Printer Friendly

Behavioral characteristics of Hanwoo (Bos taurus coreanae) steers at different growth stages and seasons.


Animal behavior occurs as a response to external environment stimulation and internal motivation and generally appears to favor survival. Behavioral observation is an efficient way to quickly and precisely understand animals' internal/external status, and is also a definitive method for assessing animal-centered welfare status [1]. For this reason, behavioral study on livestock including cattle has been actively performed around the globe [2-7]. Recent outbreaks of foot-and-mouth disease and avian influenza in Korea highlighted weaknesses in intensive animal husbandry methods. Consumers are paying more attention to the breeding environment of animals and the production of livestock commodities. As a consequence, there is increasing demand for an eco-friendly animal production system that considers animal welfare. Hanwoo (Bos taurus coreanae) are cattle native to Korea. Over the course of 4,000 years [8], they adapted to Korean weather, which has four distinct seasons and ranges from hot and humid in the summer to cold and dry in the winter. The cattle are generally raised in cow houses because more than 70% of Korean territory is mountainous, and they are fattened for more than 30 months to increase the marbling score of their meat. Despite the unique genetic and environmental conditions of Hanwoo, behavioral research based on these factors is extremely limited. Research on cattle behavior that focuses on Hanwoo can be divided into: first, analysis of livestock behavioral repertory according to the genetic factors, and natural environment such as species, growth stage, gender, physiological state, environmental temperature, and humidity [9-11]; second, behavioral changes due to differences in rearing system and management methods [12-16]; third, studies on behavioral response of cattle according to handling methods of livestock; and fourth, analysis methods of behavior [17]. In particular, the first subject of these is the most important and becomes the basis of all behavioral studies since it can provide the fundamental data of behavior relating to genetic and basic environment of the cattle. However, basic researches on Hanwoos behavior are very rare and existing studies are limited in subject and scope. Therefore, comparing results between references is not easy, and evaluating animal welfare for Hanwoo is difficult. Like other animals, cattle have species-specific behavior patterns, and the frequency of the behavioral manifestation and differences over time can vary according to the genetic background and environmental conditions, including breeding method. For mutual development of the rearing method and animal welfare, fully understanding the relevant livestock must precede, because relevant alternatives can be found only after correctly comprehending the physiological and emotional states of the livestock. Thus, this study will investigate behavioral characteristics of Hanwoo steer based on seasons and growth stages to collect baseline data to enable measurement of animal welfare.


Animals and housing

This experiment was conducted under the approval of the Institutional Animal Care and Use Committee of Konkuk University (IACUC No. KU 12097). The experiment was performed at a beef cattle farm (farm Kodaemi, South Korea) from 30 January to 14 October 2013. The Information on experimental design is presented in Figure 1. To perform the experiment, this research experimented 108 Hanwoo steers, introduced from calf auction markets and gelded in their 6 months. In order to observe their behavior, steers were planned to be divided 27 heads respectively in Spring (April), Summer (July), Autumn (October), and Winter (January), based on four seasons. Subsequently, three growth stages for each season were divided into: growing stage (GS, 8 months), early fattening stage (EFS, 19 months), and late fattening stage (LFS, 30 months), and nine steers were assigned to each growth stage ([9 headsx3 growth stages]x4 seasons = 108 heads).

Body weights were measured three days before the start of the experiment, the mean weights were 236[+ or -]27 kg in the GS, 507 kg[+ or -]31 in the EFS, and 753[+ or -]52 kg in the LFS. In consideration of proper individual space of cattle [15] steers were housed at all times in pens that provided 10.67 m2 per head, and each pen accommodated three animals in the same growth stage. Feed was mixed in the form of total mixed ration, which was based on the standard diet for Hanwoo. The chemical composition of the diet is presented in Table 1. The animals had ad libitum access to feed and water. Sawdust was spread on the floor to a thickness of 15 cm, and it was replaced regularly to maintain dry conditions for the animals. The steer house was covered with a 4.5-m roof that facilitated ventilation and included a winch curtain, which blocked the wind from entering in the winter. Otherwise, the curtain was opened most of the time.

Behavioral observations and analysis

Aiming to analyze the expression pattern of daily behavior of Hanwoo steers along with the season and growth stage, nine closed-circuit television cameras connected to a multiplexer were installed in front of each pen a height of 2.2 meters to record the animals' behavior. All behaviors of steers were continuously recorded during 13 day-time hours (06:00 to 19:00 h) with three replications. Recorded behaviors were collected on three days each season. Seasonal ambient temperatures, relative humidity, temperature-humidity index (THI) [18] for the observation dates were measured five times a daytime (07:00 to 19:00 h), and the range of data was 4[degrees]C to 24[degrees]C/16% to 77%/42 to 67 in the spring; 25[degrees]C to 35[degrees]C/54% to 90%/76 to 86 in the summer; 13[degrees]C to 26[degrees]C/ 42% to 89%/56 to 72 in the autumn; and -9[degrees]C to 2[degrees]C/15% to 63%/24 to 46 in the winter (Table 2).

Twelve behaviors of steers were observed along with the season and growth stage. Categories of behavior included standing, lying, eating, ruminating, standing-resting (s-resting), lying-resting (l-resting), walking, drinking, sleeping, self-grooming, social grooming, and sniffing (for definitions, Table 3). Expressed behaviors were recorded in terms of a unit of time (minute or second) or frequency. In addition, the mean bout frequencies of standing, lying, and eating were measured. A single bout refers to the period from the start of a behavior to its end, and the total number of bouts was designated as the bout frequency. Standing (or lying) bout frequency referred to the total number of standing (or lying) behaviors by individuals during the observation period; that is, one bout meant a sitting or standing individual stood up or lay down and then lay down or stood up again. Eating bout frequency referred to the total number of eating behaviors of an individual, with one eating bout meaning that an individual took feed into its mouth from the feed tray and chewed it for no longer than 20 consecutive seconds. Despite distinct differences between groups regarding the mean bout durations for standing, lying, and eating, large standard deviations were produced because sessions of longer times and shorter times were separated. Therefore, the duration of each bout was analyzed differently. First, the total time spent in standing, lying, and eating behaviors was examined, and then the duration was investigated to set duration points (DPs; standing, 60 min; lying, 30 min; eating, 10 min) for bouts of each behavior. Based on the DPs, each behavioral bout duration was divided based on whether it was long or short, and the distribution rate (%) was calculated for the total frequency of the two sessions of the groups. If the above DP frequency ratio was higher, the bout duration could possibly be longer, and if the below DP frequency ratio was increased, the bout duration could be shorter.

Statistical analysis

The mean time and frequency values for 13 behaviors of cattle during 13-hour time periods were compared among the four seasons and the three growth stages. The mean bout frequencies of standing, lying, and eating were also compared among the four seasons and the three growth stages. Factors were analyzed by using analysis of variance or the general linear model procedure in SAS (ver. 9.1, SAS Institute, Cary, NC, USA). When a statistically significant difference was identified, Duncans multiple range test was used to detect statistical significance (p<0.05) among treatment groups.


Table 4 shows the average time or frequency of 13 behaviors of steers according to season and growth stage. Daytime standing times were significantly the longest in the summer (p<0.05) at all growth stages (GS 749.89 min, EFS 659.89 min, LFS 614.11 min). The cattle in the LFS group showed higher significance even in autumn as well as in summer than other seasons (p<0.05). Standing times were second longest for all growth stage groups in the autumn. In the spring and summer, GS (536.44 and 749.89 min, respectively) standing time was significantly longer than in the EFS group (455.11 and 659.89 min, respectively) and the LFS group (482.22 and 614.11 min, respectively) (p<0.05). In contrast, standing bout frequency (Table 5) for the GS group was significantly lower in summer (2.89) than in other seasons (p< 0.05); the same pattern was seen in the EFS and LFS groups. In Table 6, above DP frequency distribution for summer standing was 62% in the GS group, 73% for the EFS group, and 73% for the LFS group, far higher than in the other three seasons.

In winter and spring, lying times were the highest for all growth stage groups, and the GS group had significantly longer times in the winter (319.06 min) than in the other three seasons. The EFS group showed significantly longer times (324.89, 120.11, 311.11 min) in the spring, autumn, and winter than in the summer. The LFS group showed significantly longer times (290.89, 297.00 min) in the spring and winter than in the summer and autumn (p< 0.05). Excluding spring values for the EFS group, average lying times were progressively shorter in the winter, spring, autumn, and summer. Summer lying times (GS, 30.11 min; EFS, 120.11 min; LFS, 152.78 min) were significantly the shortest at all growth stages (p<0.05). Among the groups, the GS group had shorter summer lying times than the other two stages and was significantly different from the LFS group (p<0.05). Meanwhile lying bout frequency (Table 5) was the lowest in the GS and EFS groups in the summer. The GS group (2.78) showed lower levels in the summer than in the autumn and winter, and the EFS group (3.56) showed significantly lower levels in the summer than in any other season (p<0.05). Below DP frequency distribution for summer lying in the GS group was 96%; EFS, 50%; and LFS, 58% (Table 6).

The GS and EFS eating times in the summer (GS, 151.39 min; EFS, 143.23 min) and winter (GS, 177.17 min; EFS, 142.73 min) were shorter than those in the spring (GS, 246.50 min; EFS, 188.29 min) and autumn (GS, 268.18 min; EFS, 216.09 min) (p<0.05).

However in the LFS group, eating times showed no seasonal difference. GS eating times in spring, autumn, and winter were significantly longer than the other groups (excluding LFS in winter) (p<0.05). For eating bout frequency (Table 5), the GS group showed significantly higher values in the summer than in the other three seasons (p<0.05). Although no significance difference was found, EFS eating bout frequency was also highest in the summer compared with the other seasons. However, below DP frequency distribution for summer eating was 91% in the GS group; 81% in the EFS group; and 84% in the LFS group, which were relatively higher levels (Table 6).

Ruminating time in the LFS group (spring, 104.06 min; summer, 117.87 min; autumn, 89.44 min; winter, 111.64 min) was significantly lower than those in the other growth stage groups in all seasons (p<0.05).

Standing-resting times were the longest in the summer for the GS group (414.65 min) and the EFS group (406.81 min), while the LFS group had their longest S-resting times in the summer (376.87 min) and autumn (386.70 min) (p<0.05). The LFS s-resting times were longer in the spring (297.99 min) and in autumn (386.70 min) than those for the other groups (p<0.05).

Lying-resting time was significantly higher in the winter for the GS group (204.08 min), in spring for the EFS group (224.77 min), and in spring (247.14 min) and winter (220.25 min) for the LFS group (p<0.05) than in other seasons, with times becoming higher as the ambient temperature rose. The GS l-resting times in the spring (149.56 min) and in the summer (17.85 min) were significantly shorter than for the other growth stage groups (p< 0.05). This result occurred because of the shorter lying time than in the other groups. L-resting times in most seasons tended to be longer at older growth stages.

The GS (38.67 min) and EFS (16.62 min) walking times were the longest in the summer among all seasons (p<0.05). Although not significant, walking time in the summer was also longest for the LFS group. In spring (6.70 min) and summer (38.67 min), GS walking times were significantly the longest among all growth stage groups, excluding the spring value for the LFS group (5.37 min) (p<0.05).

The GS (39.38 min) and LFS (20.78 min) drinking times were longer in summer than in the other seasons, and in summer, the GS group had the longest times among all growth stages (p<0.05).

Sleeping time was significantly longer in the spring (29.20 min) and winter (33.25 min) for the GS group, and the EFS group had a significantly longer sleeping time in the spring (33.85 min) than in other seasons. The GS and EFS groups recorded significantly a shorter sleeping time in the summer (0.84 min and 0.90 min, respectively) than in the other seasons (p<0.05). The LFS group, however, showed no significant seasonal differences. The LFS group recorded significantly longer times in the summer (19.69 min) and the autumn (27.19 min) than cattle in the other groups (p<0.05). This finding indicates that LFS cattle, unlike GS and EFS cattle, did not reduce their sleep behavior even in warm conditions.

Self-grooming time was significantly the highest for all growth stage groups in the winter (GS, 668.22 s; EFS, 1,838.75 s; LFS, 312.86 s) than in any other season. The LFS self-grooming times in spring (156.11 s) and winter (312.86 s) were the lowest among all groups (p<0.05).

Social-grooming times in the EFS and LFS groups were the highest in the spring among all seasons and the lowest in the autumn (p<0.05). In the spring and winter, social-grooming times in the EFS group (spring, 317.13 s; winter, 231.56 s) were the highest, while the LFS group had the lowest (spring, 175.00 s; winter, 66.56 s) (p<0.05).

The GS and EFS sniffing frequencies were highest in the spring (GS, 20.67; EFS, 29.56), while the highest values occurred for the LFS group in the spring (17.44) and winter (19.38) (p<0.05). In particular, LFS sniffing frequency in the winter was significantly higher than GS sniffing frequency (8.67) (p<0.05). Sniffing mostly occurred when choosing a place to sit down leading to lying activities.

Generally, in the GS group, i) standing, eating, ruminating, walking, and drinking behavior times were longer, ii) while lying, s-resting, and l-resting times were shorter. In the LFS group, i) s-resting, l-resting, summer lying, and summer and autumn sleeping times were longer, ii) whereas self-grooming, social-grooming, and summer walking times were shortened, showing more dynamic movement declined as cattle grew. In general, as ambient temperature rose, i) cattle standing, s-resting, walking, and drinking behaviors increased, ii) while lying, l-resting, and eating behaviors decreased. Along with this, the characteristic of behavioral pattern should be considered, where iii) time spent standing and standing duration per bout increased while standing bout frequency decreased, iv) time spent lying, lying bout frequency, and lying duration per bout all decreased, also, v) eating bout frequency increased while time spent eating and eating duration per bout decreased. In contrast, as ambient temperature dropped, i) lying and self-grooming behaviors increased, ii) but standing behaviors were reduced.


Standing times among cattle tend to be longer as the ambient temperature increases. Ha et al [9] displayed a completely opposite result from this research, regarding that total time spent standing of steers increased as the weather gets colder which was reported because the steers evaded standing due to high temperature stress of summer. However, Allen et al [4] reported cow standing behavior was affected once THI reached 68. Given this finding, it is deemed that since the summer THI assessed in our research was 75 to 85.6 (Table 2), steer standing time was strongly affected by heat condition. Igono et al [19] and Zahner et al [20] found increased ambient temperature increases standing times in heat-stressed cattle. Anderson et al [21] reported that an increase in core body temperature (CBT) may be positively correlated to the amount of time that cows stand. Allen et al [4] found that cows stand up as CBT increases, and they also found that a CBT of 38.93[degrees]C was associated with a 50% likelihood that a cow would be standing; therefore, standing may help cool cows. Although these studies investigated different cattle breeds under different conditions, their results were consistent with our findings, thus we confirmed that standing is an important behavior in assessing cattles heat stress. Due to the high temperature and humidity during summer in South Korea, the overall level of THI was extremely high. Therefore, increase of time spent standing can be recognized as an important change in detecting the level of heat stress experienced by Hanwoo during hot and humid summer. However, the other possibility of another factor related to the standing of cattle should be considered through the research of Ha et al [9], who reported completely opposite result from this research. Accordingly, in order to utilize standing as the behavioral index considering the original gene and environment of Hanwoo, more accurate parameter research should be conducted additionally related to other factors such as THI, CBT, bedding type and state, etc.

Summer standing time became shorter as cattle moved from the GS to the LFS. Younger beef cattle were found to be more sensitive to heat. Although the total standing time in summer was longer than any other season, the standing bout frequency being significantly less than the other seasons meant that the average standing duration per bout was also long (time spent of behavior = boutsxduration per bout). This conclusion is supported by the distribution of above DP frequency of summer standing being greater. Allen et al [4] reported that the duration of standing per bout lasted longer when a cow had a greater CBT, which is similar to our finding. Therefore, the summer standing behavior pattern of steer had the lowest frequency, although its duration was the longest and the total standing time was the longest among all seasons.

Average lying time increased at lower ambient temperatures. Graunke et al [22] observed beef cattle behaviors in Scandinavia and found higher lying time was associated with precipitation such rain and snow. Our research found no large difference in Hanwoos' lying time between the spring and winter, showing that the cattle were successfully adapted to the winter cold. However, the GS group was found to have a significantly longer lying time in the winter than in the spring, thus more care seems necessary for GS cattle in the winter. The time spend lying down is an important measure of cattle comfort [23]. Cattle can only sleep in a comfortable lying down position, and resting in this position is more effective for regaining physical strength than resting in a standing position [1]. Reducing the time that cattle can lie down results in both behavioral and physiological evidence of stress [24]. The EFSA [25] and Lee et al [26] found that cows spend an average of 12 h/d lying down. A reduction in lying time also means an increase in standing time. It seems necessary to work to address the rapid reduction in summer lying time and ensure a certain level of lying time for cattle to improve animal welfare. In summer, lying bout frequency was the lowest, and below DP frequency distribution of summer lying was greater at all growth stages. Kanjanapruthipong et al [27] reported that the duration of lying bouts decreased linearly with increasing THI, which was similar to the finding in our study. Lying behavior of beef cattle (GS, in particular) was found to be shorter or lower in terms of time, bouts, and bout duration in the summer compared with the other seasons. In contrast, above DP frequency distribution of winter lying was 73% in the GS group, 77% in the EFS group, and 68% in the LFS group, indicating that lying time and bout duration are remarkably longer in the winter, than in the other seasons. Consequentially, heat condition changes were found to possibly cause not only quantitative change in cattle lying behavior but also general changes in lying behavior patterns.

The eating time was short in the summer and the winter. Generally, the appropriate temperature for cattle ranges from 0[degrees]C to 20[degrees]C as reported by Won [28]. The ambient temperatures of summer (25[degrees]C to 35[degrees]C) and winter (-9[degrees]C to 2[degrees]C) in this study were not appropriate heat conditions for the cattle. Therefore, the stress from heat and cold was deemed to lead to shorter eating times. However, cattle are inclined to have replenishment eating after sunset when the summer environmental temperature goes down [1], so that time spent eating per day could somewhat increase considering the possibility of replenishment eating. In addition, the eating time in the GS group was longer than in the other growth stage groups. Mimura et al [1] reported that cattle eating time was shorter as total digestible nutrition (TDN) increased, and it was no longer than 4 hours a day if the cattle were mostly fed grains. Among the experiment cattle, TDN (based on dry matter) increased from GS (70.06%), to EFS (74.26%), and to LFS (81.27%) (Table 1), but eating time because shorter in contrast as cattle grew from GS and into LFS. In the present study, eating time was found to be approximately 3 hours or less, given that this was recorded during 13 day-time hours, the results are estimated to be almost similar to those of the referred studies of Mimura et al [1], Cozzi et al [29], Mazzenga [30]. The eating bout frequency was highest and the distribution of below DP frequency of eating was higher in the summer, which mirrors the results of [27]: "The duration of eating bouts decreased linearly with increasing THI" Consequently, eating frequency was highest in summer for GS and EFS cattle, but eating time was mostly short; therefore, compared with the other seasons, the shortest total eating time occurred. As a result, the summer eating behavior was characterized by short, frequent bouts of eating, which was most clearly revealed in the GS group.

Regarding the ruminating time, the LFS group had shorter times than the other groups. Ruminating time increases as the intake amount and neutral detergent fiber (NDF) content rise, but decreases as crude protein (CP) content rises and feed particles become smaller [1]. In our research, CP, crude fiber, acid detergent fiber, and NDF were found to decrease as cattle grew (Table 1). Therefore, it's considered that time spent ruminating in LFS group significantly decreased. Also, time spent ruminating of this research showed the result of 13 hours in the day time, Mimura et al [1] reported that over 60% of time spent ruminating of cattle was taken while lying posture during night time, and Cozzi et al [29] reported that 75% (249 min) out of daily average time spent ruminating (332 min) of experimental cattle was spent between the sunset and the dawn. When aggregating the result of beef cattle, consuming hours during the day time appeared similar in this research to other data.

Mimura et al [1] reported that cattle tend to gather together in warm seasons to minimize attacks from flies or blood-sucking insects through minimizing their body surface areas. The increased walking time in this research seemed mainly for this reason. During most of the observation time, the cattle kept shaking their tails and ears, and if one individual moved, the rest of the group followed, consequentially increasing their walking time. Such behaviors support the assessment. Based on the walking time of the GS group being longest, it could be concluded that the younger growth stage is associated with longer walking time in the hot condition.

Since self-grooming was found to increase in winter and spring where external parasites such as tick, flea, mite, lice, demodex etc., increase inside the fur of the body, longer self-grooming times in winter and spring are viewed as a good indicator for estimating external parasites increase. In addition, self-grooming time tended to be shorter in the autumn than in the summer, which seems to indicate that the cattle drove out flying insects through self-grooming or by having reduced skin temperature through moisture evaporation in the summer.

From an animal welfare point of view, it is very important to find out whether the slowdown of behavioral manifestation in the LFS was brought about from by physical discomfort, or whether the environmental adaptation is due to growth. There are many unknowns remaining about the behavioral and physiological characteristics related to the physical characteristics of beef cattle, which occur as physical growth and fattening progress simultaneously. Therefore, more advanced animal welfare for beef cattle requires further research to determine the meanings of physical and behavioral characteristics of beef cattle.

Hanwoos were found to have more changes in their behavioral patterns in the heat of summer and within the GS group, while showing less active behavior in their LFS. These findings suggest that extra care is necessary during their the GS and LFS and during the summer period. Therefore, it is necessary to conduct animal welfare rearing management on these periods utilizing behavioral monitoring of cattle through additional behavioral physiology experiment design and more accurate behavioral analysis. 10.5713/ajas.16.0992


We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.


This paper was supported by Konkuk University, Republic of Korea.


[1.] Mimura K, Kurosaki J, Tanaka C, et al Livestock behavior (Jap). revised ed In: Kondo S, editor. Chapter 7: The behavior of cattle. Tokyo Japan: Yokendo; 1997. p. 138-68.

[2.] Hultgren J, Wiberg S, Berg C, Cvek K, Kolstrup CL. Cattle behaviours and stockperson actions related to impaired animal welfare at Swedish slaughter plants. Appl Anim Behav Sci 2014; 152:22-37.

[3.] Tucker CB, Rogers AR, Verkerk GA, et al. Effects of shelter and body condition on the behaviour and physiology of dairy cattle in winter. Appl Anim Behav Sci 2007; 105:1-13.

[4.] Allen JD, Hall LW Collier RJ, Smith JF. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J Dairy Sci 2015; 98:118-27.

[5.] Schutz KE, Cox NR. Effects of short-term repeated exposure to different flooring surfaces on the behavior and physiology of dairy cattle. J Dairy Sci 2014; 97:2753-62.

[6.] Kilgour RJ, Uetake K, Ishiwata T, Melville GJ. The behaviour of beef cattle at pasture. Appl Anim Behav Sci 2012; 138:12-7.

[7.] Dutta R, Smith D, Rawnsley R, et al. Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput Electron Agric 2015; 111:18-28.

[8.] Moon HG, Joe SH, Ji SY, et al. The story of Hanwoo (Kor). Suwon Korea: Rural Development Administration of Korea; 2011.

[9.] Ha JJ, Rhee YJ, Cho JH, et al. Behavioral characteristics on season and group size of Hanwoo steer. J Livest Hous Environ (Kor) 2008; 14:9-14.

[10.] Han JH, Kim DJ, Jeon JH, et al. Behavioral characteristics of Hanwoo (Bos taurus coreanae) cows and their calves. J Anim Sci Technol (Kor) 2004; 46:115-22.

[11.] Kim HH, Koo JM, Hwang JM, et al. Prepartum behaviors of Bos Taurus coreanae. Korean J Vet Res (Kor) 2002; 42:403-10.

[12.] Jeon BT, Park IH, Lee SM, et al. The effect of different fiber sources on chewing behavior of Korean native cattle. J Anim Sci Technol (Kor) 1997; 39:383-90.

[13.] Lee SM, Jang JW Effect of different stocking density on eating behavior of Hanwoo steers (Bos taurus coreanae) during growing period. J Anim Sci Technol (Kor) 2011; 53:489-96.

[14.] Kim YI, Lee SM, Park KK, Kwak WS. Effect of feeding a by-product feeds-based silage (biosilage) on behavior pattern of growing Hanwoo steers. J Grassl Forage Sci (Kor) 2013; 33:290-7.

[15.] Moon SH, DH Kim, JH Park, et al. Effects of stocking rate on behavior, serum cortisol and heart rate of Hanwoo (Bos taurus coreanae) heifers. Res J Pharm Biol Chem Sci 2015; 6:1787-94.

[16.] Yang GY. Effects of bedding type on the lying and body care behavior ofgrowing Hanwoo [dissertation]. Chuncheon, KR: Kangwon National University; 2013.

[17.] Yi OH. Study on the development of real time location tracking system for the analysis of Hanwoo behavior [dissertation]. Seoul, KR: Konkuk University; 2013.

[18.] Ravagnolo O, Misztal I, Hoogenboom G. Genetic component of heat stress in dairy cattle, development of heat index function. J Dairy Sci 2000; 83:2120-5.

[19.] Igono MO, Stevens BJ, Shanklin MD, Johnson HD. Spray cooling effects on milk production, milk and rectal temperatures of cows during a moderate summer season. J Dairy Sci 1985; 68:979-85.

[20.] Zahner M, Schrader L, Hauser R, et al. The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Anim Sci 2004; 78:139-47.

[21.] Anderson SD, Bradford BJ, Harner JP, et al. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate. J Dairy Sci 2013; 96:4738-50.

[22.] Graunke KL, Schuster T, Lidfors LM. Influence of weather on the behaviour of outdoor-wintered beef cattle in Scandinavia. J Livest Sci 2011; 136:247-55.

[23.] von Keyserlingk MAG, Rushen J, de Passille AM, Weary DM. Invited review: The welfare of dairy cattle-key concepts and the role of science. J Dairy Sci 2009; 92:4101-11.

[24.] Munksgaard L, Simonsen HB. Behavioral and pituitary adrenal-axis responses of dairy cows to social isolation and deprivation of lying down. J Anim Sci 1996; 74:769-78.

[25.] EFSA (European Food Safety Authority). Scientific report of EFSA prepared by the Animal Health and Animal Welfare Unit on the effects of farming systems on dairy cow welfare and disease. Annex EFSA J 2009; 1143:1-284.

[26.] Lee C, Fisher AD, Colditz IG, Lea JM, Ferguson DM. Preference of beef cattle for feedlot or pasture environments. Appl Anim Behav Sci 2013; 145:53-9.

[27.] Kanjanapruthipong J, Junlapho W, Karnjanasirm K. Feeding and lying behavior of heat-stressed early lactation cows fed low fiber diets containing roughage and nonforage fiber sources. J Dairy Sci 2015; 98: 1110-8.

[28.] Won YS, Behavior of cattle (Kor). 1st ed. Seoul Korea: Pilbang; 2003.

[29.] Cozzi G, Gottardo F, Andrighetto I. The use of coarse maize silage as a dietary source of roughage for finishing Limousin bulls: effects on growth performance, feeding behaviour and meat quality. Anim Sci 2005; 80:111-8.

[30.] Mazzenga A, Gianesella M, Brscic M, Cozzi G. Feeding behaviour, diet digestibility, rumen fluid, and metabolic parameters of beef cattle fed total mixed rations with a stepped substitution of wheat straw with maize silage. Livest Sci 2009; 122:16-23.

Na Yeon Kim (1,2), Seong Jin Kim (2), Se Young Jang (1), Mi Rae Oh (1), Yu Jiao Tang (1), Hye Jin Seong (1), Yeong Sik Yun (1), and Sang Ho Moon (1) *

* Corresponding Author: Sang Ho Moon Tel: +82-43-840-3527, Fax: +82-43-851-4169, E-mail:

(1) Division of Food Bio Science, Korea Nokyong Research Center, Konkuk University, Chungju 27478, Korea

(2) Asia Pacific Ruminant Institute, Icheon 17384, Korea

Submitted Dec 28, 2016; Revised Mar 6, 2017; Accepted Apr 7, 2017

Caption: Figure 1. Experimental design of obseving behavior in Hanwoo steers as different growth sages and seasons.
Table 1. Chemical composition of experimental diets

                       Growth stage

Items           Growing     Early       Late
                 stage    fattening   fattening
                            stage       stage

                       Dry matter %

TDN              70.06      74.26       81.27
Crude protein    15.44      14.6        12.71
Crude fiber      17.72      14.52       11.26
NDF              43.54      37.6        29.33
ADF              23.89      19.61       15.07
Ether extract     5.1       4.97        6.18
Ash              8.24       6.85        4.85
Ca                0.8       0.58        0.35
P                 0.6       0.56        0.46

TDN, total digestible nutrition; NDF, neutral detergent fiber; ADF,
acid detergent fiber.

Table 2. The range of ambient temperature, relative humidity,
temperature-humidity index, and wind speed in the days of behavioral

Time      Items                           Seasons
                             Spring    Summer   Autumn   Winter

07:00     AT ([degrees]C)      4         25       13       -9
          RH (%)               77        90       89       63
          THI                 41.6      76.0     55.6     24.4
          WS (m/s)            2.0       1.1      1.1      1.0
10:00     AT ([degrees]C)      12        31       15       -5
          RH (%)               36        64       71       32
          THI                 55.1      81.9     58.8     36.1
          WS (m/s)            2.0       1.1      1.1      1.0
13:00     AT ([degrees]C)      20        35       22       1
          RH (%)               18        54       48       24
          THI                 63.5      85.6     67.7     43.9
          WS (m/s)            2.0       1.1      1.1      1.0
16:00     AT ([degrees]C)      24        34       26       2
          RH (%)               16        55       42       15
          THI                 67.3      84.5     72.2     46.1
          WS (m/s)            2.0       1.1      1.1      1.0
19:00     AT ([degrees]C)      21        27       20       -2
          RH (%)               21        85       65       31
          THI                 64.7      78.7     66.1     39.6
          WS (m/s)            2.0       1.1      1.1      1.0

AT, ambient temperature; RH, relative humidity; THI,
temperature-humidity index (Rav-agnolo et al [18]); WS, wind speed.

Table 3. Descriptions of recorded behavioral categories

Category          Observation standard

Standing          The bottoms of hooves are on the ground, and all
                  four legs are straight and supporting the body.

Lying             Legs and lower flank side of abdomen are on the

Eating            Standing and chewing with the head in the feed tray

Ruminating        Chewing regurgitated bolus

S-resting         Resting while standing, standing still without
                  particular movements

L-resting         Resting while lying, sitting without ruminating or

Walking           Moving at least three steps in a standing position

Drinking          Head down and drinking water from water fountains

Sleeping          Head on ground or flank and lying laterally with
                  four legs stretched out

Self-grooming     Licking own body with tongue or rubbing on a

Social-grooming   Licking another's body with tongue or rubbing on
                  other cattle

Sniffing          Head down and sniffing about the ground (1 count =
                  from heading down to raising)

Table 4. Behavioral changes in Hanwoo steers (n =
108) during daylight (13 h/06:00 to 19:00 h)

Measurement   Item                            Growing stage
                                            (8 months, n = 36)
                                          Spring          Summer

Time (min)    Standing          Mean   536.44 (bA)     749.89 (aA)
                                SD         47.45          25.29
              Lying             Mean   243.56 (bB)     30.11 (cB)
                                SD         47.45          25.29
              Eating            Mean   246.50 (aA)     151.39 (b)
                                SD         29.58          25.24
              Ruminating        Mean   150.43 (abA)    157.44 (aA)
                                SD         41.16          32.96
              S-resting         Mean   244.35 (bAB)    414.65 (a)
                                SD         54.4           61.93
              L-resting         Mean   149.56 (bB)     17.85 (cB)
                                SD         32.57          14.78
              Walking           Mean    6.70 (bA)      38.67 (aA)
                                SD         1.61           20.02
              Drinking          Mean    18.78 (b)      39.38 (aA)
                                SD         7.77           18.45
              Sleeping          Mean   29.20 (aAB)      0.84 (cB)
                                SD         9.69            1.06
Time (s)      Self-grooming     Mean   402.44 (bA)     353.00 (b)
                                SD        156.91          286.79
              Social-grooming   Mean   229.56 (AB)        152.78
                                SD         78.95          45.18
Frequency     Sniffing          Mean    20.67 (a)       6.25 (b)
(count)                         SD         13.18           3.73

Measurement   Item                            Growing stage
                                            (8 months, n = 36)
                                          Autumn          Winter

Time (min)    Standing          Mean    562.67 (b)      460.94 (c)
                                SD         66.91           52.55
              Lying             Mean    217.33 (b)      319.06 (a)
                                SD         66.91           52.55
              Eating            Mean   268.18 (aA)     177.17 (bA)
                                SD         23.27           33.04
              Ruminating        Mean   147.51 (abA)    120.72 (bAB)
                                SD         31.3            16.94
              S-resting         Mean   244.50 (bB)      270.87 (b)
                                SD         44.11           34.11
              L-resting         Mean    131.56 (b)      204.08 (a)
                                SD         52.01           50.52
              Walking           Mean     6.23 (b)        7.18 (b)
                                SD         1.42            1.17
              Drinking          Mean    22.44 (b)       16.56 (b)
                                SD          8.9            6.31
              Sleeping          Mean    10.65 (bB)      33.25 (a)
                                SD         5.33            15.65
Time (s)      Self-grooming     Mean    194.33 (b)     668.22 (aA)
                                SD         83.2           271.75
              Social-grooming   Mean        137        195.89 (AB)
                                SD        184.28          177.29
Frequency     Sniffing          Mean    11.33 (b)       8.67 (bB)
(count)                         SD         6.22            5.52

Measurement   Item                        Early-fattening stage
                                            (19 months, n = 36)
                                          Spring          Summer

Time (min)    Standing          Mean   455.11 (bB)     659.89 (aB)
                                SD         26.37          107.23
              Lying             Mean   324.89 (aA)     120.11 (bA)
                                SD         26.37          107.23
              Eating            Mean   188.29 (aB)     143.23 (b)
                                SD         28.07           47.4
              Ruminating        Mean   141.33 (AB)     124.25 (B)
                                SD         46.54          21.77
              S-resting         Mean   236.17 (bB)     406.81 (a)
                                SD         41.8           113.62
              L-resting         Mean   224.77 (aA)     105.89 (cA)
                                SD         43.34          100.66
              Walking           Mean    3.11 (bB)      16.62 (aB)
                                SD         1.05           16.45
              Drinking          Mean       12.89        21.33 (B)
                                SD         9.23           10.72
              Sleeping          Mean    33.85 (aA)      0.90 (cB)
                                SD         11.54           0.89
Time (s)      Self-grooming     Mean   503.22 (abA)    375.75 (bc)
                                SD        171.94          127.61
              Social-grooming   Mean   317.13 (aA)     170.56 (b)

                                SD        158.08          93.99
Frequency     Sniffing          Mean    29.56 (a)       11.63 (b)
(count)                         SD         16.73           6.35

Measurement   Item                        Early-fattening stage
                                            (19 months, n = 36)
                                          Autumn         Winter

Time (min)    Standing          Mean   523.00 (b)      468.89 (b)
                                SD        81.21           50.82
              Lying             Mean   257.00 (a)      311.11 (a)
                                SD        81.21           50.82
              Eating            Mean   216.09 (aB)    142.73 (bB)
                                SD        27.31           23.24
              Ruminating        Mean   151.02 (A)      146.06 (A)
                                SD        31.88           27.18
              S-resting         Mean   274.94 (bB)     303.35 (b)
                                SD        73.11            38
              L-resting         Mean   147.07 (bc)    190.20 (ba)
                                SD        64.45           34.01
              Walking           Mean    4.78 (b)        5.43 (b)
                                SD         2.26           1.71
              Drinking          Mean      19.33           17.33
                                SD        10.87           8.56
              Sleeping          Mean   11.02 (bB)      29.02 (ab)
                                SD         7.13           11.81
Time (s)      Self-grooming     Mean   189.88 (c)     612.92 (aA)
                                SD        74.48          317.42
              Social-grooming   Mean   158.33 (b)     231.56 (abA)
                                SD        82.82          148.97
Frequency     Sniffing          Mean    10.11 (b)     14.33 (bAB)
(count)                         SD         5.37           7.26

Measurement   Item                         Late-fattening stage
                                            (30 months, n = 36)
                                          Spring         Summer

Time (min)    Standing          Mean   482.22 (bB)    614.11 (aB)
                                SD        85.72          95.49
              Lying             Mean   290.89 (aB)    152.78 (bA)
                                SD        83.69          81.19
              Eating            Mean   136.31 (C)        145.29
                                SD        20.15           44.5
              Ruminating        Mean   104.06 (B)     117.87 (B)
                                SD        18.08          28.34
              S-resting         Mean   297.99 (bA)    376.87 (a)
                                SD        70.35          100.12
              L-resting         Mean   247.14 (aA)    129.43 (bA)
                                SD        75.15          77.84
              Walking           Mean    5.37 (A)       10.56 (B)
                                SD         1.69          10.16
              Drinking          Mean    13.56 (b)     20.78 (aB)
                                SD         4.25           9.52
              Sleeping          Mean    21.78 (B)      19.69 (A)
                                SD         9.29           9.43
Time (s)      Self-grooming     Mean   156.11 (bB)    188.89 (b)
                                SD        81.72          91.57
              Social-grooming   Mean   175.00 (aB)    121.11 (ab)
                                SD        37.44          128.76
Frequency     Sniffing          Mean    17.44 (a)      6.33 (b)
(count)                         SD         8.35           5.29

Measurement   Item                         Late-fattening stage
                                            (30 months, n = 36)
                                          Autumn         Winter

Time (min)    Standing          Mean   571.56 (a)     483.00 (b)
                                SD        89.94          73.54
              Lying             Mean   208.44 (b)     297.00 (a)
                                SD        89.94          73.54
              Eating            Mean   150.69 (C)     171.34 (A)
                                SD        48.93          21.53
              Ruminating        Mean    89.44 (B)     111.64 (B)
                                SD        17.91          42.38
              S-resting         Mean   386.70 (aA)    270.12 (b)
                                SD        61.86          78.13
              L-resting         Mean   178.88 (ab)    220.25 (a)
                                SD        111.47         55.14
              Walking           Mean        6             6.83
                                SD         1.32           3.19
              Drinking          Mean    13.44 (b)      12.44 (b)
                                SD         6.02           7.37
              Sleeping          Mean    27.19 (A)        25.47
                                SD        12.49          11.26
Time (s)      Self-grooming     Mean    134.8 (b)     312.86 (aB)
                                SD        128.81         139.23
              Social-grooming   Mean    51.29 (b)     66.56 (bB)
                                SD        34.29          50.46
Frequency     Sniffing          Mean    8.75 (b)      19.38 (aA)
(count)                         SD         6.73          10.62

SD, standard deviation

(a,b,c) Means with different superscripts are significantly different
among the four seasons (p <0.05).

(A,B,C) Means with different superscripts are significantly different
among the three growth stages (p < 0.05).

Table 5. Behavioral changes in bout frequency of standing, lying,
and eating of Hanwoo steers (n = 108)

Measurement         Item                   Growing stage
                                        (8 months, n = 36)

                                        Spring        Summer

Frequency (count)   Standing   Mean   4.78 (bcB)    2.89 (cB)
                               SD        1.48          2.52
                    Lying      Mean   4.11 (bC)      2.78 (b)
                               SD        1.36          2.64
                    Eating     Mean   22.22 (bA)    35.67 (aA)
                               SD        7.34          10.81

Measurement         Item                   Growing stage
                                        (8 months, n = 36)

                                        Autumn       Winter

Frequency (count)   Standing   Mean   7.22 (a)     6.44 (ab)
                               SD        2.39         1.59
                    Lying      Mean   6.56 (a)     6.22 (a)
                               SD        2.24         1.64
                    Eating     Mean   18.11 (b)    20.67 (b)
                               SD        4.57         4.8

Measurement         Item                Early-fattening stage
                                         (19 months, n = 36)

                                        Spring       Summer

Frequency (count)   Standing   Mean   6.44 (aA)    4.11 (bAB)
                               SD        1.94         2.26
                    Lying      Mean   5.78 (aB)     3.56 (b)
                               SD        1.99         2.46
                    Eating     Mean   15.22 (B)    20.44 (B)
                               SD        5.31         8.65

Measurement         Item                Early-fattening stage
                                         (19 months, n = 36)

                                       Autumn       Winter

Frequency (count)   Standing   Mean   7.00 (a)    5.78 (ab)
                               SD       1.94         0.97
                    Lying      Mean   6.44 (a)    5.78 (a)
                               SD       1.88         0.67
                    Eating     Mean     16.78       19.56
                               SD        5.7         3.05

Measurement         Item                Late-fattening stage
                                        (30 months, n = 36)

                                        Spring       Summer

Frequency (count)   Standing   Mean   7.78 (aA)    5.44 (bA)
                               SD        1.09         1.42
                    Lying      Mean   7.22 (aA)    5.00 (b)
                               SD        0.67         1.87
                    Eating     Mean   15.78 (B)    23.78 (B)
                               SD        4.29         8.32

Measurement         Item                Late-fattening stage
                                        (30 months, n = 36)

                                       Autumn      Winter

Frequency (count)   Standing   Mean   5.56 (b)    5.67 (b)
                               SD       2.07        1.12
                    Lying      Mean   5.00 (b)    5.56 (b)
                               SD       2.12        1.01
                    Eating     Mean     24.67       19.33
                               SD       12.86       5.17

SD, standard deviation

(a,b,c) Means with different superscripts are significantly different
among the four seasons (p <0.05).

(A,B,C) Means with different superscripts are significantly different
among the three growth stages (p < 0.05).

Table 6. The percentage (%) of the bout frequency in accordance with
duration point (DP) under different growth stages and seasons in
Hanwoo steers (n = 108)

Items      Stages   Duration                Spring
                    (DP, min)   above DP (%)   below DP (%)

Standing   GS       60               47             53
           EFS                       40             60
           LFS                       37             63
Lying      GS       30               67             33
           EFS                       62             38
           LFS                       62             38
Eating     GS       10               36             65
           EFS                       39             61
           LFS                       28             72

Items      Stages               Summer

                    above DP (%)   below DP (%)

Standing   GS            62             38
           EFS           73             27
           LFS           73             27
Lying      GS            4              96
           EFS           50             50
           LFS           42             58
Eating     GS            9              91
           EFS           19             81
           LFS           16             84

Items      Stages               Autumn

                    above DP (%)   below DP (%)

Standing   GS            49             51
           EFS           4              57
           LFS           52             48
Lying      GS            46             54
           EFS           59             41
           LFS           49             51
Eating     GS            40             60
           EFS           36             64
           LFS           19             81

Items      Stages               Winter

                    above DP (%)   below DP (%)

Standing   GS            34             66
           EFS           50             50
           LFS           51             49
Lying      GS            73             27
           EFS           77             23
           LFS           68             32
Eating     GS            27             73
           EFS           23             77
           LFS           28             72

GS, growing stage (8 months, n = 36); EFS, early-fattening stage (19
months, n = 36); LFS, late-fattening stage (30 months, n = 36).
COPYRIGHT 2017 Asian - Australasian Association of Animal Production Societies
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Kim, Na Yeon; Kim, Seong Jin; Jang, Se Young; Oh, Mi Rae; Tang, Yu Jiao; Seong, Hye Jin; Yun, Yeong
Publication:Asian - Australasian Journal of Animal Sciences
Date:Oct 1, 2017
Previous Article:In ovo vaccination using Eimeria profilin and Clostridium perfringens NetB proteins in Montanide IMS adjuvant increases protective immunity against...
Next Article:Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters