forst. F. seed Caprifoliaceae Sambucus ebulus L. seed Caprifoliaceae Viburnum opulus L. seed Caprifoliaceae Viburnum opulus L. seed Caryocaraceae Caryocar villosum (Aubi.) Pers. inner seed Caryocaraceae Caryocar villosum (Aubl.) Pers. hull Caryophyllaceae Gypsophila paniculata L. seed Caryophyllaceae Vaccaria pyramidata Medic. seed Celastraceae Cassine crocea (Thunb.) O. Ktze. inner seed Celastraceae Cassine crocea (Thunb.) O. Ktze. hull Celastraceae Euonymus europaeus L. seed Cephalotaxaceae Cephalotaxus fortunei Hook. seed Chenopodiaceae Atriplex canescens (Pursch.) Nutt. seed Chenopodiaceae Atriplex lentiformis (Torr.) Wats. seed Cistaceae Lechea tenuifolia Michx. seed Clusiaceae Calophyllum pulcherrimum Wall. seed Clusiaceae Mainmea africana Sabine inner seed Clusiaceae Manunea africana Sabine hull Cochlospermaceae Cochlospermum vitifolium (Willd.) Spreng. inner seed Cochlospermaceae Cochlospermum vitifolium (Willd.) Spreng. hull Combretaceae Anogeissus pendula Edgew. seed Combretaceae Terminalia arjuna (Roxb.) Wight and Am. seed Convolvulaceae Convolvulus Incanus Vahi seed Convolvulaceae Ipomoea cardiophylla Gray seed Cornaceae Aucubajaponica Thunb. seed Comaceae Cornus mas L. seed Cucurbitaceae Luffa acutaungula Roxb. seed Cupressaceae Juniperus communis L. seed Cupressaceae Juniperus osteosperma (Torr.) Little seed Cycadaceae Macrozamia reidlei (Fisch. ex Gaudich.) seed Cyperaceae Carex diluta Bieb. seed Cyperaceae Cyperus esculentus L. seed Dipterocarpaceae Dipterocarpus grandiflorus Blanco seed Dipterocarpaceae Shoreafloribunda Kurz seed Ebenaceae Diospyros dichrophylla (Gand.) DeWint. hull Ebenaceae Diospyros dichrophylla (Gand.) DeWint. inner seed Ebenaceae Diospyros mespiliformis Hochst. exA. DC seed Elaeagnaceae Hippophae rhamnoides L. seed Ericaceae Arbutus unedo L. seed Ericaceae Rhododendron ponticurn L. seed Euphorbiaceae Bridelia retusa (L.) Spreng. seed Euphorbiaceae Jatropha curcas L. seed Eupteleaceae Euptelea polyandra Sieb. & Zucc. seed Fagaceae Lithocarpus garrettianus (Craib) A. Camus seed Fagaceae Quercus kerrii Craib seed Flacourtiaceae Flacourtia indica (Burm.F.) Merrill seed Flaourtiaceae Xylosma ion longifolium Clos. seed Garryaceae Garryafremontii Torr. seed Gentianaceae Chironia bacifera L. seed Gentianaceae Jaeschkea gentianoides Kurz seed Ginkgoaceae Ginkgo biloba L. seed Gentaceae Gnetum scandens Roxb. seed Heamodoraceae Lanaria plumosa Ait. seed Hamamelidaceae Liquidambar styraciflua L. seed Hippocastanaceae Aesculus glabra Willd. seed Hippocastanaceae Aesculus octandra Marsh. seed Hydrophyllaceae Phacelia integrifolia Torr. seed Hydrophyllaceae Phacelia neomexicana Thuber ex Torr. seed Icacinaceae Gonocaryurn lobbianum (Miers) Kurz seed Iridaceae Alophia amoena (Griseb.) O. Ktze. seed Iridaceae Watsonia pyramidata (Andr.) Stapf seed Juglandaceae Carya ovata (Mill.) K. Koch seed Juglandaceae Pterocarya stenoptera C. DC. seed Juncaceae Juncus glaucus Ehrh. seed Juncaceae Luzula spicata (L.) DC. seed Lamiaceae Leonotis nepetaefolia (L.) R. BR. seed Lardizabalaceae Akebia quinata Decne. seed Lardizabalaceae Akebia trifoliata (Thunb.) Koidz. seed Lauraceae Beilschmiedia tarairi (A. Cunn.) seed Benth. + Hook. F. ex Kirk Lauraceae Litsea salicifolia Hook. F. seed Lecythidaceae Barringtonia pterocarpa Kurz seed Lecythidaceae Careya arborea Roxb. seed Leeaceae Leea indica (Burm. F.) Merrill seed Leguminosae Albizia amara (Roxb.) Boiv. seed Leguminosae Bauhinia acuminata L. seed Liliaceae Colchicum autumnale L. seed Limnanthaceae Limnanthes douglasii R. BR. seed Loganiaceae Strychnos aculeata Sol. seed Loganiaceae Strychnos potatorum L.F. seed Lythraceae Lagerstroemia parviflora Roxb. inner seed Lythraceae Lagerstroemia parviflora Roxb. hull Lythraceae Lagerstroemia tomentosa Presel. seed Magnoliaceae Michelia cathcartii seed Hook. F. + Thoms, Magnoliaceae Michelia champaca L. seed Malpighiaceae Bunchosiapalmeri S. Wats. seed Malpighiaceae Malpighia punicifolia Malpigh. seed Malvaceae Malva parviflora L. seed Malvaceae Malvastrum tricuspidatum A. Gray seed Marantaceae Thaumatococcus daniellii seed (Benn.) Benth Martyniaceae Martynia annua L. seed Meliaceae Melia azedarach L. seed Meliaceae Melia dubia Cav. seed Meliaceae Melia toosendan Sieb. & Succ. seed Meliaceae Toona sinensis A. Juss. seed Moraceae Ficus hispida L. F. seed Moringaceae Moringa oleifera Lam. seed Musaceae Musa glauca Rozb. seed Musaceae Musa paradisiaca L. seed Myricaceae Myrica cordifolia Berg. seed Myricaceae Myrica nagi Thunb. seed Myristicaceae Pycnanthus angolensis seed (Wewl.) Exell Myrsinaceae Ardisia japonica (Thunb.) Blume seed Myrsinaceae Rapanea laetevirens Mez. seed Nyctaginaceae Mirabilis jalapa L. seed Nymphaeaceae Nelumbo lutea (Wilid.) Pers. seed Nymphaeaceae Nuphar luteum L. seed Olacaceae Olax subscorpioidea Oliv. seed Olacaceae Ximenia americana L. seed Oleaceae Fraxinus ornus L. seed Onagraceae Oenothera strigosa seed (Rydb.) Mack & Bush Orchidaceae Aerides odorata Lour. seed Pandanaceae Pandanus tectorius seed Soland. ex Park. Papaveraceae Papaver bracteatum Lindl. seed Phytolaccaceae Phytolacca acinosa Roxb. seed Phytolaccaceae Phytolacca dioica L. seed Pinaceae Pinus torreyana Parry ex Carr. seed Pittosporaceae Pittosporum crassifolium seed Banks + Sol. ex A. Cunn Plantaginaceae Plantago aristata Michx. seed Plantaginaceae Plantago major L. seed Plumbaginaceae Limonium tartaricum seed Plumbaginaceae Statice bahusiensis Fr. seed Poaceae Aegilops triuncialis L. seed Podocarpaceae Podocarpus falcatus (Thunb.) R. BR. seed Podocarpaceae Podocarpus gracilior Pilger seed Proteaceae Helicia erratica Hook F. seed Punicaceae Punica granatum L. seed Ranunculaceae Paeonia brownii Dougl. ex Hook. seed Ranunculaceae Ranunculus arvensis L. seed Resedaceae Caylusea abyssinica (Fres.) Fiscgh. seed and Mey. Restionaceae Cannomois virgata (Rottb.) Steud. seed Restionaceae Chondropetalum macrocarpum Pillans seed Rhamnaceae Ziziphus mauritiana Lam. seed Rosaceae Agrimonia eupatoria L. seed Rosaceae Duchesnea indica (Andr.) Focke seed Rubiaceae Coffea khasiana Hook. F. seed Rubiaceae Gardenia turgida Roxb. inner seed Rubiaceae Gardenia turgida Roxb. hull Rutaceae Clausena indica Oliv. seed Rutaceae Murraya koenigii (L.) Spreng. seed Santalaceae Osyris alba L. seed Santalaceae Santalum album L. seed Sapindaceae Blighia sapida Konig seed Sapindaceae Euphoria longana Lam. seed Saxifragacene Montina caryophyllacea Thunb. seed Saxifragaceae Montina caryophyllacea Thunb. hull Scrophulariaceae Penstemon secundiflorus Benth. seed Simaroubaceae Ailanthus excelsa Roxb. seed Simaroubaceae Picramnia nitida Engl. seed Solanaceae Datura metel L. seed Solanaceae Datura stramonium L. seed Staphyleaceae Staphylea bumalda DC. seed Staphyleacene Staphylea pinnata L. seed Styracaceae Styrax serrulatum Roxb. seed Symplocaceae Symplocos theaefolia D. Don seed Tamaricaceae Tamarix gallica L. seed Taxaceae Taxus baccata L. seed Taxaceae Torreya nucifera (L.) Sieb. & Zucc. seed Taxodiaceae Taxodium distichum L. seed Theaceae Camellia japonica var. spontanea seed L. Nak. Theaceae Camellia sinensis (L.) O. Kuntze seed Tiliaceae Triumfetta pilosa Roth. seed Tropaeolaceae Tropaeolum majus L. seed Typhaceae Typha angustifolia L. seed Uapacaceae Uapaca kirkiana Muell. Arg. seed Ulmaceae Zelkova serrata (Thunb.) Makino seed Urticaceae Girardinia condensata (Hochst. ex seed Steud.) Wedd. Urticaceae Urtica dioica L. seed Verbenaceae Tectona grandis L. F. inner seed Verbenaceae Tectona grandis L. F. hull Zingiberaceae Amomum subulatum Roxb. seed Zygophyllaceae Larrea tridentata (DC.) Colville seed Zygophyllaceae Tribulus terrestris L. seed Family [LC.sub.50] value [LC.sub.50] value ([micro]g/ml) (b) ([micro]g/ml) (b) Organic (a) Aqueous Acanthaceae 200 >1000 Acanthaceae >1000 >1000 Aceraceae 259 >1000 Aceraceae 274 201 Alangiaceae 190.3 >1000 Amaranthaceae >1000 >1000 Amaranthaceae >1000 >1000 Anacardiaceae 90 >1000 Anacardiaceae 1.89 >1000 Anacardiaceae >1000 >1000 Annonaceae 1.15 84 Annonaceae >1000 >1000 Apiaceae >1000 >1000 Apiaceae 869 >1000 Apocynaceae 316 >1000 Aquifoliaceae 818 >1000 Aquifoliaceae >1000 >1000 Arecaceae >1000 >1000 Aristolochiaceae >1000 >1000 Asclepiadaceae >1000 >1000 Asclepiadaceae >1000 >1000 Asteraceae >1000 >1000 Asteraceae >1000 >1000 Balsaminaceae >1000 >1000 Berberidaceae >1000 >1000 Betulaceae >1000 >1000 Betulaceae >1000 >1000 Bignoniaceae >1000 >1000 Bignoniaceae >1000 >1000 Bombacaceae >1000 >1000 Bombacaceae 834 >1000 Boraginaceae >1000 >1000 Boraginaceae >1000 >1000 Brassicaceae >1000 >1000 Brassicaceae >1000 >1000 Burseraceae 51.3 >1000 Buxaceae >1000 >1000 Cactaceae >1000 >1000 Calycanthaceae >1000 >1000 Campanulaceae >1000 >1000 Campanulaceae >1000 >1000 Cannaceae >1000 >1000 Capparaceae >1000 >1000 Capparaceae 1.31 >1000 Caprifoliaceae >1000 >1000 Caprifoliaceae >1000 >1000 Caprifoliaceae >1000 >1000 Caryocaraceae >1000 >1000 Caryocaraceae >1000 >1000 Caryophyllaceae >1000 >1000 Caryophyllaceae >1000 >1000 Celastraceae >1000 >1000 Celastraceae >1000 >1000 Celastraceae 861 >1000 Cephalotaxaceae 58 >1000 Chenopodiaceae 182 >1000 Chenopodiaceae >1000 >1000 Cistaceae >1000 >l000 Clusiaceae 852.27 >1000 Clusiaceae 11.1 960 Clusiaceae 302.6 >1000 Cochlospermaceae >1000 >1000 Cochlospermaceae >1000 >1000 Combretaceae 55 127 Combretaceae 915 >1000 Convolvulaceae 212 >1000 Convolvulaceae >1000 >1000 Cornaceae >1000 >1000 Comaceae >1000 >1000 Cucurbitaceae >1000 >1000 Cupressaceae >1000 >1000 Cupressaceae 90.3 96 Cycadaceae >1000 >1000 Cyperaceae 255 >1000 Cyperaceae >1000 >1000 Dipterocarpaceae 6.64 >1000 Dipterocarpaceae 107.9 >1000 Ebenaceae >1000 >1000 Ebenaceae 29 >1000 Ebenaceae >1000 >1000 Elaeagnaceae >1000 >1000 Ericaceae >1000 >1000 Ericaceae >1000 >1000 Euphorbiaceae >1000 >1000 Euphorbiaceae 230 >1000 Eupteleaceae >1000 >1000 Fagaceae >1000 >1000 Fagaceae >1000 >1000 Flacourtiaceae >1000 >1000 Flaourtiaceae >1000 >1000 Garryaceae >1000 >1000 Gentianaceae 331 >1000 Gentianaceae >1000 >1000 Ginkgoaceae >1000 >1000 Gentaceae 17.1 >1000 Heamodoraceae >1000 >1000 Hamamelidaceae >1000 >1000 Hippocastanaceae 112 >1000 Hippocastanaceae 533 >1000 Hydrophyllaceae >1000 >1000 Hydrophyllaceae 645 >1000 Icacinaceae 78 >1000 Iridaceae >1000 >1000 Iridaceae >1000 >1000 Juglandaceae >1000 >1000 Juglandaceae >1000 >1000 Juncaceae >1000 >1000 Juncaceae >1000 >1000 Lamiaceae 185.23 >1000 Lardizabalaceae >1000 >1000 Lardizabalaceae 136.39 >1000 Lauraceae >1000 >1000 Lauraceae >1000 >1000 Lecythidaceae 259 >1000 Lecythidaceae >1000 >1000 Leeaceae >1000 >1000 Leguminosae 73.39 >1000 Leguminosae >1000 >1000 Liliaceae >1000 >1000 Limnanthaceae >1000 606.2 Loganiaceae 67.8 >1000 Loganiaceae 90.4 >1000 Lythraceae >1000 >1000 Lythraceae >1000 >1000 Lythraceae >1000 >1000 Magnoliaceae >1000 >1000 Magnoliaceae >1000 >1000 Malpighiaceae >1000 >1000 Malpighiaceae >1000 >1000 Malvaceae >1000 >1000 Malvaceae >1000 >1000 Marantaceae >1000 >1000 Martyniaceae 262 >1000 Meliaceae 67 >1000 Meliaceae 366 >1000 Meliaceae 102 731.23 Meliaceae >1000 >1000 Moraceae >1000 >1000 Moringaceae >1000 >1000 Musaceae >1000 >1000 Musaceae >1000 >1000 Myricaceae >1000 >1000 Myricaceae >1000 50.4 Myristicaceae >1000 >1000 Myrsinaceae >1000 >1000 Myrsinaceae >1000 >1000 Nyctaginaceae 27.7 51.7 Nymphaeaceae >1000 >1000 Nymphaeaceae 313 >1000 Olacaceae 44.8 >1000 Olacaceae 67.6 64.7 Oleaceae >1000 >1000 Onagraceae >1000 >1000 Orchidaceae >1000 >1000 Pandanaceae >1000 >1000 Papaveraceae >1000 >1000 Phytolaccaceae >1000 >1000 Phytolaccaceae >1000 >1000 Pinaceae >1000 >1000 Pittosporaceae 86.5 >1000 Plantaginaceae 83.5 >1000 Plantaginaceae >1000 >1000 Plumbaginaceae >1000 >1000 Plumbaginaceae >1000 >1000 Poaceae >1000 >1000 Podocarpaceae >1000 >1000 Podocarpaceae >1000 >1000 Proteaceae >1000 >1000 Punicaceae >1000 >1000 Ranunculaceae >1000 >1000 Ranunculaceae >1000 >1000 Resedaceae >1000 - Restionaceae >1000 >1000 Restionaceae >1000 >1000 Rhamnaceae >1000 >1000 Rosaceae >1000 >1000 Rosaceae 722 >1000 Rubiaceae >1000 >1000 Rubiaceae 147 75 Rubiaceae >1000 >1000 Rutaceae >1000 >1000 Rutaceae >1000 >1000 Santalaceae >1000 >1000 Santalaceae 130 >1000 Sapindaceae >1000 >1000 Sapindaceae >1000 >1000 Saxifragacene >1000 >1000 Saxifragaceae >1000 >1000 Scrophulariaceae >1000 >1000 Simaroubaceae 866 >1000 Simaroubaceae 734 >1000 Solanaceae >1000 >1000 Solanaceae >1000 >1000 Staphyleaceae >1000 >1000 Staphyleacene 965 >1000 Styracaceae 502 >1000 Symplocaceae 971 >1000 Tamaricaceae >1000 >1000 Taxaceae >1000 >1000 Taxaceae >1000 >1000 Taxodiaceae >1000 >1000 Theaceae >1000 756 Theaceae >1000 >1000 Tiliaceae >1000 >1000 Tropaeolaceae >1000 >1000 Typhaceae >1000 >1000 Uapacaceae >1000 >1000 Ulmaceae >1000 >1000 Urticaceae >1000 >1000 Urticaceae >1000 >1000 Verbenaceae >1000 >1000 Verbenaceae 500 >1000 Zingiberaceae >1000 >1000 Zygophyllaceae 827 >1000 Zygophyllaceae >1000 >1000 (a)[CH.sub.2] [Cl.sub.2] : MeOH (1:1) (b)Positive control was cycloheximide ([LC.sub.50] = 40 [micro]g/ml) Table 2 Cytotoxicity of isolated compounds against Artemia salina. Source Compound [LC.sub.50] ([micro]g/ml) (a) Crateva religiosa oleanolic acid 2.51 Crateva religiosa 4-epi-hederagenin 117 Diospyros dichrophylla isodiospyrin 0.13 Olax subscorpioidea santalbic acid 26.3 (a)Positive control was cycloheximide ([LC.sub.50] = 40 [micro]g/ml)
Acknowledgments
The authors thank Barry Jones, Ray Holloway, and Sejal Patel for technical assistance.
* References
Agrawal PK, Jam DC (1992) 13C NMR Spectroscopy of Oleanane Triterpenoids. Progress in NMR Spectroscopy 24:1-90
Fallas AL, Thomson RH (1968) Ebenaceae extractives. III. Binaphthaquinones from Diospyros species. 3 Chem Soc, C(18): 2279-2282
Finney DJ (1971) Probit analysis. Cambridge [Eng.], University Press
Jones GP, Rao KS, Tucker DJ, Richardson B, Barnes A, Rivett DE (1995) Antimicrobial activity of santalbic acid from the oil of Santalum acuminatum (Quandong). Int J Pharmacogn 33(2): 120-123
Kizu H, Tomimori T (1982) Studies on the constituents of Clematis species. V. On the Saponins of the Root of Clematis chinensis Osbeck. Chem Pharm Bull 30(9):3340-3346
Lillie TJ, Musgrave OC (1977) Ebenaceae extractives. Part 7. Use of Hydroxy-proton Shifts of Juglone Derivatives in Structure Elucidation. J Chem Soc, Perkin Trans 1:355-359
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(1):31-34
Nie RL, Morita T, Kasai R, Zhou J, Wu CY, Tanaka O (1984) Saponins from Chinese medicinal plants. (I). Isolation and structures of hemslosides. Planta Med 50(4): 322-327
Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med 59(3): 250-252
Address
C. L. Cantrell, Hauser Inc., 4161 Specialty Place, Loagmont, CO 80504, USA
Tel.: ++1-720-652-7009; Fax: ++1-303-772-8166; e-mail: c.cantrell@hauser.com
![]() ![]() ![]() ![]() | |
Title Annotation: | National Center for Agricultural Utilization Research, Illinois |
---|---|
Author: | Cantrell, C.L.; Berhow, M.A.; Phillips, B.S.; Duval, S.M.; Weisleder, D.; Vaughn, S.F. |
Publication: | Phytomedicine: International Journal of Phytotherapy & Phytopharmacology |
Geographic Code: | 1USA |
Date: | May 1, 2003 |
Words: | 4662 |
Previous Article: | Immunologically active O6-branched (1[right arrow]3)-[beta]-glucan from the lichen Thamnolia vermicularis var. subuliformis. |
Next Article: | In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. |
Topics: |